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Abstract

Pan-genomic studies aim at representing the entire sequence diversity within a species to pro-

vide useful resources for evolutionary studies, functional genomics and breeding of cultivated

plants. Cost reductions in high-throughput sequencing and advances in sequence assembly algo-

rithms have made it possible to create multiple reference genomes along with a catalogue of all

forms of genetic variations in plant species with large and complex or polyploid genomes. In

this review, we summarize the current approaches to building pan-genomes as an in silico repre-

sentation of plant sequence diversity and outline relevant methods for their effective utilization

in linking structural with phenotypic variation. We propose as future research avenues (i) tran-

scriptomic and epigenomic studies across multiple reference genomes and (ii) the development

of user-friendly and feature-rich pan-genome browsers.
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1. The pan-genome concept

Crop species exhibit extensive phenotypic variation in agronomic
characters, such as phenology, yield, metabolite biosynthesis and re-
sponse to biotic and abiotic stresses. Effective utilization of genetic
variation is key to crop improvement to meet future challenges of
climate change and evolving pathogens.1–3 DNA sequence poly-
morphisms are commonly classified into single-nucleotide polymor-
phisms (SNPs), short insertions and deletions (indels) and larger
(>50 bp) structural variations (SVs), which comprise presence/
absence variants (PAVs) and copy number variants (CNVs) as well
as balanced rearrangements, namely inversions and inter/intra-
chromosomal translocations.4,5 Capturing the full spectrum of natu-
ral SV in a species is challenging. In the past decade, reference ge-
nome sequence assemblies and catalogues of sequence diversity were

generated for many crop species, among them the major cereal6–9

and legume crops.10,11 These projects assembled genome sequences
for a single genotype and detected SNPs and indels from high-
throughput sequencing data mapped to the reference genome
sequence. Although a single reference genome sequence is the
backbone of a genomic infrastructure, it cannot represent the full
complement of sequence diversity of a species. Especially challenging
are large-structural variants that are difficult to capture by short-
read sequencing and reference-based analysis. Nevertheless, several
studies have shown that this class of variants can play a vital role
in determining agronomic traits,12–15 local adaptation and
speciation.16–20

The concept of a ‘pan-genome’ refers to the universe of genome
sequences existing in a species. Representing each and every sequence
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variant segregating in the pan-genome is a distant goal. First-
generation pan-genome studies commonly aimed at discovering as
many structural variants as possible with a diverse, but necessarily
limited set of genotypes. Pan-genomic studies have been conducted
in various model and crop plants including Arabidopsis thali-
ana,21,22 Brachypodium distachyon,23 Brassica oleracea,24 tomato,25

rice,26–28 soybean,29 rapeseed,30 wheat31 and barley.32

To date, the pan-genome concept has been discussed extensively
regarding definitions, approaches, computational challenges and po-
tential applications.33–39 Moreover, the development of computa-
tional tools for pan-genome representations and visualizations have
already been discussed in detail elsewhere.35,40–42 Here, we review
strategies for (i) building pan-genomes from reference-quality genome
sequence assemblies, (ii) genotyping SVs discovered in large diversity
panels using short-read resequencing and (iii) linking SVs to pheno-
types in genome-wide association studies (GWAS). We propose tran-
scriptomic and epigenomic studies focusing on accessions with high-
quality genome assemblies as well as the development of pan-genome
visualization solutions (e.g. web browser) as future research avenue.

2. Selecting germplasm for a sequence assembly

The first step in setting up a pan-genome infrastructure is the selection of
a diverse set of representative genotypes for sequence assembly (Fig. 1).

The goal is to capture as many genetic variants as possible with a limited
panel of genotypes. Genebanks, i.e. national or international germplasm
repositories, host hundreds to thousands of accessions of all major crop
species, but minor crops might be not as well represented in ex situ collec-
tions (http://www.fao.org/3/i1500e/i1500e00.htm). Genome-wide geno-
typic data for entire genebank collections or representative subsets are
crucial to select diverse accessions covering all major germplasm groups
in a species. Such genebank genomics studies have been reported recently
for barley,43 wheat,44 maize45 and rice.46 Genotyping-by-sequencing
(GBS)47 was used to fingerprint more than 20,000 wild and domesticated
barleys43 from the German ex situ genebank. Researchers from the
International Maize and Wheat Improvement Centre (CIMMYT) report
GBS profiles for 44,624 wheat lines from the breeding programs44,48 as
well as DArTseq data for 80,000 wheat accessions from the genebanks
of CIMMYT and the International Centre for Agricultural Research in
the Dry Areas. The genomes of more than 3000 cultivated rice accessions
from the International Rice Research Institute genebank were sequenced
to generate a digital genebank and a pan-genome.46 There are various
approaches for selecting coresets.49 For example, the tool Corehunter50

implements different algorithms operating on genetic distance matrices to
maximize diversity, representativeness and/or allelic richness of core sets.
Custom selections may also be made from clustering the diversity space
as represented by principle component analysis51 or model-based ancestry
estimation.52 Pan-genome panels may include domesticated accessions as

Figure 1. Pan-genome selection and construction. Representative genotypes are chosen from genetically diverse populations based on genome-wide genotypic

data for ex situ germplasm collections. Chromosome-scale genome assemblies are built for a small, but representative core set. The pan-genome compartments

such as core (i.e. genomic sequences present in all individual of a species) and variable (i.e. sequences found in some/few individuals) are identified from the de

novo assemblies.
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well as accessions of conspecific wild progenitors or ancestors of poly-
ploid species, e.g. maize and teosinte or wheat and wild emmer and
Aegilops tauschii. Crop-wild relatives in the secondary and tertiary gene
pools53 may be included to serve as out-groups, e.g. to determine ances-
tral states for SVs (Fig. 2), or because of their relevance in introgression
breeding. In addition to focusing on maximizing representativeness of
global diversity in a crop, a pan-genome project may also select genotypes
that have played an important role in breeding and genetics such as
founder genotypes of breeding programs, parents of experimental popu-
lations54 or genotypes amenable to genetic transformation55,56 may be in-
cluded to maximize the benefits for the research and breeding
community. Vice versa, the accessions included in pan-genomic studies
are poised to become reference genotypes in future genetic and functional
studies by virtue of the genomic resources associated with them.

3. Moving from short-read resequencing to

long-read reference genomes

3.1. Alignment vs. assembly

High-throughput short-read sequencing on the Illumina platform has
been extensively used for plant genome assembly, population genomics
and GWAS studies, but it has important drawbacks. The intergenic space
in plant genomes is mainly derived from transposable elements (TEs).57

Since Illumina reads are only up to a few hundred basepairs in length,
they cannot traverse most repeats, leading to fragmented and incomplete
genome assemblies. Similarly, applying short-read sequencing data to de-
tect SVs using read depth or paired-end information (‘split reads’) is prone
to errors in very complex regions, such as plant resistance gene loci.
Alignment of long (>10 kb) reads to a reference genome can overcome
some of these challenges. Still, even with long reads, insertions exceeding
the read length, tandem and segmental duplications,58,59 as well as bal-
anced events such as large inversions (>1 Mb),60–62 are challenging to
detect from alignments to a single reference genome.

3.2. Assembly methods

De novo assembly of multiple high-quality reference genome sequen-
ces and their comparison by pair-wise sequence alignment is
arguably the most powerful and accurate approach to detect all types
of sequence variant at base-level resolution.62 The progress in

genome sequencing and assembly methods in the past two decades
has been tremendous. The first approaches at whole-genome assem-
bly, namely hierarchical sequencing of bacterial artificial chromo-
somes on the Sanger platform could only be implemented by
international consortia even for small-sized genomes like
Arabidopsis63 or rice.9 The development of high-throughput short-
read sequencing first on the 454, then on the Illumina platforms,64

enabled the generation of draft genomes for many plant sequences,
including most crops.65,66 But still assembly contiguous genome
sequences from short-reads was a complicated and resource-
intensive task67,68 and did not scale well to tens to hundreds of
genomes. Multiple short-read libraries with various insert sizes were
required for scaffolding contig-level assemblies that were often too
fragmented to be useful on their own. Complementary approaches
such as optical mapping,69 genetic mapping70 and chromosome con-
formation capture sequencing (Hi-C)71,72 were required to increase
sequence contiguity from kilobase-sized contigs to full chromosomes.
Long-read sequencing on the PacBio73 and Oxford Nanopore74 plat-
forms have conceptually simplified this approach as assembly of long
(> 10 kb) reads result in megabase-sized scaffolds even in complex
genomes.75 Yet, the high error rate of long-read sequencing (10–
15%) requires substantial computational resource for correction and
overlap determination—to a degree that assembly of polyploid plant
genome could take months.76 The need for vast computational re-
source to assemble large (>1 Gb) plant genomes has recently been
obviated by the development of accurate long-sequencing on the
PacBio platform.77 Repeated read-out of the same DNA fragment by
circular consensus sequencing yield reads in the 15–25 kb range with
error rate below 1%.76 State-of-the art algorithms (HiCanu78 and
hifiasm79) can now assemble human-sized genomes to megabase-
scale contiguity within hours on standard compute servers.

3.3. Assembly approaches for pan-genomics

We predict that accurate long-read sequencing is a breakthrough
technology that will greatly improve our ability to assemble large
and complex, heterozygous or polyploid genomes and to do this in
timeframe that enabling scaling to pan-genomes. Highly contiguous
and accurate genome assemblies will provide access to regions previ-
ously inaccessible to sequence analysis such as centromeres80 or loci

Figure 2. A pan-genome workflow. (a) A representative core set of accessions is selected from the domesticated and wild gene pools. Accessions from secondary

and tertiary gene pools are added to build the pan-genome at genus level. (b) Reference-quality genomes (represented in coloured hexagons) are generated for a

small set of accessions and aligned to each other to catalogue the small, medium and large variants (SVs) including insertion, deletion, inversion and transloca-

tion. (c) Binary SVs (large insertions and deletions) are genotyped (Fig. 3 for genotyping strategy) in a wider panel of germplasm using short-read sequencing.

Each hexagon order represents individual genome from distinct accessions. (d) A combination of assemblies and resequencing data underpins genetic analyses

such as GWAS and population genetic inquiries into pan-genome complexity. Accessory functional data on gene expression and gene profiles will decorate

pan-genomes to assist hypothesis generation. All information is provided to research community in a user-friendly web interface (browser).
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involved in response to pathogens.81,82 However, it should also be
kept in mind that any genome assembly can contain errors poten-
tially giving rise to spurious SV calls.62,83 Complementary evidence
provided by independent mapping approaches, such as optical maps
and Hi-C, are needed to validate and correct assemblies to increase
confidence in structural variant calls, particularly for reciprocal
events such as inversions and translocations.

At the time of writing, it is an ambitious, but not unrealistic
research goal to generate tens of high-quality reference genomes for
large-genome plant species and hundreds of reference genomes for
smaller species within the timeframe of 1 year. In plants, whole-
genome assembly-based pan-genomes have been reported for rice
(number of accessions, n¼16),28,46,84 barley (n¼20),32 wheat
(n¼10),31 maize [n¼26; NAM Genomes Project (https://nam-
genomes.org)], Brachypodium distachyon (n¼54),23 Glycine soja
(n¼7),29 Brassica napus (n¼8)30 and soybean (n¼26).85

Computational method development has focused on fast algorithms
for aligning long-reads to reference genomes and reference genomes
to each other as well as to call variants from such alignments.38

Likewise, genome assembly software has kept pace with methodo-
logical advances in long-read sequencing.78,79 Nevertheless, sequence
assembly of complex plant genomes remains challenging: algorithms
struggle with resolving multiple haplotypes in heterozygous or auto-
polyploid genomes.79,86 Assemblies might result in fragmented
sequences, produce chimeric contigs joining different haplotypes or
ignore alternative haplotypes. Even when haploid genome assemblies
can be constructed from rare inbred or haploid genotypes in other-
wise outcrossing or polypoid species,87 detecting and phasing hetero-
zygous SVs remains challenging in these species.

4. Constructing an in silico representation of the

pan-genome

4.1. Pan-genome graphs

Once genome sequence assemblies of a diversity panel have been
obtained, a common first analysis is to compartmentalize the
assembled sequences into the core and the variable genome (Fig. 1).
The variable genome comprises sequences that are present in some
genotypes, but absent from others. The core genome is present in all
individuals of a species and may comprise sequence whose loss is
incompatible with proper organismal functioning such as house-
keeping genes.88 In bacteria, where the pan-genome concept was
developed first,88 the core and variable compartments refer only to
gene sequences. As bacterial genomes are small and mainly composed
of coding sequence, this approach is correct and straightforward to
implement because methods to cluster genes into orthologous groups
are well established. In plant and animals, however, a purely gene-
based analysis would ignore a large proportion of diversity present in
intergenic sequences. As a consequence of the frequent movement of
repetitive elements,89 much of the variable component of a plant pan-
genome is intergenic and derived from TEs. Since orthologous rela-
tionships are hard to establish between copies of TEs in different gen-
otypes, recording all sequence alignments between repetitive elements
would result in a data structure of inextricable complexity.

Toolkits for the construction, analysis and visualization of
graph-based pan-genomes such as vg toolkit,42 minigraph90 the
Practical Haplotype Graph91 are under active development.40 As of
now, further evaluation and development of heuristics for pruning
complex regions is needed before these approaches can be deployed
on collections of tens to hundreds of plant genome assemblies in the

same standardized and streamlined way as toolkits for SNP genotyp-
ing operate on short-read data.92,93 In the meantime, different ad
hoc approaches have been devised to focus on low-copy, but not
necessarily genic, regions. In rapeseed, a pan-genome sequence was
constructed by adding the PAV sequences from multiple individual
genomes to one single reference genome.30 In soybean, a graph-
based pan-genome construction was performed with non-redundant
SVs against a reference genome.85

4.2. The single-copy pan-genome

Recently in barley, a so-called ‘single-copy pan-genome’ was built by clus-
tering single-copy regions extracted from multiple chromosome-scale se-
quence assemblies. This work-around enabled quantitative estimates of
pan-genome complexity, such as saturation analysis, and provided a ref-
erence to derive bi-allelic SV markers for use in association genetics.
However, approaches targeting single-copy regions may prove ineffective
in polyploids where even highly conserved house-keeping genes occur in
multiple copies in the subgenomes. Moreover, as genic regions are under
stronger selective pressure and have reduced sequence diversity, gene-
based analyses may underestimate pan-genome complexity. For instance,
the gene-based pan-genome of soybean reached a plateau with 25 repre-
sentative accessions,85 but this picture could change entire genomes are
considered.

5. Genotyping SV in short-read data for associa-

tion genetics

5.1. Need for genotyping SV in larger germplasm

panels

Despite continuous methodological advances and cost reductions in
the past decade, sequence assembly is still substantially more expen-
sive than resequencing. In large-genome plants species, the size of
germplasm panels that can be subjected to de novo sequence assem-
bly may not be large enough for GWAS or population genomic
analysis. One possible approach for including structural variants
into genetic analysis is the use of linked SNPs as proxies. But, several
studies have shown that the rapid decay of linkage disequilibrium
can result in many SVs that are not tagged by near-by SNPs.15,94 A
further conceptual drawback is that even if linked SNPs can pinpoint
loci in association scans, causal variants residing in SVs whose se-
quence is absent from the reference genome would be inaccessible.

5.2. Graph-based methods

Low-coverage whole-genome shotgun sequencing can scale to panels
comprising thousands of accessions. Thus, it can complement cata-
logues of SVs seeded with genome sequence assemblies to discover
new, or genotype known events. There are several approaches for
genotyping SVs (Fig. 3), which are discovered in a smaller discovery
panel, in short-read data for more individuals. One of them is to
build variations graphs from SVs discovered in the reference panel
(Fig. 3a) and aligning short-reads to the graph.42,95–97 Graph-based
SV genotyping requires high read coverage (�10–30X) to achieve
good accuracy.42 The advantages of high read depth need to be
weighed against larger panel size affording greater statistical power.
An alternative approach is to extract defined short sequences
(k-mers) that are diagnostic for the presence or absence of SV and
whose presence can be confidently ascertained in short (< 300 bp)
read data. For instance, multiple short k-mers with lengths typically
in the range of 30–100 bp can be extracted from SVs and queried in
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short-read resequencing data. Multiple k-mers might be combined to
increase specificity, mitigate the effects of missing data in low-
coverage data and differentiate between different haplotypes sharing
the same SV. Choosing k-mers from single- or low-copy regions is
needed to avoid unspecific matches (Fig. 3b). Single-copy regions do
not only comprise genes, but also non-coding regulatory regions and
unique TE insertion sites.98 Thus, they can serve as anchor points for
larger haplotypes even in repetitive regions. Presence/absence tables
of the diagnostic k-mers act as biallelic marker matrices for use in ge-
netic mapping applications, i.e. GWAS or quantitative trait locus
(QTL) mapping in biparental populations. As there are fewer SVs
than SNPs, commonly used GWAS methods developed for SNP gen-
otyping or sequencing studies (such as GEMMA99 or GAPIT100) are
readily applicable. As a proof-of-principle, Jayakodi et al.32 queried
single-copy k-mers from structural variants detected in 20 barley as-
semblies in GBS and WGS data of diversity panels and used a k-mer
abundance matrix in GWAS scans for morphological characters with
a simple genetic architecture. Song et al.30 used GWAS with PAV-
derived markers to identify SVs associated with silique length, seed
weight and flowering time in rapeseed.

5.3. Reference-free methods

A conceptually similar k-mer-based approach is reference-free associ-
ation mapping with k-mer counts determined only from short read

data without any sequence assemblies (Fig. 3c). Instead of diagnostic
k-mers ascertained from a discovery panel of reference genomes, all
k-mers occurring in a collection of short reads are catalogued and
their presence/absence in individual genotypes is tabulated. As the
number of distinct k-mers is on the order of billions in large plant
genomes, a pre-selection of informative markers is needed for GWAS
scans that test for significant marker-trait associations with linear
models. Two approaches for k-mer-based GWAS in plants have been
described. AgRenSeq101 combines resistance (R) gene enrichment se-
quencing with fast k-mer counting and GWAS scans using general
linear models accounting for population structure. Due to the
pre-selection of resistance orthologues, AgRenSeq is geared toward
the discovery of R genes associated with specific diseases. The
kmerGWAS102 pipeline first quantifies k-mers in either whole ge-
nome shotgun or reduced representation sequencing data and then
selects a prioritized set of k-mers based on a simple and fast statisti-
cal test. This smaller set of markers is used in a linear mixed model
GWAS accounting for kinship. Both AgRenseq and kmerGWAS do
not require a reference genome, but can benefit from it by aligning
associated k-mers to it to determine chromosomal locations of
GWAS peaks. In the absence of a reference genome or a sequence as-
sembly representing the haplotype of interest, de novo assembly of
reads containing k-mers associated with phenotypes may result in
complete genes. However, because of the small size of the assembled
contigs in the range of 1–10 kb, genomic contextualization is lacking,

Figure 3. Pan-genome representation and GWAS with SV. (a) A pan-genome graph is constructed from the alignment of chromosome-scale sequence assem-

blies. This graph represents all types of genetic variants. Sections of the genome are shown as coloured hexagons. Each colour represent one genotypes. SV are

represented by different paths through the graph. Tools for constructing and working with pan-genome graphs under active development. Two alternative

approaches to capture pan-genomic information in genetic analyses are currently being used. (b) SVs between these genomes are detected from alignments

against a common reference genome. Single-copy regions are extracted from the assemblies (mauve colour) and overlapped with SV (orange colour). Single-

copy k-mers residing in SVs are extracted and their abundance is ascertained in short-read data from a diversity panel to genotype the underlying SV. (c)

Reference-free approaches select k-mers directly from short-read data of a diversity panel without the need of genome assemblies. Matrices of k-mer counts

from either single-copy or reference-free approaches are used as markers in GWAS.
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which could complicate the differentiation between linked and causal
variants, in particular, if they reside in intergenic regions for which
low-copy informative k-mer may be lacking.

As sequence assemblies for more genotypes become available,
the pan-genome saturates, that is, the available reference genomes
capture most haplotypes segregating at a certain minimum frequency
(e.g. 1%) in the population. Then, both reference-agnostic k-mer
GWAS followed by aligning peak markers to multiple sequence
assemblies and GWAS with diagnostic k-mers tagging pre-defined
haplotypes would conceptually converge. Future work should focus
on defining best practices for compiling discovery panels (i.e. high-
quality reference genomes), choosing sequencing depth and selecting
the most appropriate analysis strategies.

6. Beyond the pan-genome

6.1. Pan-transcriptomes

SVs can influence gene expression in various ways, for instance by
disrupting gene structures, by altering gene copy number or by
changing the composition or positioning of cis-regulatory sequen-
ces.59,85,103,104 In addition to changing DNA sequence, SV could
affect gene expression by altering epigenomic marks. Unravelling the
functional consequences of a given SV, e.g. one associated with an
agronomic phenotype, can be challenging. A notable example is a
13 Mb inversion (Inv4m) on maize chromosome 4 that is associated
with early flowering.105 Expression analysis in more than 430 RNA
samples from near-isogenic lines did not reveal one single variant as
a convincing causal candidate. Precise perturbations by gene editing
or even flipping the inverted haplotype back to the ancestral configu-
ration are possible,106 but technically demanding, strategies toward
understanding how this inversion altered flowering time. Gene ex-
pression atlases across the development of a single genotype have
been developed in many plant species107,108 and are recognized as
valuable community resources that inform about when, where and
how strongly a gene is expressed.

6.2. Pan-epigenomes

In the same way, we envision that profiling gene expression and epi-
genomic marks across a set of genotypes for which chromosome-
scale reference genome sequences have been assembled will yield
pan-transcriptome and pan-epigenome atlases as permanent commu-
nity resources. Large-scale expression profiling and population-scale
epigenomic studies have been done before, but in the absence of
multiple sequence assemblies, data were mapped to a single refer-
ence. By integrative analysis of matching genomic, transcriptomic
and epigenomic data, it will be possible to analyse the co-location of
structural variants and epigenomic variants and gene expression dif-
ferences between accessions. Such data can help prioritize variants in
GWAS studies and guide the development of hypothesis for
approaches targeting individual variants (Fig. 2). Recent reports
have reported first results in these directions: in tomato, almost, half
of the SVs detected in a pan-genome constructed from 14 sequence
assemblies overlap with genes and/or flanking regulatory sequences
and many of them showed subtle, yet significant changes in gene ex-
pression.59 In soybean, more than 1,000 SVs were associated with
expression changes, notably a candidate gene for iron uptake was
identified with RNA-seq evidences.85 Yang et al. reported 207 cis ex-
pression QTLs linked to SVs. Among these, 70 were found to form

chromatin loops coding genes in Chromatin Interaction Analysis by
Paired-End Tag Sequencing.103

6.3. Browsers

As methods for sequence assembly and comparative analyses improve,
previously inaccessible genomic variants become amenable to genetic
study. An outstanding challenge is to make new and more complex data
structures such as non-linear graph-based pan-genomes accessible
to researchers and breeders who are inexperienced in using
command-line tools. An integrated pan-genome browser capable of
representing SNPs and large SVs in multi-reference coordinate sys-
tem, together with their annotations, accessory transcriptomic and
epigenomics datasets, as well as links to germplasm repositories
would serve as a one-stop shop for genome analysis. However, be-
fore this vision can be realized, many obstacles need to be over-
come. Among them are the construction of and sequence alignment
to pan-genome graphs (e.g. by using vg42 or minigraph90) as well as
merging and consolidating gene annotations across a large and po-
tentially growing number of sequence assemblies.109–111 As a first
step in this direction, we propose the implementation of web-based
tools to query and analyse multiple chromosome-scale reference
genomes in a gene-centric manner. The framework needs to include
query forms to retrieve allelic gene sequences from multiple refer-
ence genomes, inspect multiple-sequence alignments of alleles of
genes or larger haplotypes and query the presence of alleles or hap-
lotypes in a wider set of germplasm.

7. Concluding remarks and future perspectives

Recent pan-genomic studies have revealed exciting insights into crop
domestication and the genetic basis of agronomic traits. We expect,
while the analysis and visualization methods mature, pan-genomics
will establish as indispensable component in the genomics toolbox of
plant geneticists and breeders. Since workflows for sequence assem-
blies and association genetics are in place, future studies will extend
analysis and visualization methods in population genetics, gene ex-
pression and epigenetics to the scale of pan-genomes. We anticipate
that pan-genomes will become an essential component in studying
the diversity of crops and their wild relatives and in developing effi-
cient concepts for their usage in pre-breeding. Digital genebanks
based on sequence-based genotyping are feasible right now.13,43

The long-term goals of having genome assemblies for all genebank
accessions112 is still a distant goal, which, however, has just come a
bit closer with the recent breakthroughs in assembly methodology.
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