
fnins-16-913377 April 30, 2022 Time: 14:9 # 1

ORIGINAL RESEARCH
published: 06 May 2022

doi: 10.3389/fnins.2022.913377

Edited by:
Zhengxia Wang,

Hainan University, China

Reviewed by:
Weiwei Wang,

Fudan University, China
Feifei Zhang,

Sichuan University, China

*Correspondence:
Xiaowen Xu

1710451@tongji.edu.cn
Xin Gao

gaoxin@uvclinic.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 05 April 2022
Accepted: 20 April 2022
Published: 06 May 2022

Citation:
Peng L, Liu X, Ma D, Chen X,

Xu X and Gao X (2022) The Altered
Pattern of the Functional Connectome

Related to Pathological Biomarkers
in Individuals for Autism Spectrum

Disorder Identification.
Front. Neurosci. 16:913377.

doi: 10.3389/fnins.2022.913377

The Altered Pattern of the Functional
Connectome Related to Pathological
Biomarkers in Individuals for Autism
Spectrum Disorder Identification
Liling Peng1†, Xiao Liu2†, Di Ma3, Xiaofeng Chen4, Xiaowen Xu5* and Xin Gao1*

1 Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China, 2 School of Business Administration, José Rizal
University, Mandaluyong, Philippines, 3 College of Information Science and Technology, Nanjing Forestry University, Nanjing,
China, 4 College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China, 5 Department of Medical
Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China

Objective: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder
characterized by the development of multiple symptoms, with incidences rapidly
increasing worldwide. An important step in the early diagnosis of ASD is to identify
informative biomarkers. Currently, the use of functional brain network (FBN) is deemed
important for extracting data on brain imaging biomarkers. Unfortunately, most existing
studies have reported the utilization of the information from the connection to train the
classifier; such an approach ignores the topological information and, in turn, limits its
performance. Thus, effective utilization of the FBN provides insights for improving the
diagnostic performance.

Methods: We propose the combination of the information derived from both FBN and
its corresponding graph theory measurements to identify and distinguish ASD from
normal controls (NCs). Specifically, a multi-kernel support vector machine (MK-SVM)
was used to combine multiple types of information.

Results: The experimental results illustrate that the combination of information from
multiple connectome features (i.e., functional connections and graph measurements)
can provide a superior identification performance with an area under the receiver
operating characteristic curve (ROC) of 0.9191 and an accuracy of 82.60%.
Furthermore, the graph theoretical analysis illustrates that the significant nodal
graph measurements and consensus connections exists mostly in the salience
network (SN), default mode network (DMN), attention network, frontoparietal network,
and social network.

Conclusion: This work provides insights into potential neuroimaging biomarkers that
may be used for the diagnosis of ASD and offers a new perspective for the exploration
of the brain pathophysiology of ASD through machine learning.

Keywords: Pearson’s correlation, functional magnetic resonance imaging, functional brain network, autism
spectrum disorder, MK-SVM
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INTRODUCTION

As a neural developmental syndrome, autism spectrum
disorder (ASD) is commonly defined as defective or restricted
communication, repetitive behaviors, and social reciprocity,
leading to dysfunction in social, educational, and professional
fields (Lord et al., 2000; Frith and Happé, 2005; Baio, 2014; Wee
et al., 2016); the definition is based on the diagnosis and disease
severity assessment. Approximately 1.47% of American children
present with some form of ASD, the incidence of which has
increased by nearly 30% per 2 years (Baio, 2014). Unfortunately,
the diagnosis of ASD is dependent on the symptoms and
behavioral patterns of ASD (Gillberg, 1993; Segal, 2000; Lord and
Jones, 2012), due to which timely and appropriate treatments
cannot be availed. Meanwhile, although gene expression-based
diagnostic methods (Wang et al., 2009; O’Roak et al., 2012) can
benefit early diagnosis, they are often costly and complicated.
Fortunately, several studies have illustrated that abnormal
functional disruptions in certain brain regions (Allen and
Courchesne, 2003; Anderson et al., 2011; Delmonte et al., 2012)
are highly correlated with ASD. Therefore, a potential method
of identifying biomarkers for ASD can be adopted by analyzing
brain activity data.

Functional magnetic resonance imaging (fMRI) has been
successfully utilized in brain mechanism research and clinical
diagnosis (Brunetti et al., 2006; Kevin et al., 2008; Jin et al.,
2010; Li et al., 2020b). Particularly, several studies have suggested
that patients with ASD show atrophy of gray matter volume,
degeneration of white matter fiber structure, and reduction
of spontaneous functional activity in the hippocampus and
frontal region (Brambilla et al., 2003; Anderson et al., 2011; Li
et al., 2017). However, because spontaneous brain activities are
asynchronous and random across subjects, direct comparison of
fMRI data (i.e., time courses) to identify and distinguish ASD
patients from normal controls (NCs) remains challenging. As
an alternative, the functional brain network (FBN) can provide
insights into an effective method that can be developed to obtain
data on relatively stable biomarkers that can be used for ASD
identification (Smith et al., 2011; Sporns, 2011; Wee et al., 2012;
Stam, 2014; Rosa et al., 2015). Moreover, several studies have
confirmed that significant changes in FBN are highly correlated
with neurological diseases such as ASD (Theije et al., 2011; Gotts
et al., 2012), Alzheimer’s disease (Supekar et al., 2008; Huang
et al., 2009; Liu et al., 2012), and mild cognitive impairment (Gao
et al., 2020), among others.

Specifically, brain connectome analysis, including functional
connections and graph theory topological measurements, has
attracted significant attention owing to the complex brain
network mechanism and various types of diagnostic information
(Biswal et al., 1995; Li et al., 2019, 2021). In a series of resting-
state FBN studies, several attempts have been reported on the
consideration of the functional connections among individuals
to train a classifier and findings have revealed a significant change
in the default mode network (DMN), salience network (SN), and
language network (O’Roak et al., 2012; Nielsen et al., 2013; Verly
et al., 2014; Wee et al., 2014; Li et al., 2017). Other ASD studies
have focused on utilizing graph theory to reveal the difference

(Keown et al., 2017). However, most studies were conducted
separately depending on brain network functional connections,
and a certain portion of the information derived from the
graph theory attributes might have been lost, which limited
their performance. Thus, a more robust tactic is to combine the
information of the brain network functional connections and
graph theory attributes. Considering the potential superiority
of multi-view learning tricks, we utilized the most commonly
considered multi-kernel support vector machine (MK-SVM)
method to combine information for accurate ASD diagnosis. This
study may provide valuable insights into the pathophysiological
mechanisms of preclinical ASD. The main contributions of this
study can be summarized as follows.

1) Our findings revealed a new pathway that could be considered
to efficiently identify and distinguish ASD from NCs by
combining information from the brain network functional
connections and graph theory attributes.

2) We used the MK-SVM as an example to confirm the
information combination approach by identifying the ASD
from NCs and achieved an 82.60% classification accuracy,
which demonstrated a competitive finding.

3) A graph theoretic analysis suggested that the discriminative
brain regions of ASD patients were mainly distributed in the
limbic system, subcutaneous nuclei, cortex, and connections
among them, which corresponded to the SN, DMN, attention
network, frontoparietal network, and social network.

4) Our research further revealed that ASD patients showed
enhanced integration function and weakened segregation
functions of the brain network. Additionally, the functional
connections related to the medial temporal lobe (e.g., the
parahippocampal gyrus, hippocampus, and entorhinal cortex)
and subcutaneous nuclei (e.g., putamen and pallidum) were
mainly increased, while the related connections of the frontal
lobe, parietal lobe, and occipital lobe were mainly decreased.

MATERIALS AND METHODS

Data Acquisition
We collected the resting-state fMRI (rs-fMRI) data related to
47 NC subjects and 45 ASD subjects (with ages ranging from
7 to 15 years), and data were deduced from a publicly available
dataset named ABIDE (Di et al., 2014). There were no significant
differences in gender and age between the ASD and NC groups,
and the demographic information of the samples has been listed
in Table 1. Data were similar to those reported in a recent study
(Wee et al., 2016). For more details, refer to Wee et al. (2016).

Data Preprocessing
All rs-fMRI images were acquired using the 3T Siemens Allegra
scanner. The imaging parameters included flip angle = 90

◦

,
TR/TE = 2000/15 ms with 180 volumes, 33 slices, and 4.0 mm
voxel thickness. Specifically, the SPM8 toolbox1 and DPARSFA
(version 2.2)2 were adopted to execute the fMRI pre-processing

1https://www.fil.ion.ucl.ac.uk/spm
2http://restfmri.net/forum/index.php
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TABLE 1 | Demographic information of the samplings.

ASD (N = 45) NC (N = 47) p− Value

Gender (M/F) 36/9 36/11 0.2135*

Age (year±SD) 11.1± 2.3 11.0± 2.3 0.7773†

FIQ (mean±SD) 106.8± 17.4 13.3± 14.1 0.0510

ADI− R (mean±SD) 32.2± 14.3‡ – –

DOS (mean± SD) 13.7± 5.0 – –

ADI-R, Autism Diagnostic Interview-Revised; FIQ, Full Intelligence Quotient; ADOS,
Autism Diagnostic Observation Schedule; ASD, autism spectrum disorders; NC,
normal control. *The p-value was obtained by chi-squared test. †The p-value was
obtained by two-sample two-tailed t-test. ‡Two patients do not have the ADI-
R score.

pipeline. Particularly, the pre-processing pipeline in this study is
referenced to the well-defined pipeline reference in the DPABI
manual, including (1) the removal of the first 10 time series;
(2) normalization; (3) regression of nuisance signals (ventricle,
white matter, global signals, and head motion) with the Friston
24-parameter model (Friston et al., 1996); (4) filtering of
data (0.01− 0.08 Hz); and (5) the conduction of de-trending.
Subsequently, the pre-processed BOLD time-series signals were
partitioned into 90 ROIs according to the automated anatomical
labeling atlas (Tzourio-Mazoyer et al., 2002).

Network Estimation
To define the network, we adopted the Pearson correlation (PC)
to estimate FBNs, the details of which have been expressed as
follows:

Wij =
(xi − x̄i)

T (xj − x̄j)√
(xi − x̄i)

T (xi − x̄i)
√
(xj − x̄j)T(xj − x̄j)

(1)

where xi ∈ Rt represent the average BOLD signal corresponding
to the i-th brain region, t represents the time length,
x̄i ∈ Rt represents a vector whose elements are the mean
values of the elements in xi, i = 1, 2, · · · , n, and n represents
the number of ROIs.

Computation of Graph Measurements
To investigate the altered reconfiguration patterns of individual
brain connectomes for ASD, we first performed a graph theory
analysis of the FBN based on the graph network analysis
toolbox (Gretna).3 Specifically, we considered both global graph
theory measurements and the nodal property to characterize
the different patterns of connections in the brain network, as
shown in Table 2. The definitions of these measurements can
be found in the paper published by Wang et al. (2015). Note
that we focused on the binary network by considering the
different sparsity thresholds (ranging from 0.02 to 0.5, with
steps of 0.01). A total of 49 values under the sparsity threshold
were obtained for each graph measurement. We then utilized
the area under the curve (AUC; the sum of 49 values) as
input for the attributes to train the classifier, which ensure

3www.nitrc.org/projects/gretna/

TABLE 2 | Selected global and local graph measurements.

Global graph measurements Local graph measurements

Characteristic path length (Lp ) Degree centrality

Clustering coefficient (Cp ) Nodal efficiency

Normalized characteristic path length (λ ) Betweenness centrality

Normalized clustering coefficient (γ ) Shortest path length

Small-world (σ) Nodal clustering coefficient

Global efficiency (Eglobal )

Local efficiency (Elocal)

Modularity score (Q)

Assortativity (Ar)

Hierarchy (Hr)

Synchronization (Sr)

that there was only one for each node value corresponding to
one graph metric.

Hub Node of the Estimates Functional
Brain Network
The top 5% regions of the brain with the greatest weight were
selected as the hubs of the group-level brain network. Specifically,
we utilized the mean value of the entire individual brain network
to establish the ASD/HC group-level network.

Information Combination for Autism
Spectrum Disorder Identification
To accurately identify ASD from NCs, we attempted to combine
the information from the connection weight and its topological
information. We used the multi-kernel (MK) trick to combine
different types of information. Specifically, we utilized the LIB-
SVM toolbox to solve the support vector machine (SVM)
classification problem. The MK-SVM is used to solve the
following primary problem:

min
W

1
2

3∑
m=1

βm||wm
||

2
+ C

n∑
i=1
ξi

s.t. yi(
3∑

m=1
βm(wm)Tφm(xm

i )+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

(2)

where n denotes the sample size, x1
i , x2

i and x3
i represent the

connection value, the global and nodal graph measurements
of the i-th sample, and yi ∈ {1,−1} correspond to its class
label, respectively, and m denotes the corresponding index of
modality,wm represents the normal vector of the hyperplane in
the Hilbert kernel space (RHKS), φm represents the mapping
function from the original space to the present RHKS, and βm
denotes the weight of the m-th modality. Then, the dual form of
the MK-SVM can be represented as:

max
α

n∑
i=1

αi −
1
2
∑
i,j

αiαjyiyj
3∑

m=1
βmkm(xm

i , ym
i )

s.t.
n∑

i=1
αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(3)
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where km (xm
i , ym

i
)
= φm(xm

i )
Tφm(xm

j ) denotes a kernel matrix.
Finally, the predictive level based on MK-SVM can be formulated
as follows:

f (x1, x2, . . . , xM) = sign(
n∑

i=1

yiαi

M∑
m=1

βmkm (xm
i , xm)

+ b) (4)

Feature Selection and Validation
To alleviate the confounding effect of the different steps in
the classification pipeline, we conducted the simplest feature
selection method (i.e., t-test with p < 0.05). Additionally, to
evaluate the performance of different classification methods, we
adopted the most commonly used leave-one-out cross-validation
(LOOCV) strategy owing to the limited sample size (Li et al.,
2020a). Specifically, the optimal parameter (hyper-parameter C
for MK-SVM) was selected in the inner cross-validation, and the
classification performance was evaluated in the outlier validation
loop. The range of the hyperparameter C was from 2−5 to
25 . We compared the classification performance of a single
aspect [i.e., connection weight (C), global typological information
(G), nodal typological information (N)], and combinations of
different modes (i.e., C + G, C + N, G + N, and C + G + N).
The entire pipeline used in this study is shown in Figure 1.
In contrast to the traditional methods which only utilize the
information of connections, global graph metrics or nodal graph
metrics, it should be noted that our novelty is that we using
kernel combination trick and firstly combine the information
from different modal for ASD identification.

Classification Measurements
The classification performance of information combination
methods is evaluated via several measurements, including
sensitivity, specificity, and accuracy. The mathematical
definitions of these three measures are as follows:

Accuracy =
TruePostive+ TrueNegative

TruePostive+ FalsePostive+ TrueNegative
+FalseNegative

(5)

Sensitivity =
TruePostive

TruePostive+ FalseNegative
(6)

Specificity =
TrueNegative

TrueNegative+ FalsePostive
. (7)

Additionally, the receiver operating characteristic curve
(ROC) and AUC of these methods are also provided.

Ar , assortativity; Eglobal, global efficiency; Lp, characteristic
path length; Q, modularity score; Elocal, local efficiency;
Cp, clustering coefficient; Hr, hierarchy; σ, small-world; γ,
normalized clustering coefficient; Sr , synchronization; λ,
normalized characteristic path length. ∗p-value< 0.05.

RESULTS

Graph Theory Measurements of
Functional Brain Connectome
The results of the graph measurements of the ASD and NC
groups are shown in Table 3. The results illustrated that Lp,
λ, Ar, and Sr were increased, whereas Cp, γ, Eglobal, and Hr
were decreased in ASD. Statistical analyses revealed that γ was
significantly decreased in the ASD group compared to the NC
group (p < 0.05).

Degree Analysis of the Functional Brain
Connectome
To investigate the degree distribution of the estimated brain
network, we reported the mean degree of each node in the ASD
and NC groups. As shown in Figure 2, the degree in the frontal,
occipital parietal, and prefrontal regions tended to decrease in
ASD, while it tended to increase in the temporal and subcortical
regions. The 13 significant nodes with an average degree in the
ASD and NC groups are listed in Table 4. The hub nodes of the
ASD and NC groups are shown in Table 5. It was evident that
most nodes overlapped across ASD and NC groups, including
INS.L, PUT. L/R, PAL.L/R, INS.R, ROL.L, STG.L, ROL.R,

FIGURE 1 | The entire pipeline of the proposed ASD classification task under the multiple graph view.
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TABLE 3 | Graph theory measurements of the functional brain connectome.

Graph theory measurements ASD NC

Cp 0.2643 ± 0.01 0.2651 ± 0.01

Lp 0.8595 ± 0.05 0.8295 ± 0.04

γ∗ 1.0418 ± 0.10 1.0785 ± 0.07

λ 0.5002 ± 0.01 0.5001 ± 0.01

σ 0.9054 ± 0.09 0.9378 ± 0.06

Q 16.2912 ± 1.52 16.9097 ± 1.47

Eglobal 0.2588 ± 0.01 0.2590 ± 0.01

Elocal 0.3439 ± 0.01 0.3549 ± 0.01

Ar 0.1647 ± 0.04 0.1510 ± 0.04

Hr −0.0034 ± 0.04 0.0075 ± 0.04

Sr −11.3854 ± 3.25 −12.2578 ± 3.44

*p value < 0.05.

FIGURE 2 | Degree distribution of ASD and NC group.

TABLE 4 | Significant nodes with the average degree in the ASD and NC groups.

Node ASD NC p-Value

HIP.R 12.881 ± 1.93 11.382 ± 2.23 0.0009

PHG.R 12.391 ± 2.00 11.318 ± 1.87 0.0094

SMA.L 10.237 ± 2.50 11.528 ± 2.22 0.0104

PAL.L 14.594 ± 2.21 13.486 ± 1.98 0.0132

PCG.L 10.169 ± 2.08 11.101 ± 1.41 0.0135

OLF.R 12.494 ± 2.65 11.348 ± 1.71 0.0152

PUT.L 15.001 ± 1.97 14.044 ± 1.81 0.0175

SMA.R 10.494 ± 2.59 11.709 ± 2.32 0.0197

ORBsup.L 10.037 ± 2.04 10.893 ± 1.62 0.0283

THA.L 13.588 ± 2.15 12.676 ± 1.90 0.0341

SFGmed.R 10.809 ± 1.96 11.587 ± 1.57 0.0385

PAL.R 14.249 ± 2.23 13.353 ± 1.96 0.0432

SFGdor.R 9.103 ± 1.60 9.858 ± 1.93 0.0446

AMYG.L/R, ACG.R, STG.R, and HES.L. Additionally, several
specific hub nodes existed that corresponded to different groups.
Specifically, in estimated brain network, ACG.L and IOG.R were

TABLE 5 | Degree hubs of the MCI and NC groups based on the SR method.

AAL number Corresponding brain region Subnetwork

ASD

29 Insula_L Salience

74 Putamen_R Subcortical

73 Putamen_L Subcortical

75 Pallidum_L Subcortical

30 Insula_R Salience

76 Pallidum_R Subcortical

81 Temporal_Sup_L Ventral attention

42 Amygdala_R Memory retrieval

17 Rolandic_Oper_L Cingulo-opercular task Control

79 Heschl_L Auditory

77 Thalamus_L Subcortical

82 Temporal_Sup_R Ventral attention

18 Rolandic_Oper_R Auditory

41 Amygdala_L Memory retrieval

32 Cingulum_Ant_R Salience

78 Thalamus_R Subcortical

80 Heschl_R Auditory

37 Hippocampus_L Default mode network

NC

29 Insula_L Salience

74 Putamen_R Subcortical

30 Insula_R Salience

73 Putamen_L Subcortical

17 Rolandic_Oper_L Cingulo-opercular task Control

81 Temporal_Sup_L Ventral attention

75 Pallidum_L Subcortical

76 Pallidum_R Subcortical

18 Rolandic_Oper_R Auditory

31 Cingulum_Ant_L Default mode

42 Amygdala_R Memory retrieval

32 Cingulum_Ant_R Salience

82 Temporal_Sup_R Ventral attention

41 Amygdala_L Memory retrieval

33 Cingulum_Mid_L Cingulo-opercular task Control

79 Heschl_L Auditory

77 Thalamus_L Subcortical

only noted in the hub nodes of the NCs, while THA.L, HES.R,
and HIP.L/R were only noted in ASD group as hub node.

Betweenness Analysis of the Functional
Brain Connectome
To investigate the betweenness distribution of the estimated
functional brain connectome, we noted the mean betweenness
of the ASD and NC groups (Figure 3). This finding illustrated
that betweenness in the frontal, parietal, and prefrontal regions
tended to decrease in ASD, while tended to increase in
the subcortical regions. The significant nodes with average
betweenness in the ASD and NC groups are listed in Table 6.

The betweenness hub nodes of ASD patients and NCs are
shown in Table 7. The results illustrated that most betweenness
hubs overlapped across ASD and NC groups, including FFG.L,
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FIGURE 3 | Betweenness distribution of ASD and NC group.

TABLE 6 | Significant nodes with the average betweenness in the
ASD and NC groups.

Node ASD NC p-Value

IOG.L 19.257 ± 15.42 13.021 ± 8.82 0.0187

FFG.R 39.324 ± 27.00 28.005 ± 18.31 0.0203

PCG.L 25.433 ± 11.09 32.846 ± 18.29 0.0216

TPOsup.L 23.775 ± 11.54 29.680 ± 13.39 0.0261

THA.L 24.352 ± 13.45 18.941 ± 9.25 0.0264

AMYG.L 20.436 ± 11.77 26.824 ± 16.73 0.0305

PUT.L 26.008 ± 9.69 22.061 ± 8.17 0.0372

HES.R 15.299 ± 10.82 11.609 ± 5.98 0.0448

IPL.R 27.009 ± 15.37 34.970 ± 21.59 0.0454

INS.L, ACG.L/R, DCG.L/R, IFGoperc.R, PCUN.R, IPL.L, and
SPG.L. The FFG.R, HIP.L, and INS.R were only noted in
hub nodes of the NCs, while IPL.R, ORBsupmed.L, PCG.L,
PHG.R, SPG.R, PCG.R, and TPOsup.L were only noted in ASD
group as hub node.

Consensus Connections Analysis
We noted all selected connections during the entire validation
process, that is, consensus connections, as shown in Figure 4
because the selected connections in each inner validation loop
could be different. Specifically, we selected the connections
with a p-value < 0.05, in each loop to train the classifier,
which resulted in the obtainment of 103 consensus connections.
The most significant connection in consensus connection was
PHG.R–PAL.L. The red line in the right side of figure represents
the weights in ASD, which tends to increase, while blue line
represents a decrease.

Classification
To confirm the information combination trick, we also validated
the performance of the single kernel SVM classification
result based on the connection, global measurements, and

TABLE 7 | Betweenness hubs of the MCI and NC groups based
on the SR method.

AAL number Corresponding brain region Subnetwork

ASD

55 Fusiform_L Default mode network

56 Fusiform_R Default mode network

29 Insula_L Salience

32 Cingulum_Ant_R Salience

34 Cingulum_Mid_R Salience

12 Frontal_Inf_Oper_R Frontoparietal task control

33 Cingulum_Mid_L Default mode network

30 Insula_R Salience

68 Precuneus_R Default mode network

37 Hippocampus_L Default mode network

31 Cingulum_Ant_L Default mode network

61 Parietal_Inf_L Default mode network

59 Parietal_Sup_L Fronto-parietal task control

NC

29 Insula_L Salience

31 Cingulum_Ant_L Default mode network

68 Precuneus_R Default mode network

62 Parietal_Inf_R Default mode network

55 Fusiform_L Default mode network

61 Parietal_Inf_L Default mode network

25 Frontal_Mid_Orb_L Default mode network

12 Frontal_Inf_Oper_R Frontoparietal task control

35 Cingulum_Post_L Memory retrieval

33 Cingulum_Mid_L Default mode network

40 ParaHippocampal_R Default mode network

60 Parietal_Sup_R Dorsal attention

34 Cingulum_Mid_R Default mode network

32 Cingulum_Ant_R Salience

36 Cingulum_Post_R Default mode network

83 Temporal_Pole_Sup_L Cingulo-opercular task control

nodal measurements, and the results have been depicted
in Table 8 and Figure 5. The classification accuracy of
connection weight, global graph measurements, and nodal
graph measurements were estimated to be 72.82, 63.04,
and 54.34%, respectively. Additionally, using DeLong’s non-
parametric statistical significance test (Zhang et al., 2016),
C + G + N methods have been found to be significantly
superior to Connection, Nodal, Global, C + G, C + N,
and G + N methods under 95% confidence intervals with
p-values of 0.004, 5× 10−6, 3× 10−10, 0.0247, 0.0278, and
1× 10−5, respectively. These results revealed the superiority of
the information combination strategy.

DISCUSSION

In the present study, we aimed to explore the biomarkers
and pathological mechanisms of brain network connectivity in
individuals with ASD. Our results indicated that the combination
of three modalities (i.e., connection weight, global measurements,
and nodal measurements) using MK-SVM could significantly
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FIGURE 4 | Consensus connection over the LOOCV by p-value < 0.05. The red line in the right figure represents the weights in ASD tends to be increased while the
blue line represents decrease.

improve the classification performance of ASD individuals, since
such methods not only utilized the information of the connection
weight but also effectively incorporated several topological
inputs. Moreover, the distribution of the discriminative brain
regions and altered patterns of the brain connectome revealed the
pathological mechanisms of individuals with ASD.

Distribution of the Discriminative Brain
Regions and Brain Networks
Regarding functional connectivity at the whole brain level,
we found that the consensus connection with the most
significant difference between ASD and NC was PHG.R–PAL.L.
Additionally, the brain regions with significant differences in
degree and betweenness between the ASD and NC groups were
mainly distributed in the medial temporal lobe (e.g. HIP, PHG,
and PCG), subcutaneous nuclei (e.g. PUT, PAL, and THA),
and frontal and occipital parietal lobes. Meanwhile, the hub
nodes of the ASD and NC groups, defined by degree and
betweenness, mostly overlapped with the above-mentioned brain
regions. Among them, brain regions, such as HIP, PHG, AMYG,

TABLE 8 | Classification performance corresponding to different methods.

Method Accuracy Sensitivity Specificity AUC

Connection (C) 72.82 73.33 72.34 0.8539

Nodal (N) 63.04 66.67 59.57 0.6921

Global (G) 54.34 57.78 51.06 0.5726

C + G 76.09 80.00 72.34 0.8728

C + N 79.34 84.44 74.46 0.8841

G + N 67.39 73.33 61.70 0.6950

C + G + N 82.60 84.44 80.85 0.9191

Boldface denotes the best performance for each column.

and CG, belong to the limbic system. Therefore, our results
indicated that the discriminative brain regions of ASD patients
were mainly distributed in the limbic system, subcutaneous
nuclei, cortex, and connections among them. Furthermore, by
projecting these brain regions into brain subnetworks, we found
that most were involved in the DMN, SN, attention network,
frontoparietal network, and social network (Schmälzle et al.,
2017). These sub-networks play an important role in learning
and memory (Sanjeevan et al., 2020), emotional expression

FIGURE 5 | Receiver operating characteristic curve of classification based on
different connectome features.
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(Sagar-Ouriaghli et al., 2018), behavior control, and social skills
(Sato and Uono, 2019).

Altered Pattern of the Brain Network
Connectome in Autism Spectrum
Disorder
Graph theoretic analysis conducted in our study indicated
that in terms of global graph measurements, Lp, λ, Ar, and
Sr were increased, whereas Cp, γ, σ, Q, Eglobal, Elocal, and
Hr were decreased in ASD. Although only γ seemed to be
statistically significant, the graph theory attributes that reflected
the segregation function of brain networks, including Cp, γ,
Q, and Elocal, exhibited a decreased trend in ASD patients.
Meanwhile, the graph theory attributes that reflected the
integration function of brain networks, such as Lp and λ,
exhibited an increased trend in individuals with ASD. Therefore,
our results suggested that patients with ASD exhibited abnormal
functional connectivity. This finding was also mentioned in
previous studies (Just et al., 2004; Kana et al., 2011; Zu
et al., 2019). Our research further revealed that ASD patients
showed enhanced integration function and weakened segregation
functions of the brain network. This suggests that the ability
to rapidly synthesize specialized information from distributed
brain regions has increased, while the occurrence of specialized
processing within densely interconnected groups of brain regions
has decreased (Rubinov and Sporns, 2010).

Moreover, in terms of local graph measurements, we
found that the topological attributes of ASD, such as degree,
betweenness, and hub nodes, exhibited abnormalities in multiple
brain areas in the cortex-subcortical circuits. Among them,
the functional connections related to the medial temporal lobe
(e.g. the hippocampus, parahippocampal gyrus, and entorhinal
cortex) and subcutaneous nuclei (e.g. putamen and pallidum)
were mainly increased, while the related connections of the
frontal lobe, parietal lobe, and occipital lobe were mainly
decreased. In previous studies, the dysfunction of connections
has been demonstrated to be associated with abnormal social,
language, and other behaviors of ASD patients (Gao et al.,
2019; Verly et al., 2014; Sato and Uono, 2019). Additionally,
the hub nodes of ASD and NCs mostly overlapped. Our results
indicated the disappearance of certain hubs in the ASD group,
which suggested that the brain network integration function
of ASD might have changed. This might be related to the
pathological changes in ASD.

Classification of Multi-Kernel Support
Vector Machine
The classification results illustrate that combination of more
information can be considered to effectively enhance the
classifier for ASD diagnosis. Moreover, although global theory
achieves 54.24% accuracy, it can provide a 6.52% accuracy
gain for C + N. The results indicate that different types
of information can provide different types of discriminative
information for ASD diagnosis, which further confirms the
effectiveness of the proposed information combination method.
More importantly, such results are achieved with the use of only

single modal data, that is, fMRI, which thereby provides novel
insights for improving the identification performance in such
neurodevelopmental disorders.

CONCLUSION

We report the application of FBNs as well as their topological
information for investigation of potential biomarkers of ASD
in the afflicted individuals. The discriminative connections
of FBNs highlighted the abnormality of connections between
the PHG.R and PAL.L of the ASD groups. Additionally, the
combination of the information derived from the FBN with
MK-SVM helped achieve the best classification performance and
significantly outperformed the performance achieved using only
single connection information. In the end, due to the limited
sample sizes, it is still necessary for us to verify the robustness
and generalization ability of the proposed methods on larger and
higher quality databases in the future.
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