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Cardiac fibrosis, in response to injury and stress, is central to a broad constellation

of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to

extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic

function and causing arrhythmogenesis. Although some conventional drugs, such

as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been

shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend

to target all the fibrosis-associated mechanisms, and do not hamper the progression of

cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits,

and beverages and had been proposed as attenuators of cardiac fibrosis in different

models of cardiovascular diseases. Together with results found in the literature, we

can show that some polyphenols exert anti-fibrotic and myocardial protective effects

by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review

considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement

in different animal models of cardiac fibrosis treated with some polyphenols and projects

the future direction and therapeutic potential of polyphenols on cardiac fibrosis.

Keywords: cardiac fibrosis, polyphenols, anti-fibrotic, therapy, signaling pathway

INTRODUCTION

Cardiac fibrosis is a hallmark of numerous cardiovascular diseases including hypertension,
myocardial infarction (MI), and ischemic, dilated, and hypertrophic cardiomyopathy. Cardiac
fibrosis not only interferes with the systolic and diastolic functions and but is also the main
determinant of malignant arrhythmias and consequently increases the risk of sudden cardiac
death (Roche et al., 2015). There are two patterns of cardiac fibrosis presentation: regional fibrosis
and diffuse fibrosis. Regional fibrosis mainly occurs in the healing infarcted ventricle following
coronary occlusion, ultimately resulting in the formation of a collagen-based scar (Prabhu and
Frangogiannis, 2016). On the other hand, diffuse fibrosis is associated with cardiac remodeling
in the conditions of pressure and/or volume overload, metabolic disorder, or ischemic insults
and is characterized by unbalanced collagen turnover and excessive diffuse collagen deposition in
the interstitial spaces (Frangogiannis, 2017). Some fibrotic factors, such as cytokines, chemokines,
growth factors, hormones, and reactive oxygen species (ROS), are responsible for the activation of
fibroblasts and the alteration of extracellular matrix (ECM) (Heymans et al., 2015).

A constellation of mechanisms and signaling pathways have been involved in fibroblast
activation and pathological remodeling. Mediation of these mechanisms and molecular signals
have provoked an intense scientific interest as they work out a novel therapeutic strategy for
cardiac fibrosis. At present, the inhibition of cardiac fibrosis and its adverse complications is
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mainly focused on the conventional drugs, including
angiotensin-converting enzyme inhibitors (ACEI), aldosterone
antagonists, β-blocker, and statins (Zannad et al., 2000;
Bauersachs et al., 2001; Klapholz, 2009; Van de Werf, 2014).
These interventions could result in a partial recovery of
cardiac function; nevertheless, these effects are secondary
to the correction of the underlying cardiac dysfunction
mechanisms rather than alleviating fibrosis directly. Moreover,
multiple lines of evidence have indicated that pirfenidone
alleviates cardiac remodeling in hypertensive rats and
pressure-overload in hypertrophic hearts (Mirkovic et al.,
2002; Wang et al., 2013). Pirfenidone also decreased infarct
scar and improved left ventricle function following cardiac
infarction (Nguyen et al., 2010). The other anti-fibrotic
drug currently approved for clinical treatment in human
idiopathic pulmonary fibrosis (IPF) was nintedanib, just as
with pirfenidone (Bando, 2016). Nintedanib is also the subject
of ongoing clinical trials for systemic sclerosis. Although
nintedanib and pirfenidone show promise for the alleviation
of cardiac fibrosis, there are no clinical results to support
that these drugs are specifically targeted to the intracellular
mechanisms of fibrosis. Therefore, the urgent challenge we are
confronting is to find novel potential agents to retard cardiac
fibrosis.

Polyphenols are found in plant-derived foods and beverages.
Collective evidence has indicated that natural polyphenols
possess multiple protective effects against cardiovascular
diseases (Raj et al., 2014; Niu et al., 2015). Additionally,
polyphenols classified to different subclasses have been
reported to alleviate cardiac dysfunction and fibrosis
following cardiac injury. In this review, we will examine
the role of associated mechanisms in the progression of
cardiac fibrosis, illustrate their involvement in the current
and emerging intervention of polyphenols, and identify the
promising targets of polyphenols for basic and applied cardiac
research.

MOLECULAR MECHANISM AND SIGNALS
ASSOCIATED WITH CARDIAC FIBROSIS

Numerous molecular signals involved in the pathogenesis of
cardiac fibrosis, and the identification of these molecular signals
implicated with the initiation, progression, and regression of
the fibrotic response will help us to effectually target the major
culprit to retard cardiac fibrosis (Kong et al., 2014). Inflammatory
signals could activate myofibroblasts and seem to play a vital
role in regional and diffuse fibrosis. Oxidative stress manifested
as an imbalance between a ROS generation and the capacity
of anti-oxidant defense systems has been regarded as the most
important mechanism in cardiac fibrosis. Other complex cellular
mediators, including the transforming growth factor-β (TGF-
β), renin-angiotensin-aldosterone system (RAAS), and platelet-
derived growth factor (PDGF), also appear to be implicated
in cardiac fibrosis. Therefore, intricate cellular and molecular
mechanisms contribute to the pathogenesis of cardiac fibrosis
(Figure 1).

Inflammation in Cardiac Fibrosis
The production of inflammatory signaling molecules during
cardiac injury and hypertrophic remodeling can contribute to
hypertrophic and fibrotic responses. Activated immune cells,
including macrophages, monocytes, lymphocytes, and mast cells,
are involved in orchestrating cardiac fibrosis, as reviewed by Ryan
A. Frieler (Frieler and Mortensen, 2015). In a mouse model of
cardiac infarction, pro-inflammatory cytokines, such as tumor
necrosis factor-α, interleukin-1β (IL-1β), and IL-6 released by
infiltrated neutrophils and macrophages, could exert a significant
role to induce the proliferation of resident fibroblasts and activate
myofibroblasts, resulting in cardiac fibrosis (Christia et al.,
2013). Moreover, activated cardiac fibroblasts (CFs) also generate
numerous cytokines and growth factors that mediate ECM
remodeling via autocrine and paracrine mechanisms. After acute
cardiac insult, IL-1β enhances fibroblasts migration through the
mitogen-activated protein kinase (MAPK) pathway (Mitchell
et al., 2007), and IL-6 is known to promote fibroblast proliferation
and aggravate myocardial fibrosis (Banerjee et al., 2009).
The inflammatory response can also be regulated or induced
by cardiac endothelial cells, which recruit macrophages and
monocytes through the production of a wide range of cytokines
and pro-fibrotic mediators, including TGF-β, fibroblasts growth
factor, and endothelin-1 (Wynn, 2008). In humans, an increased
level of stressed-induced cytokines, including TNF-α, IL-6, and
IL-1β, correlates with a poor prognosis in patients with heart
failure (Frieler and Mortensen, 2015). Extensive studies have
indicated a significant role of inflammation in the fibrotic
response, where the inhibition of inflammatory factors could
provide an effective therapeutic strategy in the treatment of
cardiac fibrosis.

Oxidative Stress in Cardiac Fibrosis
Clinical and experimental studies have indicated that oxidative
stress, which is defined as the imbalance of excess ROS
production and anti-oxidant defense, is enhanced in cardiac
remodeling (Wu et al., 2017b). In the cardiac tissues, ROS is
mainly sourced from (i) the membrane-bound enzyme complex
NADPH oxidase (NOX), (ii) the mitochondrial respiratory
chain, and (iii) uncoupled endothelial nitric oxide (NO)
synthase (eNOS). Moreover, ROS activates a wide range of
hypertrophy signaling kinases and transcription factors and
regulates apoptosis. ROS also enhance CF proliferation and
stimulate the matrix metalloproteinases (MMPs), resulting in
cardiac fibrosis (Tsutsui et al., 2011).

Recent studies demonstrated that NOXs, a family of enzymes
implicated in the generation of ROS, are involved in myocardial
fibrosis and heart failure progression (Heymans et al., 2015).
All forms of NOX, NOX2, and NOX4 are predominantly
expressed in the myocardium. In the pathological condition, the
expression of NOX increases in the end-stage failing human
heart, and cardiac hypertrophy appears as a marked source
of increased cardiac ROS. Cardiac hypertrophy induced by
Ang II is blunted in gp91phox deficient mice (Shanmugam
et al., 2011); however, this protective effect in the deletion of
gp91phox subunit in mice is abolished in pressure-overload-
induced cardiac hypertrophy (Maytin et al., 2004). In particular,
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FIGURE 1 | Multiple mechanisms involved in cardiac fibrosis. Enormous initiating insults contributed to oxidative stress, inflammation and increased growth factors,

which in turn directly or indirectly enhanced cardiac fibrosis. NOX, NAPDH oxidase; TNF, tumor necrosis factor; IL, interleukin; TGF, transforming growth factor; RAAS,

renin-angiotensin-aldosterone system; CTGF, connective tissue growth factor; PDGF, platelet-derived growth factor.

NOX2 enhances myocardial fibrosis stimulated by TGF-β, Ang
II stimulation in a rat (Johar et al., 2006; Miguel-Carrasco
et al., 2012). Endothelial-specific overexpression of NOX2
promotes interstitial cardiac fibrosis via enhancement of the pro-
inflammatory effect and endothelial–mesenchymal transition
(Murdoch et al., 2014). Interestingly, eliminating NOX2-induced
superoxide anions in CFs retards collagen generation (Lijnen
et al., 2012). The previous study also found NOX4 mediates
the TGF-β-stimulated conversion of CFs to myofibroblasts
(Cucoranu et al., 2005). Collectively, NOX-mediated oxidative
stress plays a significant role in the progression of myocardial
fibrosis.

Molecular Signaling Pathways Involved In
Cardiac Fibrosis
TGF-β Signaling Pathway
Three isoforms of TGF-β (1, 2, and 3) exist in mammals,
which are generated by fibroblasts, leukocytes and platelets. TGF-
β is primarily produced as a secreted potent form, which is
proteolytically activated in a pattern implicated in an integrin-
mediated ECM contraction (Sarrazy et al., 2014). The type
I TGF-β receptor, also termed activin receptor-like kinase
(ALK) 5, predominantly participates in the fibrotic activities
of TGF-β. The established pathway of TGF-β1 involved in

the activation of ALK5 subsequently phosphorylates Smad2/3;
phosphorylated Smad2/3 combines with Smad4 and translocates
into the nucleus, where it finally induces the activation of
enormous fibrotic genes. TGF-β1 stimulates the collagen lattice
contraction and the α-SMA expression in a smad3-dependent
fashion (Dobaczewski et al., 2010) Importantly, TGF-β promotes
the phenotype conversion of CFs to myofibroblasts and activates
ECM component genes to encode fibrillar collagen (Dobaczewski
et al., 2011). To inhibit the detrimental effect of TGF-β1 in
cardiac remodeling, the ALK inhibitor SM16 is utilized to
blunt the TGF-β-induced collagen Iα2 and the lysyl oxidase
expression in vitro, where it mitigates the cardiac fibrosis in
the model of pressure overload (Engebretsen et al., 2014).
Moreover, neutralizing anti-TGF-β antibodies decreases the
collagen mRNA expression and inhibits fibroblast activation
in a rat model of pressure overload (Kuwahara et al., 2002).
In addition to the canonical pathway, TGF-β also activates a
non-canonical signaling pathway that is implicated in several
downstream MAPKs, including c-Jun N-terminal kinase (JNK),
P38, and TGF-β-activated kinase 1 (TAK1) (Yan et al., 2009).
Each of these MAPKs phosphorylates numerous transcription
factors mediate the expression of α-SMA, ECM proteins, and
other target genes implicated in cardiac fibrosis. Collectively,
the data indicate that the blocking of the downstream TGF-β
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signaling pathway could be one viable option for anti-fibrotic
therapy.

Renin–Angiotensin–Aldosterone System (RAAS)
Comprehensive studies indicate that RAAS activation is
consistently detected in fibrotic hearts regardless of etiology.
Angiotensin II (Ang II) plays a predominant role in the
development of cardiac fibrosis (Kong et al., 2014). In vitro, Ang
II enhances fibroblast proliferation and migration and induces
ECM protein synthesis through the activation of the Ang II type I
receptor (AT1R) (Sadoshima and Izumo, 1993; Chen X. Q. et al.,
2015). In contrast, AT2R could retard fibroblast proliferation
and matrix deposition and work as a negative mediator of the
Ang II-induced fibrotic response (Ma et al., 2012). It is also
reported that Ang II participates in the TGF-β signaling pathway
in CFs (Schultz Jel et al., 2002). Furthermore, activation of AT1R
stimulated by Ang II promotes the expression of TGF-β1 and
suggests that Ang II enhances the pathological role of TGF-β1
in inducing cardiac hypertrophy and fibrosis (Schultz Jel et al.,
2002). Moreover, collagen expression of fibroblasts induced by
AngII requires the activation of the TGF-β/Smad and MAPK
signaling pathway. Collectively, Ang II signaling can induce
myofibroblast differentiation through enhancement of TGF-β1
expression and the activation of canonical and non-canonical
signaling effectors, and/or directly activating MAPK-serum
response factor (SRF) signaling (Davis and Molkentin, 2014).

Connective Tissue Growth Factor (CTGF)
CTGF, also known as CNN2, is significantly upregulated in
human heart failure and the myocardial fibrosis associated
animal model (Chuva de Sousa Lopes et al., 2004; Koshman
et al., 2013). Factors including TGF-β, Ang II, ET-1, and
mechanical stress can induce the expression of CTGF
in cardiomyocytes and fibroblasts (Travers et al., 2016).
Intriguingly, the expression of CTGF is increased before the
upregulation of TGF-β, suggesting an important role in cardiac
fibrosis. Surprisingly, there is neither a gain nor a loss of
CTGF in the cardiac tissue influencing cardiac function and
fibrogenesis. Moreover, mediation of CTGF slightly affects
the response to TGF-β in pressure-overload-induced heart
failure. The data above suggest that CTGF is less important as
a TGF-β effector and to elucidate the potential role in cardiac
fibrosis.

Platelet-Derived Growth Factor (PDGF)
PDGF has been involved in the progression of cardiac
fibrosis by inducing the synthesis of TGF-β. However, TGF-
β could also enhance the production of PDGF (Czuwara-
Ladykowska et al., 2001; Zhao et al., 2013). Following MI, PDGF
contributes to collagen accumulation, fibroblast proliferation,
and enhances scar reparation (Al Hattab and Czubryt, 2017).
Cardiac-specific overexpression of PDGF markedly increases
the expression of TGF-β1 and contributes to the development
of cardiac fibrosis (Tuuminen et al., 2009). These results
indicate that PDGF plays a potential role in cardiac fibrosis
and appears to be suggesting a potential target for anti-fibrotic
therapy.

ANTI-FIBROTIC EFFECT OF
POLYPHENOLS ON CARDIAC FIBROSIS

Polyphenols contain several phytochemicals sharing a common
phenolic structure, and they are divided into flavonoids and non-
flavonoids (Del Rio et al., 2013). Flavonoids are formed by 15
carbons with two aromatic rings connected by a three-carbon
bridge, indicated as C6-C3-C6. The main subclasses of flavonoids
are divided into flavones, isoflavones, flavonols, flavan-3-ols,
flavanones, and anthocyanidins. Non-flavoniods do not possess
the C6-C3-C6 structure and could formed by a single phenolic
ring combined to one or three carbons such in phenolic acids or
hydroxycinnamic acids; another representative non-flavonoids
is still benes with a C6-C2-C6 stricture such as resveratrol
(Salomone et al., 2016). Some polyphenols are characterized
by the inhibition of cardiac fibrosis (Jiang et al., 2010). In
this section, we aimed to summarize the existing experimental
evidence regarding polyphenols and cardiac fibrosis (Table 1).

Flavonols and Flavan-3-Ols in Cardiac Fibrosis
Quercetin, one of the most widely distributed flavonols, is
abundant in red onions, citrus fruits, grains, and many other
foods of plant origin (Pawlikowska-Pawlega et al., 2003). The
quercetin found in dietary bioflavonoids coexists with its
glycoside derivative, rutin. Studies have demonstrated that rutin
was more soluble than quercetin. In the animal model of
cardiac fibrosis, the administration of quercetin and rutin or
single quercetin attenuated cardiac dysfunction and myocardial
injury stimulated by isoproterenol (ISO) and prevented cardiac
fibrosis by inhibition of CTGF, TGF-β1, and ECM deposition
(Li et al., 2013). Panchal et al. indicated that in a model of an
obese rat being fed a western diet supplemented with quercetin,
cardiac remodeling was prevented via the inhibition of the
NF-κB signaling pathway and the promotion of the nuclear
factor erythroid 2-related factor 2 (Nrf-2) and its downstream
molecules (Panchal et al., 2012). Taxifolin, one of quercetin
derivatives, has the ability to blunt cardiac fibrosis induced
by pressure overload, the mechanism underlying anti-fibrotic
effect of taxifolin dependents on inhibition of TGF-β/Smad
signaling pathway (Guo et al., 2015). Isorhamnetin, another
ingredient of flavonols, ameliorates cardiac hypertrophy and
fibrosis induced by aortic banding (Gao et al., 2017). Consistent
with the results above, Boerhavia diffusa extracted with ethanol
(BDE) is a rich source of bioactive flavonols containing quercetin,
boeravinone, kaempferol, and caffeic acid, mitigating Ang II-
induced cardiac fibrosis via the inhibition of TGF-β1 expression
and collagen deposition (Prathapan et al., 2017). In recent years,
the metabolic effect of rutin and troxerutin have been examined
in robust animal models of metabolic syndrome. Anuradha
et al. demonstrated that troxerutin enhances insulin sensitivity,
reduces lipid accumulation and upregulates fatty acid oxidation
in the heart (Geetha et al., 2014); furthermore, troxerutin slowed
the fibrotic response in the myocardium following the long-term
feeding of a high-fat high-fructose diet (Geetha et al., 2015).

The beneficial effect of green tea has been attributed to
the presence of abundant catechins. Epigallocatechin-3-gallate
(EGCG) is the most abundant and powerful catechin in green
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tea (Mak, 2012). EGCG inhibits CFs proliferation in rats and
alleviates cardiac hypertrophy (Sheng et al., 2009). Guo et al.
indicated that EGCG retarded cardiac hypertrophy in vivo and
in vitro via the inhibition of oxidative stress (Sheng et al., 2007).
Meanwhile, it attenuated the activation of rat CFs stimulated by
AngII via the mediation of β-arrestin1 (Han et al., 2013). Liu
et al. found that EGCG could decrease collagen synthesis and
fibronectin expression in rat CFs induced by Ang II; moreover,
it markedly ameliorated the excessive expression of CTGF and
cardiac fibrosis via the blockage of the NF-κB signaling pathway
in the hypertrophic stimulation (Cai et al., 2013). Additionally,
EGCG inhibits the expression of endoglin stimulated by Ang
II in CFs via the blockage of the JNK signaling pathway, thus
slowing down the CFs proliferation in vitro and mitigating
reparative scar fibrosis following MI (Lin et al., 2016). In the
model of muscular dystrophies, epicatechin attenuates oxidative
stress and improves mitochondrial function, thus decreasing
heart fibrosis in δ-sarcoglycan null mice (Ramirez-Sanchez et al.,
2014). Catechin administration decreases tumor necrosis factor
(TNF-α) and Th2 cytokines secretion in the heart tissues and
mitigates cardiac fibrosis in rat autoimmune myocarditis (Suzuki
et al., 2007). However, the protective role of EGCG in attenuating
cardiac fibrosis depends on a proper dose. Conversely, a high
dose of EGCG results in cardiac collagen synthesis and aggravates
cardiac fibrosis in mice (Cai et al., 2015).

Flavones/Isoflavones in Cardiac Fibrosis
Luteolin is one of the flavones that can be extracted from thyme,
onion, broccoli, and cauliflower. It inhibits CFs proliferation via
the reduction of oxidative stress in vitro (Wang T. et al., 2015), the
mechanism where underlying anti-oxidative stress depends on
the inhibition of NOX2 and NOX4 in cardiac hypertrophy, thus
decreasing the phosphorylation of JNK and TGF-β1 expression
and alleviating cardiac fibrosis (Nakayama et al., 2015). Zhang
et al. have indicated that luteolin-7-diglucuronide, another
flavonoid glycoside, prevents ISO-induced myocardial fibrosis
resulting from the downregulation of NOX and fibrogenesis-
associated gene expression (Ning et al., 2017). Baicalein and
wogonin are two of the main active ingredients in the Scutellaria
baicalensis Georgi. In the CFs, baicalein and wogonin treatment
suppresses collagen I and collagen III expression stimulated
by Ang II (Kong et al., 2010). They also reduce myocardial
collagen volume fraction and inhibit myocardial collagen I
and III mRNA expression in spontaneously hypertensive rats
by mediating ERK and MMP-9 pathways (Kong et al., 2010,
2011). Our lab indicated that baicalein treatment alleviated
cardiac hypertrophy in vivo and in vitro. The mechanism
underlying an anti-hypertrophic response resulted from the
inhibition of MAPK kinase (MEK)-ERK1/2 signaling and GATA-
4 activation, and alleviation of interstitial fibrosis was observed
in hypertrophic cardiac tissues following the administration of
baicalein (Zong et al., 2013). In another cardiac hypertrophy
model stimulated by Ang II infusion, baicalein also reduced
Ang II-induced myocardial hypertrophy and collagen deposition
(Wang A. W. et al., 2015). Consistent with previous studies
about luteolin, baicalein not only attenuates cardiac fibrosis but
also prevents the downregulation of SERCA2a and modulates

intracellular Ca2+ concentration (Zhao et al., 2016). Apigenin,
one of the flavones, modulates the activity of PPAR-γ and
the glucose/lipid metabolism (Maron, 2004). Recent studies
indicate that apigenin also attenuates myocardial injury induced
by ISO via regulating the activity of PPAR-γ in diabetic
rats (Buwa et al., 2016). Our group demonstrated that the
administration of apigenin mitigated cardiac remodeling via
inhibition of oxidative stress, the NF-κB pathway and apoptosis,
and reduced cardiac interstitial fibrosis in STZ-induced diabetic
cardiomyopathy (Liu et al., 2017). Furthermore, due to anti-
inflammatory and anti-oxidative properties, apigenin treatment
inhibits matrix metalloprotease-9 and inflammatory reactions
after acute myocardial injury (Du et al., 2015; Gutiérrez-Venegas
and González-Rosas, 2017) and decreases cardiac fibrosis in
the progression of MI (Gutiérrez-Venegas and González-
Rosas, 2017). In a rat cardiac hypertrophy model induced by
renovascular hypertension, administration of apigenin improved
hypertensive cardiac dysfunction and abnormal myocardial
glucolipid metabolism (Zhu et al., 2016). Similarly, scutellarin,
as one of the members of the flavones, inhibits the proliferation
and collagen production of CFs in vitro and suppresses the up-
regulation of fibronectin and TGF-β1 induced by Ang II (Pan
et al., 2011). Recent studies elucidate that the anti-fibrotic effect
of scutellarin could be attributed to the inhibition of endothelial–
mesenchymal transition (EndoMT) following the stimulation of
ISO in a rat (Zhou et al., 2014). Other flavones such as nobiletin
(Parkar et al., 2016; Zhang et al., 2016), vitexin (Dong et al.,
2011; Che et al., 2016), tangerentin (Vaiyapuri et al., 2013) not
only possess an anti-oxidative and anti-inflammatory therapeutic
effect but also exert a potent anti-fibrotic effect in an experimental
animal model of cardiovascular diseases.

Isoflavones, such as genistein and daidzein, are present in large
quantities in soybeans and exert beneficial anti-fibrotic effects
on cardiac remodeling. Recent studies indicate that a genistein
supplement attenuates ISO-induced cardiac hypertrophy in rats
(Maulik et al., 2012) and inhibits TGF-β1-induced proliferation,
collagen production and myofibroblast transformation (Qin
et al., 2015). Genistein treatment enhances endothelial colony-
forming cell (ECFC) proliferation andmigration, and transplants
of genistein-stimulated ECFCs into myocardial ischemic sites
in vivo stimulate cell proliferation and secretion of angiogenic
cytokines at the ischemic sites, thereby alleviating myocardial
fibrosis after cardiac function (Lee et al., 2014).

Anthocyanins in Cardiac Fibrosis
Anthocyanins such as malvidin-3-glucoside, delphinidin-3-
glucoside (Dp3G), cyanidin-3-glucoside (Cy3G), petunidin-
3-glucoside (Pg3G), and peonidin-3-glucoside from grape
skins exert protective effects over the complication of
ischemia/reperfusion (Liobikas et al., 2016) and diabetes
mellitus (Sun et al., 2012). Dp3G and Cy3G, but not Pg3G,
could recover ischemia-induced damage of complex I of the
mitochondrial respiratory chain and increase ischemia-depleted
ATP levels by promoting oxidative phosphorylation (Skemiene
et al., 2015). Due to the high capacity to decrease cytosolic
cytochrome c, Cy3G, but not Pg3G, prevents the rat heart from
ischemia/reperfusion-induced apoptosis and necrosis (Škemiene
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et al., 2013). Administration of Cy3G attenuates cardiac
dysfunction and cardiac inflammation in STZ-induced diabetic
cardiomyopathy and decreases collagen disposition via activation
of matrix metalloproteinase-9 (MMP-9) and reduction in the
level of tissue inhibitor of matrix metalloproteinase (TIMP)-1
observed in diabetic rat heart (Chen et al., 2016). When taken
together, experimental data suggest that anthocyanins with
high reductive capacity can decrease cytosolic cytochrome
c, inhibit caspase-associated apoptosis and necrosis in the
ischemic/reperfused myocardium, and rescue deteriorating
fibrosis in a diabetic rat heart. However, the anti-oxidative and
anti-fibrotic effect on other cardiovascular diseases, such as MI
and pressure overload, still need to be well-investigated.

Flavanones in Cardiac Fibrosis
The flavanone hesperitin, presented in citrus peels, has
been shown to possess beneficial cardiovascular effects in
different animal models (Roohbakhsh et al., 2015). The
increased intake of flavanones tends to reduce the incidence
of coronary heart diseases (Hertog et al., 1993; Geleijnse
et al., 2002). Due to its anti-oxidative and anti-apoptosis
properties, hesperitin reversed doxorubicin (Dox)-induced
oxidative stress and decreased apoptosis in H9C2 cells stimulated
by lipopolysaccharide through the mitochondria-dependent
intrinsic apoptotic pathway (Yang et al., 2014). The inhibitory
effect of hesperitin on cardiac remodeling by blocking the JNK
and TGFβ1/Smad signaling pathways and mitigating fibrosis
has been reported by our research group (Deng et al., 2013).
Hesperidin, as a flavanone glycoside, plays a protective role in
ISO-induced myocardial ischemia through the inhibition of lipid
peroxidative and oxidative stress (Selvaraj and Pugalendi, 2010).
Hesperidin could also increase the mRNA expression of Nrf-2
to exert a protective role in the heart of aged rats (Elavarasan
et al., 2012). Moreover, a significant decrease in cardiac
function biomarkers, including serum creatine kinase, aspartate
aminotransferase, and lactate dehydrogenase, in diabetic rats has
been detected following hesperidin supplement (Mahmoud et al.,
2012).

Another citrus flavanone, naringenin, has been shown
to possess protective effects on lipid metabolism. Mulvihill
elegantly indicated that naringenin treatment ameliorated
dyslipidemia, reduced increased VLDL levels and improved
insulin sensitivity in Ldlr−/− mice fed a western diet through a
PPAR-γ coactivator 1α/PPAR-α mediated transcription program
(Mulvihill et al., 2009). In a H2O2-treated cardiomyoblast,
naringenin treatment attenuated stress-induced apoptotic cell
death and lipid peroxidation and increased the level of reduced
glutathione, whose protective effect mainly depends on the
upregulation of Nrf-2 and downregulation of theNF-κB signaling
pathway (Ramprasath et al., 2014). Due to its significantly anti-
oxidative effect, recent studies indicate that naringenin plays a
beneficial role in the models of age-associated cardiac disorders
(Da Pozzo et al., 2017), hyperglycemia-induced cardiomyocyte
injuries (Chtourou et al., 2015; You et al., 2016) and Dox-
induced rat cardiotoxicity (Subburaman et al., 2014). Our results
reveal that administration of naringenin ameliorates cardiac
hypertrophy by inhibiting the activation of JNK, ERK, and

phosphatidylinositol-3-kinase/Akt signaling pathways, and it
mitigates myocardial fibrosis (Zhang et al., 2015); however,
the mechanism underlying the anti-fibrotic effect needs to be
clarified.

Some Non-flavonoids in Cardiac Fibrosis
Resveratrol is a naturally occurring polyphenol mainly contained
in plants. A supplement of resveratrol has been shown
to prevent and/or slow down the progression of cardiac
remodeling in multiple animal models of heart failure (Sung
and Dyck, 2015). Recent studies have shown that treatment
of resveratrol could activate sirtuins-3 (SIRT-3) and decrease
collagen accumulation. Moreover, in vitro studies indicated that
resveratrol treatment inhibited CFs proliferation and fibroblast-
to-myofibroblast transition stimulated by Ang II via blunting the
TGF-β/Smad3 pathway (Chen T. et al., 2015). Resveratrol can
activate adenosine 5-monophosphate-activated protein kinase
(AMPK) and extend the rat’s lifespan, while it loses its
protective effect in AMPKα1/α2-knockout mice (Um et al.,
2010). Treatment of resveratrol reversed cardiac remodeling
and mitigated cardiac dysfunction by enhancing autophagy
via the activation of AMPK (Kanamori et al., 2013). Ren
et al. demonstrated that treatment with resveratrol mitigated
aging-induced O−

2 generation and mechanical dysfunction
in cardiomyocytes stimulated by aldehyde dehydrogenase 2
activator Alda-1 (Zhang et al., 2014). Resveratrol supplement
has been shown to suppress the interstitial and perivascular
fibrosis induced by pressure overload in mice and rats (Dong
et al., 2014; Gupta et al., 2014). Dyck et al. demonstrated that
the mRNA expression of collagen I and III, MMP-2 TIMP-
1/2/3/4, and collagen deposition was suppressed by resveratrol,
and its anti-fibrotic effect was partially attributed to AMPK
activation (Sung et al., 2015).Meanwhile, resveratrol is known for
its anti-oxidant and anti-inflammatory properties (Bonnefont-
Rousselot, 2016). Supplementation of resveratrol exhibited an
anti-proliferative effect on CFs via blocking the ROS/ERK
pathway and attenuated fibroblasts-myofibroblast transition
via inhibiting the ROS/ERK/TGF-β/periostin pathway in STZ-
induced diabetic cardiomyopathy (Wu et al., 2016). In dox-
induced cardiotoxicity, it has been found that fibroblasts isolated
from the resveratrol-treated group have decreased levels of
TGF-β/Smad3 expression and up-regulated sirt1 expression;
consistent with the results in vivo, resveratrol supplement
mitigates myocardial stiffness and collagen deposition (Cappetta
et al., 2016). It was shown that Dox up-regulated not
only TGF-β1 expression but also stimulated massive collagen
accumulation in left ventricle tissues, whereas the dox-induced
fibrotic effect was attenuated by resveratrol (Arafa et al.,
2014). In another study, the anti-fibrotic effect on cardiac
remodeling was observed in deoxycorticosterone acetate-treated
rats following resveratrol treatment (Chan et al., 2011). Although
the studies about the anti-fibrotic effect of resveratrol are
very scarce, preclinical studies have obtained promising and,
in some cases, exciting results for the retardation and/or
therapy of hypertension and ischemia-reperfusion injuries
(Zordoky et al., 2015). Therefore, if these exciting animal
results translate to humans, resveratrol may provide a novel
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and promising agent for the treatment of cardiovascular
diseases.

Curcumin
Previous studies have shown that curcumin, a natural p300-
specific histone acetyltransferase (HAT) inhibitor, exerts a
therapeutic effect on heart failure (Sunagawa et al., 2011). In
the MI, curcumin only or combined with enalapril improves the
left ventricular systolic function by inhibiting nuclear expression
of p300 and mitigates extensive perivascular fibrosis in rats
(Sunagawa et al., 2011, 2014). Another study has shown that
curcumin mitigates maladaptive cardiac repair and reduces
cardiac fibrotic response after ischemia and reperfusion by
decreasing ECM degradation and inhibiting the synthesis of
collagens via the TGF-β/Smad pathway (Wang et al., 2012).
Another study revealed that curcumin significantly ameliorated
collagen accumulation in vivo and inhibited CFs proliferation
and migration as well as MMP expression. Moreover, curcumin
pretreatment downregulated the expression of SIRT-1 after
MI, which demonstrated that the activation of SIRT1 was
implicated in the beneficial role of curcumin (Xiao et al., 2016).
In spontaneously hypertensive rats, treatment with curcumin
decreases the expression of fibrotic markers CTGF, collagen
III, and fibronectin. The inhibitory effect of collagen synthesis
in the isolated fibroblasts stimulated by Ang II depends on
inhibiting the TGF-β1/Smad2/3 pathway (Meng et al., 2014).
Moreover, curcumin can also inhibit fibroblast differentiation in
ISO and TGF-β stimulated CFs (Liu et al., 2016; Ma et al., 2016)
and ameliorate myocardial collagen deposition. Furthermore,
curcumin treatment suppresses the increased expression of toll-
like receptor 2 and MCP-1 in cardiomyocytes following TNF-
α stimulation or ischemia-reperfusion injury and decreases
the fibrotic response observed in cardiac tissues (Kim et al.,
2012). The protective role of curcumin is closely associated
with its capacity to up-regulate Nrf-2 expression and repress
NF-κB activation (Zeng et al., 2015). Curcumin could regulate
the Akt/GSK-3β signaling pathway and NOX expression in
diabetic cardiomyopathy and ameliorate cardiac fibrosis(Yu
et al., 2012); t the anti-fibrotic mechanism is associated with
the inhibition of collagen type I and III synthesis and TGF-
β1/Smad signaling (Guo et al., 2017). Additionally, the same
cardioprotective effect is achieved by a new mono-carbonyl
curcumin analog, Y20 (Qian et al., 2015). A novel curcumin
derivative, C66, has ability to mitigate high glucose-induced
inflammatory and apoptosis and inhibit JNK phosphorylation
in both H9C2 cells and neonatal cardiomyocytes, and C66
treatment also improves cardiac function and extensive fibrosis
in diabetic mice In addition, the same cardioprotective effect was
achieved by newmono-carbonyl curcumin analog, Y20(Pan et al.,
2014). Moreover, cardiac metallothionein expression and fibrosis
is markedly suppressed by administration of C66 via inhibiting
the diabetic upregulation of JNK phosphorylation in mice (Wang
et al., 2014).

Piperine/Evodiamine
A previous study found that piperine could attenuate weight
gain in rodents (BrahmaNaidu et al., 2014), and the beneficial

effect of piperine was associated with the up-regulation of the
metabolic rate of resting muscle (Nogara et al., 2016). In the
metabolic syndrome model, piperine reduced ventricular wall
thickness and attenuated cardiac collagen deposition in rats fed
a high-fat diet (Diwan et al., 2013). Furthermore, pretreatment of
piperine ameliorates oxidative stress, dyslipidemia, and fibrosis
in ISO-induced myocardial ischemia (Dhivya et al., 2017). Our
lab has reported that piperine administration mitigates cardiac
fibrosis induced by pressure-overload or ISO simulation in mice.
Isolated CFs transition induced by TGF-β could be attenuated
by piperine via inhibition of the AKT/GSK3β pathway (Ma Z. G.
et al., 2017). Endothelial-to-mesenchymal transition participates
in cardiac fibrosis in the progression of cardiac remodeling.
Evodiamine is the major ingredient isolated from the fruit of
E. rutaecarpa. Our study indicated that evodiamine ameliorated
cardiac dysfunction and retarded cardiac fibrosis induced by ISO
stimulation via mediating EndoMT in vivo (Jiang et al., 2017);
the anti-fibrotic effect and mechanism in fibroblast stimulated by
TGF-β was observed following evodiamine administration (Wu
et al., 2017a).

CHALLENGES AND FUTURE DIRECTION

Cardiac fibrosis is a prevalent pathology in response to stress and
injury. It is abundantly clear that the extensive understanding
of fibrosis-associated mechanisms is critical to obtain exciting
advancements in the treatment of cardiac fibrosis. Given
the complicated development of cardiac fibrosis, conventional
therapies, such as β-blockers and RAAS inhibitors, do not
completely hamper the progression of cardiac fibrosis in patients
with heart failure. Therefore, an additional or novel treatment
with some polyphenols might provide a potential strategy to
alleviate cardiac fibrosis, as it has been shown to target CFs
differentiation and pro-fibrotic molecular signals (Figure 2).

Many epidemiological studies have indicated that the
consumption of natural polyphenols is associated with a reduced
risk of suffering from chronic diseases. The increased intake
of fruits and vegetables is inversely associated with major
cardiovascular diseases, MI, and cardiovascular mortality (Miller
et al., 2017). A dietary supplement of polyphenols provides a
convenient way to prevent the occurrence of cardiovascular
disease and fibrosis. Moreover, some polyphenols possess anti-
oxidant and anti-inflammatory properties, and comprehensive
animal experimental studies found that some polyphenols could
be regarded as a potential agent to treat cardiac fibrosis.
Multiple lines of evidence exploring the cardioprotective effects
of resveratrol have obtained promising results; however, there
is still a long way to determine whether resveratrol will finally
translate from the laboratory to the clinic (Rauf et al., 2017).
Despite some progress made in polyphenols research in animal
models of cardiac fibrosis, there are major gaps that need to
be settled. First, long-term trials (animal and human) must
be performed to evaluate the therapeutic effect and toxicity
of polyphenols. Second, the efficiency and bioavailability of
polyphenols in its absorption and metabolism need to be
considered. As the dose of polyphenols will have to be examined,
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FIGURE 2 | The anti-fibrotic effect of some selected polyphenols on cardiac fibroblasts proliferation, transdifferentiation, extracellular matrix deposition, and

TGF-β/smad signaling pathway. α-SMA, α-smooth muscle actin; NOX, NAPDH oxidase; TNF, tumor necrosis factor; IL, interleukin; TGF, transforming growth factor;

L7DG, luteolin-7-diglucuronide.

consideration must be whether made as to administration
with individual flavonoids, flavonoid combinations, or simply
dietary recommendations on polyphenols supplement represents
the effective approach for the rapid translation of these lab
results into effective interventions for cardiac fibrosis. Thus,
understanding the anti-fibrotic targets of polyphenols and their
structure-activity relationship, improved screening methods, and
achieved positive results of clinical trials will be critical to specify
the future direction for new drug discovery. Collectively, our
review suggests that some polyphenols in experimental studies
could target fibrotic mechanisms and thus may be a potential
therapeutic agent for cardiac fibrosis.
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