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Quantitative computed tomography predicts outcomes in
idiopathic pulmonary fibrosis
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Abstract
Background and objective: Prediction of disease course in patients with progressive
pulmonary fibrosis remains challenging. The purpose of this study was to assess the
prognostic value of lung fibrosis extent quantified at computed tomography
(CT) using data-driven texture analysis (DTA) in a large cohort of well-characterized
patients with idiopathic pulmonary fibrosis (IPF) enrolled in a national registry.

This research study was previously presented at the Annual Congress of the American Thoracic Society (ATS) 2020.
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Methods: This retrospective analysis included participants in the Australian IPF Reg-
istry with available CT between 2007 and 2016. CT scans were analysed using the
DTA method to quantify the extent of lung fibrosis. Demographics, longitudinal pul-
monary function and quantitative CT metrics were compared using descriptive statis-
tics. Linear mixed models, and Cox analyses adjusted for age, gender, BMI, smoking
history and treatment with anti-fibrotics were performed to assess the relationships
between baseline DTA, pulmonary function metrics and outcomes.
Results: CT scans of 393 participants were analysed, 221 of which had available pul-
monary function testing obtained within 90 days of CT. Linear mixed-effect modelling
showed that baseline DTA score was significantly associated with annual rate of
decline in forced vital capacity and diffusing capacity of carbon monoxide. In multi-
variable Cox proportional hazard models, greater extent of lung fibrosis was associated
with poorer transplant-free survival (hazard ratio [HR] 1.20, p < 0.0001) and
progression-free survival (HR 1.14, p < 0.0001).
Conclusion: In a multi-centre observational registry of patients with IPF, the extent of
fibrotic abnormality on baseline CT quantified using DTA is associated with outcomes
independent of pulmonary function.

K E YWORD S
data-driven texture analysis, idiopathic pulmonary fibrosis, pulmonary function, quantitative computed
tomography

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive
fibrosing interstitial lung disease (ILD) with a uni-
formly poor prognosis.1,2 Data from the recent
INBUILD study, which enrolled patients with a pro-
gressive fibrotic ILD other than IPF, showed that indi-
viduals in the placebo arm had a similar rate of forced
vital capacity (FVC) decline as untreated IPF.3 There is
an urgent need for accurate and reproducible measures
of disease behaviour for prognostication in patients
with progressive pulmonary fibrosis of all aetiologies.
Now that treatments are available to slow progression,
it is critical to identify those with early disease who are
most likely to progress.

Computed tomography (CT) plays an essential role in
the evaluation of patients with ILD. However, visual assess-
ment of disease extent, the current standard, is hampered by
interobserver variation. This has motivated research into
computer techniques for objective assessment of CT, which
have recently shown promise in pulmonary fibrosis.4–6 One
such technique, called data-driven texture analysis (DTA),
employs deep learning methods and is capable of automatic
detection and quantification of lung fibrosis on CT.7 Our
prior work using data from IPF treatment trials has shown
that the extent of fibrosis measured by DTA is associated
with reduced lung function at baseline and that an increase
in the DTA score on sequential CT scans is associated with
physiologic decline.8

The purpose of this study was to evaluate the prognostic
value of DTA in the large Australian Idiopathic Pulmonary
Fibrosis Registry (AIPFR).9,10 We hypothesized that quanti-
tative CT using a deep learning approach can stratify disease
severity in patients with IPF.

METHODS

Study participants

Detailed methodology on recruitment and data collection in
the AIPFR has been previously published.2,10 The AIPFR is a
multi-centre, prospective, observational registry of IPF
patients across Australia. All participants of the AIPFR have a
clinical diagnosis of IPF through their primary treating clini-
cian. Participants have subsequently undergone centralized
multi-disciplinary meeting (MDM) re-evaluation for the diag-
nosis of IPF.11 We have previously demonstrated that patients
behaved identically whether they met the guideline criteria
for an IPF diagnosis,2 and as such, we included all partici-
pants in this analysis irrespective of the diagnosis obtained
after centralized MDM review. Baseline and longitudinal data
were collected for the duration of a participant’s enrolment.

Quantitative CT

CTs were reviewed visually to eliminate studies with quality
problems such as severe patient motion, incomplete depic-
tion of the lungs or use of intravenous contrast. Inspiratory

SUMMARY AT A GLANCE

The extent of pulmonary fibrosis, measured objec-
tively at baseline computed tomography using a
deep learning algorithm, is associated with disease
progression and mortality, independent of pulmo-
nary function.
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CT series with slice thickness ≤ 1.25 mm and spa-
cing ≤ 20.0 mm were selected for quantitative analysis. Lung
fibrosis quantification on CT images was performed using
DTA, a deep learning technique consisting of convolutional
neural network (CNN) algorithms trained previously using
normal and abnormal scans.7,12 An initial CNN segments
the lungs and an additional CNN classifies local image
regions on axial sections as either normal or fibrotic, with
the fibrotic category trained using image regions labelled by
a radiologist as reticular abnormality, honeycombing or
traction bronchiectasis. Subject-level CT fibrosis scores were
computed as the percentage of lung pixels classified as
fibrotic. In addition to DTA, histogram-based metrics were
calculated using the automatically generated lung segmenta-
tion masks. These metrics included mean lung attenuation
(MLA), and skewness and kurtosis of lung attenuation histo-
grams, often referred to collectively as CT lung densitome-
try. To assess the effect of axial image spacing on DTA
score, non-contiguous spacing was simulated by sampling
axial slices at 10 mm intervals from 171 CT series with thin,
contiguous images. Bland–Altman analysis was performed
to compare DTA scores computed from the original volu-
metric CT to DTA scores computed using only sections at
10 mm intervals. Additionally, semi-quantitative visual scor-
ing of total extent of fibrosis was performed by two radiolo-
gists (MS and LC; 10 and 13 years of experience,
respectively) independent and blinded to quantitative CT
results, details of which are provided in Appendix S1 in the
Supporting Information.

Statistical analysis

Agreement between semi-quantitative extent of lung fibrosis
scores assigned by the radiologists was evaluated using intra-
class correlation coefficient (ICC). Univariate comparisons
of CT-derived metrics and physiology (FVC, diffusing
capacity of carbon monoxide [DLCO] and the composite
physiologic index [CPI]) were calculated using Spearman’s
rank correlation. Kaplan–Meier plots were used to visualize
transplant- and progression-free survival by groups defined
by quartiles of DTA fibrosis score.

Linear mixed-effects models were fit to assess annual change
in FVC and DLCO. For both parameters, separate models were
fit using % predicted and raw values. All models contained vari-
ables for baseline DTA, time in years and a baseline DTA by
time interaction term.Models for raw values of FVC and DLCO
were adjusted by baseline age, sex, height and centred BMI. To
assess DTA’s contribution to assessing annual change in FVC
and DLCO in the presence of baseline outcome values, models
were fit utilizing baseline FVC or DLCO as covariates in addi-
tion to all pairwise interactions between baseline FVC or DLCO,
baseline DTA and time. Between-subject variation was
accounted for by inclusion of a random intercept for subject.
Serial correlation within subjects was accounted for by specify-
ing a spatial power covariance structure. Subjects were excluded
if baseline PFT was not within 90 days of CT acquisition. DTA

was categorized by quartiles, and annual changes for each out-
come were estimated for eachDTA quartile.

Multivariable Cox analysis adjusted for age, gender,
BMI, smoking history, anti-fibrotic therapy and baseline
lung function was performed to assess the relationships
between baseline variables and risk of mortality.
Progression-free survival was defined as the time from base-
line HRCT to an FVC decline of ≥10%, DLCO decline
≥15%, transplant or death.

Statistical analyses were performed using R (version
3.6.0) and SAS (version 9.4). A p-value of <0.05 was consid-
ered significant.

RESULTS

The study population is summarized in Table 1. There were
393 patients in the cohort (268 men [68%] and 125 women
[32%]). Participant selection is shown in Figure 1. Median
age at the time of baseline CT was 69.6 years (inter-quartile
range [IQR] 8.5 years). Median follow-up period was

TAB L E 1 Demographic, CT and lung function data

No. of patients (males, females) 393 (268, 125)

Age at the time of CT, median (IQR), years 69.6 (11.0)

BMI, median (IQR) 28.2 (5.3)

Anti-fibrotic therapy, no. (%) 131 (33.3%)

Prior to CT 32 (8.1%)

After CT 99 (25.2%)

Smoking status, no. (%)

Never 114 (29.0%)

Ever 253 (64.4%)

Current 8 (2.0%)

Missing 18 (4.5%)

Lung transplant, no. (%) 38 (9.7%)

Deceased, no. (%) 226 (57.5%)

Follow-up period, median (IQR), years 2.7 (3.3)

Contiguous CT (axial spacing ≤ 1.25 mm), no. (%) 173 (44%)

Non-contiguous CT, no. (%) 220 (66%)

Semi-quantitative CT score (%), median (IQR) 30.4 (23.3)

DTA (%), median (IQR) 31.9 (23.7)

Lung functiona, median (IQR)

FVC, percentage predicted, n = 245 79.3 (27.9)

DLCO, percentage predicted, n = 227 47.3 (20.9)

CPI, n = 221 46.0 (17.7)

Number of PFTs available, median (IQR) 5 (6)

Interval between PFTs, mean (IQR), weeks 36 (22)

GAPa, median (IQR), n = 221 4.0 (2.0)

Abbreviations: CPI, composite physiologic index; CT, computed tomography;

DLCO, diffusing capacity of carbon monoxide; DTA, lung fibrosis extent quantified

using data-driven texture analysis; FVC, forced vital capacity; GAP, Gender Age

Physiology index; IQR, inter-quartile range; PFT, pulmonary function tests.
aIn subjects with lung function results within 90 days of CT.
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2.7 years. One hundred and twenty-eight patients (32.6%)
had FVC% predicted ≥ 80% obtained within 90 days of
baseline CT. Median DTA score was 31.9 (IQR 23.7) in the
full cohort and 25.0 (IQR 20.2) in those with preserved FVC
(Table S1 in the Supporting Information). Volumetric CT
was available for 173 patients and 220 had imaging with

non-contiguous axial sections. Baseline CTs were obtained
between 2007 and 2016. ICC comparing semi-quantitative
extent scores assigned by the two radiologists was 0.62 (95%
CI 0.56, 0.68). Additional details on cohort selection and CT
technical parameters are available in Table S2 in the Sup-
porting Information.

F I G U R E 1 CONSORT diagram
describing the study population.

F I G U R E 2 Data-driven texture analysis
(DTA) enables detection, visualization and
quantification of lung fibrosis. Coronal
reconstructions from non-contrast,
inspiratory volumetric computed tomography
(CT). (A) Baseline CT from study participant
with baseline forced vital capacity (FVC)
2.8 L (120.3% predicted), diffusing capacity of
carbon monoxide (DLCO) 13.32 (68.7%
predicted), composite physiologic index
(CPI) 20.66 and DTA fibrosis score 13.93%.
(B) DTA classifications in red. The patient
did not progress in the 12 months following
CT and remained alive without lung
transplant at 3 years 2 months. (C) Baseline
CT from study participant with baseline FVC
2.6 L (82.7% predicted), DLCO 8.7 (38.5%
predicted), CPI 51.55 and DTA fibrosis score
48.4%. (D) DTA classifications in red. This
patient died 10.5 months after CT.
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Figure 2 shows representative CT images and quantita-
tive analysis results in two study participants with differing
extents of lung fibrosis.

Bland–Altman analysis (Figure S1 in the Supporting
Information) showed that DTA score computed from
171 CT studies with simulated 10.0 mm axial slice spacing
was similar to DTA score computed using thin, contiguous
axial images (mean difference in DTA was �0.035%, limits
of agreement were �0.84 and 0.77).

In participants with PFT obtained within 90 days of CT
(Table 2), all CT-derived metrics were moderately correlated

with FVC, DLCO and CPI (p < 0.0001 in all comparisons).
Semi-quantitative visual extent score was moderately associ-
ated with PFTs, DTA score (Figure S2 in the Supporting
Information) and histogram-based quantitative CT metrics
(p < 0.0001).

Figure 3 shows Kaplan–Meier plots of transplant- and
progression-free survival in the full cohort separated into
groups defined by quartiles of DTA score (p < 0.0001). Limit-
ing the analysis to the subset of participants with preserved
FVC (Figure 3C,D), these thresholds in DTA score still strati-
fied the population into groups with different risk (p < 0.0001).

T A B L E 2 Univariate associations (Spearman’s rho) between CT-derived metrics and baseline lung function (within 90 days of CT)

Semi-quantitative CT score DTA MLA Skewness Kurtosis

FVC, percentage predicted, n = 245 �0.38 �0.52 �0.60 0.55 0.58

DLCO, percentage predicted, n = 227 �0.41 �0.58 �0.46 0.49 0.54

CPI, n = 221 0.46 0.63 0.56 �0.56 �0.61

Semi-quantitative CT score - 0.71 0.62 �0.64 �0.67

Note: p < 0.0001 for all comparisons.
Abbreviations: CPI, composite physiologic index; CT, computed tomography; DLCO, diffusing capacity of carbon monoxide; DTA, lung fibrosis extent quantified using data-
driven texture analysis; FVC, forced vital capacity; MLA, mean lung attenuation.

F I G U R E 3 Kaplan–Meier plots showing (A) transplant-free and (B) progression-free survival by quartiles of baseline data-driven texture analysis (DTA)
fibrosis score at baseline computed tomography (CT). Log-rank p < 0.0001 for both plots. DTA quartile ranges are: Q1 <21.2, Q2 21.3–31.9, Q3 32.1–44.9
and Q4 >45.1. Kaplan–Meier plots showing (C) transplant-free and (D) progression-free survival by quartiles of baseline DTA fibrosis score on baseline CT
in patients with forced vital capacity percentage predicted ≥80% within 90 days of CT.

QUANTITATIVE CT IN IPF 1049



Table 3 shows linear mixed model estimates of annual
mean change in FVC and DLCO by baseline DTA quartile.
In general, the annual rate of physiologic decline increased
with increasing DTA quartile, excluding the fourth quartile,
which also showed greatest mortality risk and lower baseline
pulmonary function on average (Table S2 in the Supporting
Information). For both FVC and DLCO, models with base-
line outcome, time and baseline outcome by time interac-
tions were compared to models that included baseline DTA
and all pairwise interactions between baseline outcome,
baseline DTA and time using Akaike Information Criterion
(AIC) and likelihood ratio rests. For all outcomes, models
which included baseline DTA had lower AIC and signifi-
cantly better fit (p < 0.0001), suggesting that DTA provides
information beyond baseline lung function that is useful in
predicting subsequent physiologic progression.

Univariate predictors of transplant- and progression-free
survival are shown in Tables S4 and S5 in the Supporting
Information. Results of multivariable Cox proportional

hazard models of transplant- and progression-free survival
are shown in Table 4. Base models were adjusted for age,
gender, BMI, smoking history and anti-fibrotic therapy.
DTA was a predictor of transplant-free (model 3, hazard
ratio [HR] of 1.20, 95% CI [1.14, 1.26] for each 5 unit
increase in DTA, p < 0.0001) and progression-free survival
(model 3, HR of 1.14, 95% CI [1.08, 1.19] for each 5 unit
increase in DTA, p < 0.0001). DTA remained an indepen-
dent predictor of transplant- and progression-free survival
in the portion of the study cohort with FVC % pre-
dicted ≥ 80% (Table 5).

DISCUSSION

Our study demonstrated, in a national registry of patients
with IPF, that quantitative CT provides a direct assessment
of morphologic extent of lung fibrosis that is clinically
meaningful. Greater baseline DTA scores were significantly

T A B L E 3 Linear mixed model estimates of annual change in FVC and DLCO by baseline DTA fibrosis score quartiles

FVC DLCO

% predicted Litres % predicted ml/min/mm Hg

DTA Change (95% CI) p-value Change (95% CI) p-value Change (95% CI) p-value Change (95% CI) p-value

Q1: (1.1–21.2) �2.30 (�3.24, �1.37) a �0.09 (�0.12, �0.07) a �1.87 (�2.46, �1.27) a �0.51 (�0.65, �0.36) a

Q2: (21.3–31.9) �3.47 (�4.39, �2.55) a �0.13 (�0.16, �0.10) a �3.64 (�4.15, �3.12) a �0.86 (�0.99, �0.73) a

Q3: (32.1–44.9) �4.34 (�5.57, �3.10) a �0.14 (�0.18, �0.11) a �4.94 (�5.71, �4.17) a �1.19 (�1.38, �0.99) a

Q4: (45.1–94.2) �1.74 (�2.87, �0.60) 0.0027 �0.07 (�0.11, �0.04) a �2.86 (�3.57, �2.14) a �0.6 (�0.77, �0.42) a

Note: Models were fit using cases with baseline PFT within 90 days of CT acquisition.
Abbreviations: CT, computed tomography; DLCO, diffusing capacity of carbon monoxide; DTA, lung fibrosis extent quantified using data-driven texture analysis; FVC, forced
vital capacity; PFT, pulmonary function tests.
ap < 0.0001 unless otherwise noted.

T A B L E 4 Cox proportional hazards models of transplant-free survival and progression-free survival

Per unit Transplant-free survival Progression-free survival

Variable HR 95% CI p-value HR 95% CI p-value

Model 1 Concordance 0.72 Concordance 0.62

FVC % predicted 10% 0.91 0.81, 1.01 0.08 0.96 0.88, 1.06 0.43

DLCO % predicted 10% 0.70 0.60, 0.81 <0.0001 0.89 0.79, 0.99 0.034

Model 2 Concordance 0.72 Concordance 0.62

CPI 10 units 1.68 1.43, 1.96 <0.0001 1.21 1.07, 1.37 0.002

Model 3 Concordance 0.73 Concordance 0.66

DTA 5 1.20 1.14, 1.26 <0.0001 1.14 1.08, 1.19 <0.0001

Model 4 Concordance 0.67 Concordance 0.61

Semi-quantitative 5 1.12 1.06, 1.18 <0.0001 1.08 1.03, 1.13 <0.0001

Model 5 Concordance 0.75 Concordance 0.66

CPI 10 units 1.46 1.21, 1.75 <0.0001 1.05 0.91, 1.21 0.48

DTA 5 1.11 1.04, 1.19 0.001 1.13 1.06, 1.19 <0.0001

Note: Base models were adjusted for age, sex, BMI, smoking and treatment with anti-fibrotics. Models were fit using cases with PFTs available within 90 days of CT (n = 221). Of
these, 136 died or underwent transplantation and 177 progressed or died in the follow-up period.
Abbreviations: CPI, composite physiologic index; CT, computed tomography; DLCO, diffusing capacity of carbon monoxide; DTA, lung fibrosis extent quantified using data-
driven texture analysis; FVC, forced vital capacity; HR, hazard ratio; PFT, pulmonary function tests.
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associated with subsequent rate of decline in FVC and
DLCO and with increased risk of mortality. The inclusion of
DTA improved the prediction of disease progression in
models that comprised baseline functional measures of dis-
ease severity like CPI. This extends our previous work in
independent clinical trial populations where we showed that
greater DTA fibrosis score on baseline CT was associated
with increased risk of disease progression and all-cause
hospitalization,13 and an increase in DTA fibrosis extent on
sequential scans is associated with physiologic decline.8

These results in a cohort of IPF patients lend support for the
evaluation of DTA in progressive pulmonary fibrosis more
broadly.

The precise measurement of morphology using imaging
and deep learning may provide important insight for clinical
decision-making related to anti-fibrotic therapy and for
design of inclusion criteria for clinical trials. There remains
some variability amongst physicians as to the best timing for
commencement of anti-fibrotic therapy, with some prefer-
ring a ‘watch-and-wait’ approach particularly in those with
milder disease, and others opting to start therapy at diagno-
sis.14 Current predictive models do not help to stratify indi-
vidual patients for disease progression. In the setting of early
disease, there may be value in the discriminatory power of
CT and DTA to differentiate those who are likely and less
likely to progress. A greater extent of lung fibrosis using
quantitative CT could support the early commencement of
therapy. In the clinical trial setting, inclusion on the basis of
pre-specified DTA scores might help to improve study
power, particularly in the era of IPF clinical trials compris-
ing background anti-fibrotic therapy. The ability of DTA to
improve the prediction of disease progression may also
assist with the timing of lung transplant evaluation and
listing.

In this study, we demonstrate the capability of DTA at
baseline CT to determine the risk of future disease progres-
sion in IPF. By demonstrating the ability of DTA to stratify
the risk of disease progression at baseline in IPF, we provide
the foundations for future evaluation in other progressive
fibrosing lung diseases. Accurately defining the risk of fibrotic
disease progression at baseline would enable earlier institu-
tion of anti-fibrotic therapy before irreversible progression
has occurred. The radiological similarities, in particular
shared usual interstitial pneumonia-like features, between IPF
and other progressive fibrotic lung diseases, support the eval-
uation of DTA across the broader landscape of fibrotic ILD.

This study shows that fibrosis extent scores calculated
from non-contiguous images are comparable to those calcu-
lated using volumetric imaging in a population with clinical
diagnosis of IPF. While volumetric imaging captures a more
complete representation of the lungs, and is generally
recommended for the evaluation of IPF,11 such radiologic
examinations are sometimes not performed in clinical prac-
tice. The finding that DTA was reliable in a real-world, ret-
rospective cohort across varying CT technical parameters
further strengthens its generalizability.

Quantitative CT using lung densitometry has been
applied to study IPF for some time.15–17 Metrics such as
MLA and skewness and kurtosis of lung pixel histograms
consistently correlate with physiology and are appealing in
that they are relatively easy to understand and implement.
These measurements summarize the frequency distribution
of CT attenuation values over the lung volume. While they
are affected somewhat by the presence of diffuse abnormali-
ties, they do not specifically detect and localize regions of
fibrosis. Classification of abnormal areas on CT is a pattern
recognition problem that is better addressed by machine
learning methods that capitalize on diverse features

T A B L E 5 Cox proportional hazard models of transplant-free survival and progression-free survival in participants with preserved FVC

Transplant-free survival Progression-free survival

Variable HR 95% CI p-value HR 95% CI p-value

Model 1 Concordance 0.74 Concordance 0.64

FVC % predicted 10 0.93 0.76, 1.14 0.50 1.06 0.91, 1.24 0.43

DLCO % predicted 10 0.64 0.52, 0.78 <0.001 0.82 0.70, 0.96 0.01

Model 2 Concordance 0.74 Concordance 0.61

CPI 10 units 2.0 1.47, 2.72 <0.001 1.22 0.97, 1.53 0.09

Model 3 Concordance 0.73 Concordance 0.65

DTA 5 1.32 1.18, 1.48 <0.001 1.16 1.07, 1.26 <0.001

Model 4 Concordance 0.69 Concordance 0.63

Semi-quantitative 5 1.18 1.09, 1.28 <0.001 1.12 1.04, 1.20 0.002

Model 5 Concordance 0.77 Concordance 0.66

CPI 10 units 1.76 1.26, 2.47 0.001 1.10 0.87, 1.39 0.42

DTA 5 1.28 1.14, 1.45 <0.0001 1.16 1.07, 1.26 0.0004

Note: Base models were adjusted for age, sex, BMI, smoking and treatment with anti-fibrotics. Models were fit using 108 participants with all data available. Of these, 57 died or
underwent transplantation and 84 progressed or died in the follow-up period.
Abbreviations: CPI, composite physiologic index; DLCO, diffusing capacity of carbon monoxide; DTA, lung fibrosis extent quantified using data-driven texture analysis; FVC,
forced vital capacity; HR, hazard ratio.
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including texture, a quality of images formed by structure in
the spatial arrangement and intensity of image pixels. As we
have shown previously,7 the present study confirms that the
extent of lung fibrosis quantified using a machine learning
method is more strongly associated with physiology and
outcomes than are metrics based on lung densitometry, or
semi-quantitative visual scores.

A number of other methods that leverage machine
learning principles for assessment of IPF on CT have been
successful.4,18–20 Most prior work relies on engineered image
features, meaning that features used as input to classification
algorithms were designed manually, often using combina-
tions of statistical calculations and heuristics. Jacob et al.
showed that the CALIPER system, whose classification algo-
rithms are based on pixel intensity histograms in small vol-
umes of interest in the lungs, provides indices of severity
that are more prognostically accurate in IPF than visual
assessment.21 Kim and colleagues showed that a classifier
based on statistical image texture metrics can produce scores
for the extent of fibrotic ILD that are associated with base-
line disease extent and are also a sensitive measure of change
over time.18 DTA, on the other hand, is based on a deep
learning approach where CNNs learn optimal features for
discriminating lung fibrosis based on examples labelled by
expert radiologists.

This study has limitations, largely related to the real-
world nature of the registry, selection biases present in this
cohort and mixed CT technical characteristics that are
unavoidable in retrospective analysis of scans acquired with-
out a standardized protocol. The statistical associations that
were observed despite these variations suggest that a CNN
approach like DTA is versatile and can accommodate vary-
ing CT technical characteristics to some degree. That said,
more consistent imaging parameters would likely improve
precision in a similar project and future prospective studies
would benefit from standardized CT acquisition and recon-
struction procedures in order to minimize variation. Results
would also be bolstered by comparison with an independent
cohort.

In conclusion, these analyses in the AIPFR show impor-
tant associations between morphologic extent of pulmonary
fibrosis, measured objectively on CT using a deep learning
algorithm, and outcomes, independent of pulmonary func-
tion. The results from this IPF cohort support further stud-
ies to evaluate the application of DTA in other forms of
progressive pulmonary fibrosis.
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