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A modified age‑structured SIR 
model for COVID‑19 type viruses
Vishaal Ram1 & Laura P. Schaposnik2*

We present a modified age‑structured SIR model based on known patterns of social contact and 
distancing measures within Washington, USA. We find that population age‑distribution has a 
significant effect on disease spread and mortality rate, and contribute to the efficacy of age‑specific 
contact and treatment measures. We consider the effect of relaxing restrictions across less vulnerable 
age‑brackets, comparing results across selected groups of varying population parameters. Moreover, 
we analyze the mitigating effects of vaccinations and examine the effectiveness of age‑targeted 
distributions. Lastly, we explore how our model can applied to other states to reflect social‑distancing 
policy based on different parameters and metrics.

The study of the spread of diseases and rumours within networks (social and biological) in order to trace fac-
tors that are responsible for or contribute to their occurrence has been done from many different perspectives. 
Moreover, only recently have graph theory, number theory, and computer science taken researchers to several 
breakthroughs (e.g.  see1 and references therein). Back in the early 1900s, Ronald Ross produced the first math-
ematical model of mosquito-borne pathogen transmission using mosquito spatial movement in order to reduce 
malaria from an  area2. Some decades later,  Kermack and   McKendrick3 created the SIR model, which categorized 
people as Susceptible, Infectious and Removed—the model which we shall focus on.

More recently, contact networks were introduced to better represent a  community4: these are adapted to reflect 
certain particular characteristics of society, and they have been of much use when doing mathematical modeling 
of epidemics. In this setting, a social network is modelled as a graph where vertices represent individuals, and 
edges encode the interactions amongst people: two people are connected by an edge in the graph whenever they 
are related (and thus an interaction could exist).

Given the recent outbreak of COVID-19, and with views towards applications to future viral outbreaks and 
marketing strategies, this paper is dedicated to the study of contention strategies with social networks by target-
ing different clusters within the network in different ways. As highlighted  in5, the importance of local clustering 
in networks has been widely recognised, and not much study has been done in this direction until very recently. 
Moreover, the importance of separating age groups when studying these types of viral spreads is becoming 
increasingly apparent (see, for  example6).

Notable differences have been shown to exist in hospitalization and fatality rates among age and gender 
groups, and thus our interest is on obtaining a modified age-structured SIR model. A first study was done  in7,8 
of “optimal targeted lockdowns in a multi-group extension of the standard SIR model”7. In particular, it was found 
that “among strategies which end with population immunity, strict age-targeted mitigation ones have the potential 
to greatly reduce mortalities and ICU utilization for natural parameter choices”8. Moreover, the pros and cons 
between saving lives and improving economic outcomes were studied, showing that better social outcomes are 
viable by imposing targeted policies: “Differential lockdowns on groups with differential risks can significantly 
improve policy trade-offs, enabling large reductions in economic damages or excess deaths”7.

In the present work we take different path  from7,8 and consider an age-compartment model with a rescaling 
function completely based on the policy that Washington implements, where the intensity of the social distanc-
ing policy is proportional to the ICU occupancy. It should be noted that a modified rescaling could be applied 
to other states, hence making our model adaptable to other settings, e.g. New York uses metrics including rate 
of change of total infections in their policy. Moreover, we consider age-specific relaxation policy (e.g. opening 
schools/work) and vaccine distribution. By applying our model to populations of varied age-distribution, we 
see the following:

 (I) Following our rescaling function, population age-distribution is directly correlated with increasing 
peak ICU occupancy and decreasing peak infection count. However, herd immunity threshold is 
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unaffected by the change in population parameters with the same proportion of the population being 
infected through the course of the epidemic.

 (II) Across all age-distributions, relaxing school and work restrictions has the effect of infecting the same 
proportion of the population across a smaller time frame, increasing peak ICU occupancy by over to 
18% and 51% , respectively. However, such effects are not observed when relaxing restrictions after the 
initial peak in infections.

 (III) Administering vaccines at a constant rate lowered the herd immunity threshold, especially among high 
median age counties, while also reducing mortality rate by 28% . Moreover, strictly prioritizing vac-
cines to older age-brackets seems extremely effective, lowering ICU occupancy and further reducing 
mortality rate by 20% while preventing the spread of the virus in the short term.

To illustrate our perspective, we study the available data from the state of Washington,  USA9, and apply our 
modified model to this dataset. Our paper is organized as follows: we shall begin by introducing the SIR model 
in “The SIR model”, and an age structured version following the work  in8 in “An age-structured SIR model”.

The (age‑structured) SIR model
As mentioned previously, the SIR model is a simple model for infectious disease in which the population is 
divided into three compartments: those susceptible to the disease, those infected with the disease, and those 
removed from the disease either through death or recovery. Across this paper, we shall assume that those in the 
removed group are unable to be infected again.

The SIR model. The number of individuals in each group is given by certain functions of time S(t), I(t), 
R(t), respectively. Moreover, the dynamics of the model are given by the set of ordinary differential equations:

which depend on the following parameters:

• the total population N;
• the transmission rate β , measured as the average number of contacts per person per time, multiplied by the 

probability of transmission between a infected and susceptible person;
• and the removal rate γ , also given by 1/D where D is the length of the period for which a person is infectious.

During the early stages in an epidemic, transmissions between individuals are statistically independent, meaning 
that the probability that an infectious individual encounters someone no longer susceptible is probabilistically 
low. Indeed, during the early stages in an epidemic transmission between individuals are statistically independ-
ent. Within the model, the basic reproduction number R0 is the number of people an individual is expected to 
infect, and can be computed given the parameters of the SIR model as R0 = β

γ
.

One should note that the R0 value is not a biological constant as its value depends on factors such as individual 
contact patterns. However, the number R0 of a disease is generally consistent among newly susceptible popula-
tions and can be used to predict the trajectory of an epidemic or calibrate the initial conditions of a model. In 
particular, a value of R0 > 1 indicates a disease will begin to spread in a population if no contention is installed, 
where a greater R0 value indicates faster exponential growth. For example, measles is known to be one of the most 
contagious diseases, with 12 ≤ R0 ≤ 18 , which means that each measles-infected person may spread the virus 
to 12 to 18 other individuals in a susceptible  population10. For comparison, the CDC estimates that COVID-19 
has an R0 value of about 5.7 in the United  States11, close to that of Polio and Rubella.

An age‑structured SIR model. For many diseases such as COVID-19, the effect on different age-groups 
varies drastically. Dynamical models for COVID-19 have now been studied broadly (e.g.,  see12–14). Here, how-
ever, we shall consider a different type of model: an age structured model in which we compute the age distribu-
tion of each compartment in each of the age-brackets 0–9, 10–19, ..., 70–79, and 80+. This separation, in par-
ticular, is much more specific than the one used  in7 and thus allows us to have our results in a more refined way.

For an age-structured model, we must incorporate an age-contact matrix M describing the rate of contact 
between each pair of age-brackets. In the present paper, we shall use the same matrix used  in8 based on data 
collected  by15 for the United States, shown in Fig. 1 below. In this setting, the values in M are proportional to 
the total number of contacts per time between age-brackets, divided by the product of their population sizes. 
In particular, M would be a constant matrix if individuals were equally likely to contact each other across all 
age-brackets.

Following8, in our age-structured SIR model we define vector valued functions S(t), I(t), and R(t) representing 
the age-distribution of the total individuals susceptible, infectious, and removed respectively by letting the ith 

(1)
dS

dt
=− β · I ·

S

N
;

(2)
dI

dt
=β · I ·

S

N
− γ · I;

(3)
dR

dt
=γ · I ,
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coordinate indicate the number of individuals in the ith age-bracket for 1 ≤ i ≤ 9 . Then,  from8, the dynamics of 
the model are given by the following equations:

Let vector p denote the proportion of the population in each age-group, and let � and v be the dominant 
eigenvalue and corresponding eigenvector of M · diag(p) . In the initial state of the epidemic, the growth rate of 
transmissions follows a steady state, i.e. I ∝ dI

dt . It is shown  in8 that in this state, the value of R0 can be computed 
as β·�

γ
 , with the initial infected distributed according to v . Therefore to emulate the R0 value of COVID-19, we 

can assign β =
R0·γ
�

 where γ = 1
14 , indicating a 14-day infectious period.

Consider the vectors h = {h1, . . . , h9} , c = {c1, . . . , c9} , and m = {m1, . . . ,m9} to be the hospitalization rate, 
ICU rate among hospitalizations, and mortality rates, respectively for each age-bracket labeled by i. Then, one 
can compute the vector valued functions H(t), C(t), and M(t) representing the age-distribution of the total 
individuals hospitalized, in critical care, and deceased respectively through the following differential equations:

In what follows we shall use the COVID-19 estimates for these values  from16 shown in Fig. 2 to understand 
the above functions.

Social distancing in Washington State, USA
In what remains of the manuscript, we shall pay special attention to the COVID-19 outbreak that took place in 
Washington State, USA since January 2020, and use the data available  in9 to model different Social Distancing 
strategies (see https:// www. ofm. wa. gov for the data source). The first confirmed case of the COVID-19 pandemic 
in the United States was announced in Washington State on January 21, 2020. Five weeks later, on February 29th, 

(4)
dSi

dt
=− β ·

Si

N
·

n∑

j=1

Mij · Ij

(5)
dIi
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=β ·

Si

N
·
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dRi

dt
=γ · Ii

(7)
dHi

dt
=γ · hi · Ii

(8)
dCi

dt
=γ · hi · ci · Ii

(9)
dMi

dt
=γ ·mi · Ii

Figure 1.  Age-contact matrix M.

https://www.ofm.wa.gov/washington-data-research/statewide-data/washington-trends/population-changes/population-age-mapped-county
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Washington also announced the first COVID-19 related death in the country. On March 23, Governor Jay Inslee 
issued the first stay-at-home order which lasted until the end of  May17.

On May 29th, Inslee announced a Safe Start: a four phased county-by-county reopening plan. The plan allows 
counties to gradually relax social-distancing measures based on their assessments of health care system readiness, 
testing capacity and availability, case and contact investigations, and ability to protect high-risk populations. 
One of the main factors determining a county’s reopening procedure is the percentage of ICU beds available in 
hospitals. Therefore to model the effect of social-distancing policy it is useful to scale the contact matrix M by 
a value proportional to this percentage:

where |C| is the total number of individuals in critical care while Cmax is the ICU capacity which we set to the 
US average of 34.7 per 100,000 residents. As we mentioned before, this leads to our age-compartment model, 
utilizing a rescaling function completely based on the policy that Washington implements where the intensity of 
the social distancing policy is proportional to the ICU occupancy. We refer to 1

�·|C|/Cmax
 as the mitigation factor. 

The constant � determines the “strictness” of the social-distancing measures. Such reactive mitigation measures 
have been done before in SIR models (e.g.,  see18 with respect to total infected count).

In order to understand the implications of the constant � , we should note that a larger � value has the effect 
of “flattening the curve”, decreasing total case count while also slowing the rate of decline in cases. Moreover, one 
can see in Fig. 3 the effect of � on the proportion of the population (with Washington state demographic param-
eters) infected and in the ICU (I and C respectively). For consistency, we use a � value of 0.1 in our modeling.

Demographic parameters. The main objective of our model is to investigate the effect of a population’s 
age distribution on the transmission and spread of a virus like COVID-19, which is both highly contagious and 
largely age-specific in its effect on the population. To aid in our comparison of populations, we select four sample 
counties of Washington state with varying age-distribution: Jefferson, King, Ferry and Adams (outlined in red in 
Figs. 4, 5, 6) and apply our model to their demographic parameters.

For each county, we use the same parameters specific to COVID-19, but adjust the initial state of the function 
S(t) based on the age-distribution of the county, which can be seen in Fig. 4, obtained via the official govern-
ment’s data  in9.

As shown in Fig. 4, there is significant variation in the age distribution of each county with counties along 
the west coast such as Jefferson and Clallam with a median age of over 50 years, while counties in central and 
eastern Washington such as Adams and Whitman with a median age of under 30 years. Due to this variation, 
we expect an epidemic such as that of COVID-19 to have similar variation in its effect on the population, from 
rate of spread to mortality rate, and thus warrant different, age-targeted mitigation measures.

In order to understand the the relevance of the mortality rate within our study, there are two other important 
data points to consider, which are the proportion of the population in each county over the age of 60 and 80, 
shown in Figs. 5 and 6, respectively. These two population groups represent the age-brackets most vulnerable 
and are generally a better indicator of the overall population mortality rate.

(10)M →
1

� · |C|/Cmax
M

Figure 2.  COVID-19 age statistics.

https://www.governor.wa.gov/sites/default/files/SafeStartPhasedReopening.pdf
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Model application
As mentioned previously, the four counties of Washington we selected for our model comparison are Adams, 
King, Ferry, and Jefferson. These counties have median ages of 28.3, 36.8, 49.2, and 57.9, respectively. The com-
plete age distribution of the selected counties are shown in Fig. 7, and in this section we shall apply our SIR 
model on each of the four selected counties.

In order to understand the relation between the proportion of the population infected and the median age 
of a county, we consider Fig. 8 which displays the current proportion of the population infected and in intensive 
care over time for the four selected counties. Mitigation measures are the same as shown in Fig. 3, applied with 
� = 0.1 across all age-brackets homogeneously. In particular, we can see that the proportion of the population 
infected decreases with increasing median age. This is likely due to a larger mitigation factor (stricter social-
distancing policy) associated with the greater ICU population as well as a larger number of total contacts among 
the younger population from Fig. 1.

The Herd Immunity Threshold (HIT) is the critical proportion of the population that must become immune 
for an epidemic to longer persist. In an SIR model, the HIT value is given by 1− 1

R0
≈ 82% for R0 = 5.7 . In order 

Figure 3.  Effect of � in SIR-model.

Figure 4.  Median age. Figure made with Excel using dataset  in9.
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to understand the HIT for our model, we first consider the peak and total proportion infected and in intensive 
care for each of the four counties, as seen in Fig. 9.

Note that in all four counties, around the same proportion of the population became infected while a sig-
nificant proportion (about 20% ) never became infected throughout the course of the epidemic. Therefore a 
state of herd immunity was achieved in which a large enough proportion of the population achieved immunity 
though previous infections, thereby reducing the probability of new infections, eventually halting the spread of 
the disease.

Since we are interested in understanding effects of mitigation strategies for the less vulnerable population 
( < 60 years), we consider in Fig. 10 the proportion of each individual age-bracket infected in the epidemic for 
each county, i.e. the probability that an individual will be infected given their age-bracket. Through our study, 

Figure 5.  Percent of population over 60. Figure made with Excel using dataset  in9.

Figure 6.  Percent of population over 80. Figure made with Excel using dataset  in9.
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we find that for the less vulnerable population ( < 60 years), the probability of infection is roughly the same 
regardless of age-bracket and population age-distribution, as can be seen in in Fig. 10.

On the other hand, for the more vulnerable population ( ≥ 60 years), the probability of infection increases 
significantly with the median age of the population. As a result, counties such as Ferry and Jefferson not only 
have a larger vulnerable population, but also have a larger proportion of their vulnerable population infected, 
which greatly contributes to their mortality rate.

Figure 7.  Age distribution of selected counties.

Figure 8.  Homogeneous mitigation comparison, where the model was run until the proportion of the 
population infected fell below 10−6.
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Effects of age‑specific policy. By shifting the distribution of the infected population away from the vul-
nerable population, the mortality rate of an epidemic can be reduced significantly. In what follows we shall 
examine the effect of age-specific policy including partial opening of schools and workplaces that prioritizes and 
targets the more vulnerable over less vulnerable populations.

We first examine the effects of relaxing school and work restrictions. For each scenario, we choose a relaxed 
bracket: the part of the population unaffected by the social distancing policy (that scales the contact-matrix by 
the mitigation-factor).

For example, when relaxing school restrictions, the targeted population is all individuals < 30 years, meaning 
all contacts amongst this group (the blue group in Fig. 11) will not be subject to restrictions, while the remaining 
contacts (the red group) will be subject to normal restrictions given by the mitigation-factor. For relaxing work 
restrictions, a similar group is relaxed, targeting all individuals < 70 years. Note that relaxing work restrictions 
is applied on top of relaxing school restrictions as the school age-bracket is a subset of the work age-bracket.

Comparing the statistics from the table in Fig. 12 below, to that from the table in Fig. 9 presented before, we 
find that, on average, peak infections increased by 58% when relaxing schools and increased 160% when relax-
ing work. In both cases, total infections increased slightly, continuing to remain around the herd immunity 
threshold of 82% as expected.

The current proportion of the population infected and in intensive care over time with fully relaxed school 
and work restrictions respectively can be seen in Fig. 13a,b. As infections among the relaxed bracket increased 
drastically in proportion to the restricted bracket, the mean of the age-distribution of the infected population 
shifted towards the younger, less vulnerable, bracket by the time the HIT was achieved. As a result, we saw that 
the mortality rate, on average, decreased by 6.0% when relaxing schools and 12.1% when relaxing work, with this 
being less pronounced in the greatest median age Jefferson county with a 2.7% and 8.1% reduction respectively.

In contrast to the above, it should also be noted that, on average, peak ICU occupancy increased by 18.9% 
when relaxing schools and 51.2% when relaxing work, significantly more than the increase in peak infections. 
Reducing transmissions across the younger age-brackets has the effect of “flattening the curve”: reducing peak 
infections and ICU occupancy while infecting roughly the same proportion of the population over a larger span 
of time. Although relaxing school and work restrictions reduced the calculated mortality rate, in practice, increas-
ing peak ICU occupancy by up to 50% can put excessive strain on hospitals that are at full capacity, leading to 
additional moralities from a lack of resources needed to treat everyone requiring intensive care.

Figure 9.  County infected/ICU statistics.

Figure 10.  Proportion of age-bracket infected.
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We also examine the effect of relaxing school and work restrictions after 90 days, roughly a month after the 
initial peak in infections. Figure 14a,b display the current proportion of the population infected and in intensive 
care over time with school and work restrictions relaxed at 90 days respectively. The vertical blue line indicates 
when the restrictions are relaxed for the targeted age-bracket. We find that relaxing school restrictions at 90 
days (a) has little effect on the subsequent trajectory of the epidemic for all counties, with no change in peak 
infections and ICU, and mortality rate increasing by an average of 3.5% compared to constant restrictions in 
Fig. 9. When relaxing work after 90 days (b), we see a notable change in the trajectory of the epidemic in counties 
with a higher median age. In Jefferson county, infections reached reached a new peak of 1.05× 10−1 , identical 
to the peak before the relaxation. ICU occupancy in the county also increased for a period of 30 days following 
the relaxation. Among all counties, the total infected increased by an average of 3.7% , exceeding the HIT for all 
counties, though the mortality rate remained mostly unaffected, decreasing by an average of 0.5%.

Figure 11.  Population affected in relaxing school restrictions .

Figure 12.  Age-specific policy statistics.
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Effects of age‑targeted vaccination. Vaccinations play a critical role in mitigating the effects of an epi-
demic. By directly preventing the susceptible population from contracting the disease, it is possible to achieve 
herd immunity in less time and significantly reduce peak infections and mortality rate. An important aspect 
of vaccines is the strategy considered by a government or society in order to achieve the desired proportion of 
vaccinated population—and much research has been done in this direction for long time know infections (e.g., 
for Zika and Hepatitis B, as discussed  in19,20) as well as for recent viral outbreaks such as COVID-19 (e.g, see for 
 example21).

In what follows, through our modified age-structured SIR model, we shall examine the effect of prioritizing 
certain age-groups in vaccine distribution versus a homogeneous distribution across all age-groups. We model 
vaccinations by directly transferring individuals from the susceptible and removed groups. In particular, if vector 
µ represents the number of individuals in each age-bracket vaccinated at each day, then we have the following:

To select the distribution of vaccines, we define a weight vector ω that represents the priority of each age-
bracket in our distribution.

Using the weight vector, we define

where T is the total number of vaccines administered at each day and |ω ⊙ S| is the sum of the elements of vec-
tor ω ⊙ S . Note that when ω is constant, each member of the susceptible population is equally likely to receive 
a vaccine. The United States produces enough flu vaccines yearly for approximately half of its  population22, and 
thus for our model we shall set T = N/720 where N is the population size.

(11)
dSi

dt
=− β ·

Si

N
·

n∑

j=1

Mij · Ij − µi;

(12)
dIi

dt
=β ·

Si

N
·

n∑

j=1

Mij · Ij − γ · Ii;

(13)
dRi

dt
=γ · Ii + µi .

µi = T ·
ωi · Si

|ω ⊙ S|
,

Figure 13.  (a) School bracket relaxed ( < 30 years); (b) work bracket relaxed ( < 60 years).

Figure 14.  (a) School bracket relaxed ( < 30 years) at 90 days; (b) work bracket relaxed ( < 60 years) at 90 days.
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For our age-targeted distributions we provide the higher age-brackets moderate priority with vector ωM 
and strict priority with vector ωS . We let ωC denote the constant weight vector for the homogeneous (control) 
distribution. The weight values selected are summarized in the table of Fig. 15a, and the model statistics for each 
distribution are given in Fig. 15b.

We shall first consider the case of a homogeneous vaccine distribution (ω = ωC) . In this case, the infected 
count and ICU occupancy is shown in Fig. 16a. One can see, in particular, that the administration of vaccines 
had a significant mitigating effect on the epidemic, on average reducing:

• the peak infections by 5.9% , and
• the peak ICU occupancy by 7.2%,

with the reduction being more prominent on higher median age counties. Additionally,

• the mortality rate was reduced by an average of 28.2%;
• the HIT was reduced, especially among high median age counties, with 69.2% of Ferry county and 59.2% of 

Jefferson county infected in total.

This should be compared to the same analysis done for the moderate vaccine distribution (ω = ωM) shown 
in Fig. 16b.

One may also consider a strict priority vaccine distribution (ω = ωS) , for which the analysis is shown in 
Fig. 17 below.

By increasing the relative weight of higher age-brackets, we present a model where we administer more vac-
cines towards the older and more vulnerable populations. As for general trends, we find that, compared to the 
ωC distribution, increasing the priority of older age-brackets one has:

• an increases peak and and number of total infections,
• while a decreasing peak and total number of ICU occupancy.

This trend is expected as prioritizing older age-brackets results in a greater proportion of the younger popu-
lation susceptible to infection who are more likely to become infected and spread the virus, increasing total 
infections.

Figure 15.  (a) Relative weights of vaccine distribution; (b) ge-targeted vaccine distribution statistics.

Figure 16.  (a) Homogeneous vaccine distribution ( ω = ωC ); (b) moderate priority distribution ( ω = ωM).
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Moreover, by reducing the proportion of the older population susceptible, we also reduce their infections 
and ICU occupancy, subsequently lowering the mitigation factor. Furthermore, the age-targeted distributions 
were highly effective in further reducing mortality rate, with an average 8.5% reduction for ωM and 15.7% reduc-
tion for ωS . In particular, Adams, the low median age county, responded most effectively with a 9.4% and 19.5% 
reduction in mortality rate for ωM and ωS , respectively.

To better understand how vaccinations limit the spread of the epidemic, we consider the proportion of the 
population susceptible to the virus over time in Fig. 18, where the vertical lines indicate when each proportion 
susceptible in each corresponding county falls below (1 minus) the calculated HIT or 1/R0 = 0.175 , summarized 
in Fig. 19 below.

This is the point at which the spread of the virus no longer persists due to herd immunity, with the remainder 
of the susceptible population being immune through continued vaccinations. Although it results in greater total 
infections, we find that age-targeted vaccinations are effective in reducing the time required to achieve herd 
immunity, with an average 7.3% and 11.6% reduction in days for ωM and ωS , respectively.

Conclusion and summary of our work
In the present paper, we have introduced a modified age-structured compartmental SIR model using a function 
that scales contacts by a factor proportional to the current ICU occupancy in Washington State, USA, which 
serves to emulate the phased social distancing policy implemented Washington State.

Our modeled epidemic utilizes the same disease parameters of the current COVID-19 pandemic with an R0 
value of 5.7 and corresponding hospitalization, intensive-care, and mortality rates for each age-bracket, shown 

Figure 17.  Strict priority distribution ( ω = ωS).

Figure 18.  Susceptible proportion for: (a) the homogeneous priority distribution ( ω = ωC ); (b) the moderate 
priority distribution ( ω = ωM ); (c) the strict priority distribution ( ω = ωS).
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in Fig. 2. To understand the importance of age-targeted analysis of epidemic’s contention, we apply our model 
across four populations: counties Adams, King, Ferry, and Jefferson of Washington State which possess varying 
population age distributions shown in Fig. 7 with medians 28.3, 36.8, 49.2, 57.2, respectively.

For our study, we first apply our unaltered model to each of the four counties, plotting the proportion of the 
population infected and in critical care over time in Fig. 8. Through this, we find that 

(i) as the median age increases, peak infections decrease while peak ICU occupancy and mortality rate 
increases.

This is due to younger age-brackets producing more contacts and infections over time, as seen in Fig. 1, while 
the more vulnerable older age-brackets increasing ICU occupancy and placing heavier restrictions according to 
the rescaling factor. However, the total proportion of the population infected remain near the calculated herd 
immunity threshold ( 1− 1

R0
≈ 82% ) for all counties. As the herd immunity threshold is determined by disease 

rather than the population (assuming no external influences on the susceptible population such as through vac-
cination), we find that the calculated mortality rate is mostly dependent on the age-distribution of the infected 
population.

We then analyze the effect of age-specific policy such as fully relaxing restrictions on the school bracket (0–29 
years) and the work bracket (0-69 years) both at the start of the epidemic (shown in Fig. 13) and after the initial 
peak in infections at day 90 (shown in Fig. 14). Through our analysis, we found that 

 (ii) when relaxing school and work bracket at 0 days, peak infections increased on average by 58% and 160% 
respectively;

 (iii) while the proportion of the population infected remained around the HIT as expected.

As a result, relaxing restrictions across younger age-brackets lowered the median age of the infected popula-
tion, leading to a decrease in mortality rate, with the reduction less pronounced in higher median age counties. 
However, we also saw that 

 (iv) peak ICU occupancy increased by an average of 18.9% when relaxing schools and 51.2% when relaxing 
work, significantly more than the increase in peak infections.

Although the calculated mortality rate decreased, increasing peak ICU occupancy by up to 50% can overload 
the healthcare capacity in practice leading to additional, preventable deaths. Moreover, we saw that 

 (v) relaxing the school bracket after 90 days had little effect on the subsequent trajectory of the epidemic in 
all counties, with no change in peak infections and ICU occupancy;

 (vi) relaxing the work bracket at the same time had notable effects on high median age counties.

In the particular case of Jefferson, infections reached a new peak, identical to that before the relaxation and 
ICU occupancy also increased for a period of 30 days. However, for all counties, the mortality rate remained 
mostly unaffected.

Finally, we analyze the effect of age-targeted vaccine distribution. We model vaccinations by transferring a 
constant number of individuals from the susceptible to removed groups at each day. Under a normal homogene-
ous distribution ( ωC ), the number of individuals vaccinated in each age-bracket is proportional to the size of its 
susceptible population. In contrast, in age-targeted distributions, we apply a set of weights as shown in Fig. 15a, 
so that individuals in certain age-brackets are more likely to become vaccinated, allowing us to target vaccinations 
towards more vulnerable age-brackets with moderate priority ( ωM ) and strict priority ( ωS).

On its own, administrating vaccinations homogeneously as shown in Fig. 16 had a significant mitigating 
effect on the epidemic with 

 (vii) an average 28.2% reduction in mortality rate compared to without vaccinations.

Figure 19.  Number of days until herd immunity is achieved.
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 (viii) the proportion of the population infected falling below the expected HIT, especially among Jefferson 
with the epidemic infecting only 59.2% of the population.

When applying age-targeted vaccinations as shown in Figs. 16b and 17, we found that 

 (iix) peak infections slightly increased while peak ICU occupancy decreased.
 (ix) a reducing mortality rate with an average 8.5% reduction for ωM and 15.7% reduction for ωS compared 

to the homogeneous distribution, with Adams responding most effectively.

The above being due to a larger population of susceptible individuals in the younger age-brackets who are 
more likely to spread the infection while remaining less at risk for hospitalization. Finally, when plotting the 
proportion of the population susceptible, as shown in Fig. 19, we found that age-targeted vaccinations also 

(x) reduce the time required for the epidemic to achieve the herd immunity threshold by an average 7.3% for 
ωM and 11.6% for ωS.

Final remarks. To conclude our work, we shall present here different ways in which our model might be 
expanded, as well as possible directions for future work. To provide better context for the extent of our result’s 
implications, we list a series of key assumptions we have made, and which could be modified in order to expand 
on our model:

• Our mitigation coefficient to model social distancing policy is based strictly on a single parameter (ICU 
Occupancy). A more complex or modified mitigation coefficient may produce different results (e.g., one 
could consider economic factors, such as those studied  in23).

• In our SIR model, we do not consider asymptotic individuals and the possibility for re-infection (which in the 
case of COVID-19, one may want to  consider24). We have assumed that all individuals within an age-bracket 
are equally likely to become infected and transmit the disease.

• In our SIR model, the infectious period might be thought of as being too long since there are studies which 
showed the serial interval of COVID-19 is less than 1 week. hence, as pointed out by one of our reviewers 
it would be very interesting to expand our model to the case of shorter infectious times (by considering, for 
 example25).

Within our work we assume independence in the policy between different counties and do not consider the 
movement of individuals between populations, which is something that would be interesting to incorporate. 
Moreover, one should note that relaxing restrictions immediately affects all targeted age-brackets and has no 
affect on any contacts including individuals outside of these age-brackets. Finally, we have assume that vaccine 
production is constant throughout the course of the entire epidemic and we do not consider possible changes in 
supply and demand: it will be most interesting to incorporate the economic factors involved in vaccine produc-
tion within an age-targeted study such as ours.

When considering other mitigation coefficients which could be used, we see the following alternatives as 
potential paths for expanding our work further:

• The infection rate ( ddt I ) is another metric used to dictate policy in states such as New York and California, 
which could be considered. Percentage positive tests, measured as the proportion of the population infected 
(|I|/N), is another factor in states such as North Carolina and Georgia used to indicate the extent of disease 
spread.

• Instead of gradual/proportional restrictions, isolated populations such as those of New Zealand, implemented 
strict lockdowns within the first cases with the goal of eradicating the disease before any possibility of herd 
immunity. Stricter policy can be modelled by increasing the � factor or scaling contacts by a factor of |I| or 
|I|2 within our model.

Disclaimer. As with all mathematical models that are applied to real world systems, our results are valid only 
under the model’s assumptions. As such, the goal of our research is not to convey specific public health informa-
tion and risks, but rather be a tool for health strategists for better planning and awareness with respect to policy.
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