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Photooxidation of methionine (Met) and tryptophan (Trp) res-
idues is common and includesmajor degradation pathways that
often pose a serious threat to the success of therapeutic proteins.
Oxidation impacts all steps of protein production,
manufacturing, and shelf life. Prediction of oxidation liability
as early as possible in development is important because many
more candidate drugs are discovered than can be tested experi-
mentally. Undetected oxidation liabilities necessitate expensive
and time-consuming remediation strategies in development
and may lead to good drugs reaching patients slowly.
Conversely, sites mischaracterized as oxidation liabilities could
result in overengineering and lead to good drugs never reaching
patients. To our knowledge, no predictive model for photooxi-
dation of Met or Trp is currently available. We applied the
random forest machine learning algorithm to in-house liquid
chromatography-tandem mass spectrometry (LC-MS/MS) da-
tasets (Met, n = 421; Trp, n = 342) of tryptic therapeutic protein
peptides to create computational models for Met and Trp
photooxidation. We show that our machine learning models
predict Met and Trp photooxidation likelihood with 0.926
and 0.860 area under the curve (AUC), respectively, and Met
photooxidation rate with a correlation coefficient (Q2) of
0.511 and root-mean-square error (RMSE) of 10.9%.We further
identify important physical, chemical, and formulation param-
eters that influence photooxidation. Improvement of biophar-
maceutical liability predictions will result in better, more stable
drugs, increasing development throughput, product quality,
and likelihood of clinical success.

INTRODUCTION
Oxidation of methionine (Met) and tryptophan (Trp) residues are
among the most common degradation pathways and affect all pro-
teins.1–3 In therapeutic proteins, oxidation impacts all production
steps as well as the drug product throughout shelf life.2,4,5 Often,
oxidation is a serious threat to the success of therapeutic proteins,
affecting both in vitro stability and in vivo biological function. Oxida-
tion of Met and Trp residues has been demonstrated to negatively
impact target affinity,6–12 thermal stability,13–16 biological activ-
ity,7,9,17–23 serum half-life,13,14,24–26 and immunogenicity.27–33 Met
oxidation is almost always a critical quality attribute in monoclonal
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antibodies (mAbs) due to its impact on FcRn and FcgR binding,
mediated by conserved heavy chain (HC) residues.14,34–37 In many
cases, oxidation of critical variable region residues will also necessitate
a control strategy and monitoring during manufacturing and release.
For example, a single Trp located in the HC complementarity deter-
mining region 3 (CDR3) of one humanized mAb was demonstrated
to be singly responsible for its ultraviolet (UV) sensitivity, resulting
in both loss of binding and loss of neutralization of its respiratory syn-
cytial virus target.7 Oxidation has also been observed to increase sus-
ceptibility to other degradation pathways, such as fragmentation and
aggregation.8,17,38–42 In another human immunoglobulin G1 (IgG1)
mAb, photostress induced discoloration in the high-concentration
liquid drug product, in addition to Trp oxidation in the light chain
(LC) CDR3 and a concomitant loss of potency.17 Met oxidation in
particular has been shown to affect the function of diverse non-
mAb therapeutic proteins.9,19,43–45

Although all 20 aa can be oxidized, including the protein backbone,
observed oxidation rates span 3 orders of magnitude.3,46 Practically,
the most easily oxidized amino acids, and the amino acids of most
concern for protein pharmaceuticals, are Met and Trp.6,8,35,47,48 In
the laboratory, accelerated oxidation of Met and Trp is typically
achieved by chemical treatment with hydrogen peroxide (H2O2),
2,20-azobis(2-amidinopropane) dihydrochloride (AAPH), or cool
white light (CWL) and UV light irradiation.6 However, while H2O2

and AAPH are useful for enriching oxidized species for further
testing, they are not ideal stress conditions for assessing developabil-
ity.35 H2O2 treatment will preferentially oxidize Met and not
Trp.8,12,47 While AAPH treatment can promote oxidation of both
Trp and Met, it may also introduce other modifications, such as co-
valent aggregation via dityrosine formation10,49 and is not a relevant
oxidizing agent to protein pharmaceutical manufacturing or storage
conditions.23 Alternatively, photooxidation is a knownmajor contrib-
utor to oxidative degradation that affects both Met and Trp
021 ª 2021 The Author(s).
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Table 1. Predictors for methionine and tryptophan photooxidation machine

learning models

Feature Description

Fd
closest approach atom-atom distance between M/
W and nearest F/W/Y4,55Wd

Yd

SASA

residue and side chain-only solvent accessibility

PSA

SC_SASA

PSSA

RefSASA

Phi

main and side-chain dihedral angles
Psi

Chi1

Chi2

Loop

secondary structure elementHelix

Sheet

Arginine

formulation free amino acid concentration in mMHistidine

Proline

BondedStretch

bonded and non-bonded OPLS force field energy
components61

BondedBend

BondedTorsion

BondedImpTor

NonBondedInternal

NonBondedInteraction

pH formulation pH

Sucrose
formulation sugar concentration in mM

Trehalose

Polysorbate formulation polysorbate concentration in %

Wexpscale no. of surface exposed Trps andMets per molecule,
normalized to 150 kDa for non-mAbsMexpscale

30 total features, or predictors, were used to inform the categorical and regression ma-
chine learning models to predict photooxidation likelihood and rate.
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residues.7,48,50 UV/CWL exposure is the only stress condition with In-
ternational Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use (ICH) guidelines, and many
commercial protein therapeutics carry warning labels to protect
them from light.17,50

Early and accurate prediction of photooxidation as a development li-
ability is important because many more candidate drugs are proposed
than can be tested experimentally. “Latent” oxidation liabilities that
are not dealt with as early as possible will require more expensive
and time-consuming remediation strategies and could lead to good
drugs reaching patients slowly. Use of oversimplified models that
tend to overestimate oxidation risk is also problematic and will result
Molecul
in overlooking or overengineering good drugs that, in turn, may never
reach patients.

Many computational tools already exist to facilitate drug candidate
screening, including advanced models based on machine
learning.51–56 However, oxidation models available to date were de-
signed to predict only oxidation induced by H2O2

3,57,58 and AAPH
chemical stress,48,56,59 as well as in vivo oxidation that is often enzy-
matically driven.55 Studies to date are limited to either Met3,55–58 or
Trp48,59 residues.

In this study, we applied machine learning to liquid chromatography-
tandem mass spectrometry (LC-MS/MS) datasets of therapeutic pro-
tein peptides containing Met (n = 421) and Trp (n = 342) to create
accurate random forest60 models for photooxidation. We show that
our categorical models predict Met and Trp photooxidation likeli-
hood (“yes” or “no”) with a 0.926 and 0.860 mean area under the
curve (AUC), respectively, determined by 5-fold cross-validation. In
addition to Met photooxidation probability, we are able to accurately
predict Met photooxidation rate by regression modeling, with corre-
lation coefficient (Q2) of 0.511 and a root-mean-square error (RMSE)
of 10.9%.

RESULTS
Feature selection

Observations gleaned from literature informed 30 features used to
predict the photooxidation probability for each Met and Trp in our
dataset and photooxidation rate for each Met (Table 1). The ratio-
nales for inclusion of each feature and its role in photooxidation, sup-
ported by literature, follow in the Discussion. Solvent accessibility was
expressed as the total surface area of each residue in Å2 (reference sol-
vent-accessible surface area [RefSASA]), total exposed area of each
residue in Å2 (SASA), percent of surface area that is solvent exposed
(percent solvent accessibility [PSA]), total exposed area of each side
chain in Å2 (side-chain solvent accessible surface area [SC_SASA]),
and percent of side-chain surface area that is solvent exposed (percent
side-chain solvent accessibility [PSSA]). The secondary structure of
each residue was indicated by the binary parameters LOOP, SHEET,
and HELIX. The side-chain and backbone conformations were ac-
counted for by the dihedral angles phi, psi, chi1, and chi2. Sulfur-ar-
omatic and aromatic-aromatic interactions were considered by the
parameters Wd, Fd, and Yd which indicate the distance to the nearest
Trp, phenylalanine (Phe), or tyrosine (Tyr) in Å, respectively.55 Each
component of the bonded and non-bonded Met or Trp residue en-
ergy, using the optimized potentials for liquid simulations (OPLS)
force field,61 was included in the parameters BondedStretch, Bonded-
Bend, BondedTorsion, BondedImpTor, NonBondedInternal, and
NonBondedInteraction. The total numbers of solvent-exposed
(percent solvent accessibility >10%) Met and Trp in each protein
were defined as Mexpscale and Wexpscale, respectively. For non-
mAb molecules, these two parameters were normalized by a scaling
factor MW/150 kDa, where MW is the molecular weight of the
non-mAb molecule in kDa and 150 kDa is the approximate mass
of mAbs considered in this study. As each molecule in our study
ar Therapy: Methods & Clinical Development Vol. 21 June 2021 467
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Table 2. Confusion matrix for predictions made by the categorical machine

learning model for predicting Met photooxidation probability on the

independent holdout dataset

Prediction /

Positive NegativeExperiment Y

Positive 3 0

Negative 0 11

Table 3. Statistics for predictionsmade by the categorical machine learning

model for predicting Met photooxidation probability on the independent

holdout dataset

Statistic Met categorical model

Accuracy (%) 100.0

MCC 1.000

Precision (%) 100.0

Sensitivity (%) 100.0

Specificity (%) 100.0
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was photostressed at the same mass concentration (10 mg/mL),
normalizing the number of exposed Met or Trp per molecule by mo-
lecular weight results in a comparable number density of exposedMet
or Trp in solution.

Formulation effects were taken into account by the predictors poly-
sorbate (polysorbate concentration expressed in %), trehalose, su-
crose, histidine (His), proline, and arginine (concentrations expressed
in mM) and pH.

Because the predictive models developed here are most valuable dur-
ing candidate selection, when the sequence information of a large
number of potential drugs is known but little to no experimental
data are available, we must be able to extract these parameters from
the amino acid sequence. To determine the structural features, the
3D structure of each protein was first generated from the amino
acid sequence by homology modeling.62 Correlation between each
feature and the experimental photooxidation measured by LC-MS/
MS are shown in Tables S1 and S2.

Training and validation dataset construction

To satisfy the considerable data requirement of machine learning
methods, we performed a side-by-side forced degradation study for
48 in-housemolecules, including bothmAbs and non-mAb therapeu-
tic proteins. Photooxidation of each molecule was induced by expo-
sure to CWL at 1.2 million lux h and UV light at 200 W h per square
meter, per ICH guideline Q1B. Oxidation of Met and Trp residues
was quantified by tryptic peptide mapping LC-MS/MS, and the exper-
imental oxidation rate (%) was used to train the regression model for
Met photooxidation rate. Of note, this dataset (Met, n = 421; Trp, n =
342) is much larger than other published datasets in the biopharma-
ceutical development field, but it is considered small in the broader
field of machine learning.

To train categorical models for prediction of Met and Trp photooxi-
dation probability, the experimental oxidation rates from tryptic pep-
tide mapping were interpreted as “yes” or “no” based on a 5.0%
threshold. For example, if we observed a 4.9% increase in oxidation
of a certain Met after ICH light exposure, compared to the starting
material, that site was not treated as photooxidized by the Met cate-
gorical model (class “no”). Alternatively, when we observed a 5.1% in-
crease in oxidation of a certainMet, themodel was trained to treat this
site as oxidized (class “yes”). Oxidation abundance above this
threshold is large enough to be considered a development liability
and a significant change relative to the LC-MS/MSmethod variability.
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All data available were used to train the Met regression model for pre-
diction of photooxidation rate (n = 421). However, only one copy of
each IgG-conserved Met and Trp was used to train each respective
categorical model (Met, n = 235; Trp, n = 342). While more data
are generally desirable and lead to more accurate machine learning
models, trimming residues with highly conserved structure (in this
case, mainly IgG1 Fc region residues) allowed us to reduce redun-
dancy and bias of the models toward these residues, leading to
more generalizable predictions. All three models were trained using
stratified 5-fold cross-validation. Performance on independent
holdout sets, comprised of Met and Trp variable region sites from
four unseen mAbs not included in the training datasets, was also eval-
uated as confirmation of the performance on the cross-validation
folds (Data S1, S2, S3, S4, and S4; Tables 2, 3, 4, and 5). The observed
photooxidation frequency in the holdout dataset was consistent with
the training set (Table 6). The distribution of protein format in each
dataset is shown in Figure S1.

Unfortunately, attempts to predict Trp photooxidation rate were un-
successful and resulted in poorly generalizable models, indicated by
low Q2 (data not shown). It is likely that additional parameters are
needed to describe Trp photooxidation that were not included in
this study.

Machine learning models for prediction of Met and Trp

photooxidation probability and Met photooxidation rate

Both the Met and Trp classification models as well as the Met regres-
sion model were built in R version 4.0.3 using the ranger63 version
0.12.1 and caret64 version 6.0.86 libraries.

A 5-fold stratified cross-validation strategy was used and hyperpara-
meter tuning was performed during model training. The Met regres-
sion model for prediction of photooxidation rate achieved an average
R2 of 0.511 and 10.9% RMSE on the five cross-validation folds (Fig-
ure 1A). Categorical models achieved average cross-validation
AUCs of 0.926 and 0.860 for Met and Trp, respectively (Figures 1B
and 1C). Comparison lasso65 regressionmodels were built to incorpo-
rate feature selection, evaluate relative importance of features, and
assess the advantage of random forest models for photooxidation pre-
diction. For each prediction, the random forest models outperformed
the lasso models on each fold (Figures 1A–1C). To determine whether
our models were generalizable and able to accurately describe new
021



Table 4. Confusion matrix for predictions made by the categorical machine

learning model for predicting Trp photooxidation probability on the

independent holdout dataset

Prediction /

Positive NegativeExperiment Y

Positive 3 1

Negative 2 21

Table 6. Contents of training and holdout datasets for each model

Model

No. of Met or Trp (Oxidized/Total)

Training Set Holdout Set

Met categorical 86/235 3/14

Met regression 251/421 3/14

Trp categorical 67/342 4/27
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data beyond the training sets, both Met and Trp classification models
and the Met regression model were applied to independent holdout
sets containing Met and Trp variable region sites from four mAbs
not included in the training/validation splits. (Tables 2, 3, 4, and 5;
Figure 2). Both Met and Trp categorical models performed with
high accuracy on these independent holdout sets (Tables 3 and 5).
The Met categorical model correctly classified 3 of 3 photooxidation
liable sites and 11 of 11 non-liable sites, and the Trp categorical model
correctly identified 3 of 4 photooxidation liable sites and 21 of 23 non-
liable residues (Tables 2 and 4). The regression model for predicting
Met photooxidation rate was also successful on its respective indepen-
dent holdout set, predicting % oxidation after ICH photostress with
Q2 of 0.567 and RMSE of 15.5% (Figure 2). Taken together, these re-
sults indicate that eachmodel is capable of predicting site-specificMet
and Trp oxidation probability, or, in the case of Met, oxidation rate,
after UV and CWL stress.

The top predictors of Met photooxidation probability, Trp photoox-
idation probability, or Met photooxidation rate are shown in Figure 3.
Of note, both distance to the nearest Phe (Fd) and solvent exposure
(SASA, PSA, SC_SASA, or PSSA) appear among the top features
used by all models. A detailed discussion of each feature and its
importance to Met or Trp photooxidation appears in the following
section.
DISCUSSION
Photooxidation of Met and Trp occurs as a result of either a type I or
type II reaction.66 Type I photooxidation involves photoinduced elec-
tron transfer by Trp to form radicals that react with ground state
oxygen.50,67 Other reactive oxygen species (ROS) can be formed as
a byproduct of this process, including oxygen, hydroperoxyl, and hy-
droxyl radicals,66 as well as H2O2, that readily oxidize Met.
Table 5. Statistics for predictionsmade by the categorical machine learning

model for predicting Trp photooxidation probability on the independent

holdout dataset.

Statistic Met categorical model

Accuracy (%) 88.9

MCC 0.606

Precision (%) 60.0

Sensitivity (%) 75.0

Specificity (%) 91.3

Molecul
While only Trp is a target for degradation in a type I process, both Trp
and Met are susceptible to type II photooxidation (Figures 4 and 5).66

In a type II photosensitization reaction, UV light absorbed by the pro-
tein is transferred to ground state oxygen, generating the reactive
excited state singlet oxygen, 1O2.

66 While Trp, Tyr, Phe, His, and
cysteine (Cys) all have absorbance in the UV spectrum, other amino
acids do not absorb significantly at wavelengths above 230 nm,
including Met and the backbone.68 In general, even the highly
absorbing amino acids listed above are not efficient photosensitizers.
Alternatively, the oxidized degradation products of Trp, such as ky-
nurenine and n-formylkynurenine, are much more efficient.68,69

Thus, extended UV exposure can quickly escalate photooxidation
of both Met and Trp, as a result of interaction with 1O2.

50,67

Reaction of Met with 1O2 first generates the persulfoxide intermediate
(Figure 4). At acidic pH, the persulfoxide intermediate reacts with a
second Met, forming two molecules of Met sulfoxide.70–72 At pH
above 9, the preferred pathway involves nucleophilic substitution
on the sulfur atom, resulting in a single Met sulfoxide.70,71 Although
we do observe the degradation product Met sulfone after photostress,
the pathway to transfer an additional oxygen to Met sulfoxide is not
well characterized. Met sulfoxide- and Met sulfone-containing pep-
tides were used to quantify Met photooxidation by LC-MS/MS for
our training and holdout datasets.

Singlet oxygen reaction with Trp forms an unstable dioxetane interme-
diate that quickly decomposes via pyrrole ring cleavage to n-formylky-
nurenine (Figure 5).73,74 Hydrolysis of n-formylkynurenine gives the
degradation product kynurenine. While further oxidation of kynure-
nine to 3-hydroxykynurenine occurs rarely, this pathway is not well
characterized. Alternatively, Trp can be directly oxidized by hydroxyl
radicals to yield hydroxytryptophan (Figure 5). Kynurenine-, n-for-
mylkynurenine-, 3-hydroxykynurenine-, and hydroxytryptophan-
containing peptides were used to quantify Trp photooxidation by
LC-MS/MS for our training and holdout datasets.

Solvent exposure has been cited as a prerequisite for oxidation,49 and
there exist one-parameter models forMet and Trp chemical oxidation
susceptibility based solely on SASA.3,48,57 However, a few groups have
observed that additional structural features, besides solvent exposure,
are needed to explain variability in oxidation rates.10,29,49,75,76 Solvent
exposure, captured by the features SASA, PSA, SC_SASA, and PSSA,
were found to be among the top features in all photooxidation models
presented herein (Figure 3) except for the lasso regression model to
predict Met photooxidation rate. For categorical prediction of Met
ar Therapy: Methods & Clinical Development Vol. 21 June 2021 469
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A

B

C

Figure 1. Stratified cross-validation result

comparison

(A–C) Cross-validation result comparison between lasso

models and random forest models for (A) methionine

(Met) photooxidation probability prediction; (B) Met

photooxidation rate prediction; and (C) tryptophan (Trp)

photooxidation probability prediction. The mean result of

5-fold is plotted and error bars indicate 1 standard devi-

ation. For categorical models, The area under the curve

(AUC) is the predictive metric of success, and the coeffi-

cient of determination (R2) is used for the regression

model.
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and Trp photooxidation, the lasso coefficients corresponding to sol-
vent exposure are among the largest positive coefficients, indicating
that increased solvent exposure increases likelihood of oxidation, as
expected (Figure 3; Tables S1 and S2).

In one study, based on analysis of more than 2,000 Mets in 1,600 pro-
teins subjected to H2O2 stress,

77 Aledo et al.4,55 concluded that oxida-
tion-prone Mets have different sequence environments than do
oxidation-resistant Mets. Specifically, Mets in close proximity to aro-
matic side chains of Tyr, Trp, and Phe, indicative of sulfur-aromatic
interactions, were found to be less prone to oxidize. Aromatic-aro-
matic interactions mediated by Tyr and Trp have also been proposed
470 Molecular Therapy: Methods & Clinical Development Vol. 21 June 2021
to protect proteins from oxidation.78 In all pre-
dictive models of Met oxidation presented here-
in, Wd (distance to the nearest Trp) and Fd
(distance to the nearest Phe) are among the
most important parameters (Figure 3). The
lasso coefficients corresponding to Wd and Fd
are among the largest positive coefficients (Fig-
ure 3; Tables S1 and S2), supporting the obser-
vations of Aledo et al.4,55 and Gray and Win-
kler.78 Interestingly, the Met-Tyr interatomic
distance (Yd) was among the least useful predic-
tors in all Met models (Figure 3).

In addition to local interactions, distant photo-
oxidation-prone residues in a protein may in-
fluence each other if ROS in solution are
limited. Indeed, a scavenging role for Met has
been proposed where surface-exposed Met res-
idues in a structure act as antioxidants.79 Alter-
natively, solvent-exposed Trp residues have
been suggested to catalyze the photooxidation
of neighboring residues.80 While the total
numbers of solvent-exposed Met or Trp resi-
dues, captured by the parameters Mexpscale
and Wexpscale, were not found to be important
for all Met or Trp categorical models in the pre-
sent study, the random forest model for Met
photooxidation rate relied on both Mexpscale
and Wexpscale (Figure 3). Wexpscale was
among the top features for our lasso regression model for Met photo-
oxidation rate, and the corresponding lasso coefficient is positive
(Tables S1 and S2), supporting the role of surface-exposed Trp in
the generation of H2O2 proposed by Sreedhara et al.80

Finally, the stability of biopharmaceuticals in liquid is well known to
be affected by formulation conditions such as buffer composition,
salt, excipients, and pH. Sugars and free amino acids can stabilize
partially buried residues, limiting their reaction rates;81–83 polysor-
bate surfactants are known to degrade to peroxides under heat and
light stress;84 and the Met oxidation pathway by 1O2 is observed to
be pH-dependent (Figure 1).71 Both trehalose and polysorbate



Figure 2. Regression machine learning model for predicting deamidation

rate

Predicted Met oxidation abundance (%) was plotted versus the experimental

measured oxidation abundance for the independent validation dataset. Individual

Mets are plotted as blue circles, and the solid black line indicates where the pre-

dicted oxidation level equals the experimental oxidation level. Our regression model

predicted the independent set with Q2 of 0.567 and RMSE of 15.5%.
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concentrations were among the most important parameters for
photooxidation rate prediction by lasso, and polysorbate is a top
parameter in the photooxidation rate prediction by random forest
(Figure 3). The lasso coefficients corresponding to polysorbate and
trehalose concentrations were both negative, suggesting a protective
effect of both formulation excipients (Figure 3; Tables S1 and S2).

No parameters describing the formulation buffer were found to be
useful predictors of Trp photooxidation probability, for both lasso
and random forest models, suggesting that Trp photooxidation and
its effects cannot be mitigated by altering the buffer components
considered in this study (Figure 3). However, the decreased accuracy
compared to our Met photooxidation probability model and the
failure to train an accurate model for Trp photooxidation rate may
indicate that additional parameters are needed to describe Trp photo-
oxidation that were not considered in this study.

Based on molecular dynamics simulations of oxidation liable Mets in
granulocyte colony-stimulating factor (G-CSF), Chu et al.5 speculated
that protein conformation, including hydrogen bonding, may play
important roles in oxidation induced by H2O2. Secondary structure
features are utilized by both lasso models for Met photooxidation
rate and Trp photooxidation probability (Figure 3).

Finally, the lassomodel forMet photooxidation rate utilized the OPLS
energy parameter BondedBend, indicating a negative correlation
(Figure 3; Table S1). Of note, no other models, including the random
Molecul
forest model for Met photooxidation rate, found high importance in
the residue energy parameters. The relationship between residue en-
ergies and photooxidation liability of Met and Trp is not explored in
the current literature.

The question remains whether oxidation susceptibility under AAPH
or H2O2 stress is indicative of stability under normal storage and
manufacturing conditions; especially H2O2, as peroxides are often
used to clean filling lines for drug product manufacturing and can
be generated from degradation of or included as impurities of formu-
lation excipients.79 However, in thermal and photostability studies,
photooxidation is observed to preferentially target residues on the
same antibody chain, while H2O2 treatment results in a random dis-
tribution.35,85,86 This suggests a distinct pathway for photooxidation
and the possibility that chemical oxidation studies may not represent
oxidation that occurs under typical storage conditions.35

Conclusions

As of this writing, there are no published predictive models of Met or
Trp photooxidation. Models available to date were only designed to
predict oxidation induced by H2O2

3,58,59 and AAPH chemical
stress,49,57,60 as well as in vivo oxidation that is often enzymatically
driven.56

We have trained models to predict photooxidation probability using
peptide mapping data from both an antibody-variable region and
non-antibody Met and Trp residues. These models predict photoox-
idation probability inMet and Trp with 0.926 and 0.860 AUC, respec-
tively, evaluated by 5-fold cross-validation. In addition to photooxi-
dation probability, we are able to accurately predict photooxidation
rate for liable Met sites with Q2 of 0.511 and RMSE of 10.9%. We
have also evaluated our models on independent holdout datasets,
comprising only mAb-variable region Met and Trp sites, indicating
consistent performance. These models rely only on parameters avail-
able early in development when little to no experimental data have
been generated for candidate sequences.

Currently, there is limited artificial intelligence (AI)-based support in
protein therapeutic development and no available predictive models
of photooxidation for proteins. It is our hope that with more data
and increasingly accurate and interpretable models, a fundamental
understanding of protein degradation, including oxidation, will be at-
tained, leading to better and more stable drugs with increased devel-
opment throughput and likelihood of clinical success.

MATERIALS AND METHODS
3D model building and parameter extraction

For AstraZeneca in-house molecules, full-length homology models
were built using Schrödinger BioLuminate.62 Briefly, the most similar
crystal structure from the Protein Data Bank (PDB), by sequence, was
first identified by basic local alignment search tool (BLAST).87 This
structure and an in-house constant region template were used as scaf-
folds for the full-length structure. The Protein Preparation Wizard
tool was used to add hydrogens, assign bond orders, remove solvent
ar Therapy: Methods & Clinical Development Vol. 21 June 2021 471
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Figure 4. Met photooxidation pathway

Photooxidation of Met occurs, mainly, as a result of interaction with singlet oxygen,

yielding the persulfoxide intermediate. At acidic pH, Met persulfoxide can interact

with another Met, forming two molecules of Met sulfoxide. At basic pH, formation of

Met sulfoxide occurs by reaction with a hydroxide ion, yielding a single Met sulfoxide

(+16 Da). Further oxidation of Met sulfoxide results in Met sulfone (+32 Da). Resi-

dues are rendered as sticks with Met carbons and sulfurs colored gray and yellow,

respectively, and Met photodegradation product carbons and sulfurs colored green

and orange, respectively. Oxygen is colored red, and nitrogen is colored blue.

www.moleculartherapy.org
molecules, optimize H-bond assignments, and perform restrained en-
ergy minimization. Structural predictors of photooxidation were ex-
tracted from the 3D homology models within Schrödinger via Python
and R4,55 scripts.

Generation of photooxidized molecules

Each molecule was diluted to 250 mL at 10 mg/mL in a corresponding
formulation buffer and aliquoted to LC/MS total recovery vials (Wa-
ters, Milford, MA, USA) and incubated at 25�C in a photostability
Figure 3. Met categorical, Met regression, and Trp categorical model feature i

Relative importance of each parameter in the categorical model for predicting Met pho

was measured for the comparison lasso models and the random forest models. For la

random forest models, the importance was determined by the mean decrease in out-o

Molecul
chamber (Powers Scientific, Pipersville, PA, USA) to meet ICH guide-
lines for UV and CWL photoexposure. Reactants were stored at
�80�C prior to analysis by LC-MS/MS.

LC-MS/MS tryptic peptide mapping

20-mL samples at 5 mg/mL were denatured by adding 200 mL of 8 M
guanidine, 130 mM Tris, and 1 mM ethylenediaminetetraacetic
acid (EDTA) pH 7.6 denaturing buffer. The samples were then
reduced by the addition of 2 mL of 500 mM dithiothreitol. After incu-
bation at 37�C for 30 min, samples were alkylated by the addition of
5 mL of 500 mM iodoacetamide and incubated at ambient tempera-
ture for 30 min in the dark. The reduced and alkylated samples
were buffer exchanged into a solution containing 2 M urea and
100 mM Tris at pH 8.0 using an Amicon spin filter (EMD Millipore,
Billerica, MA, USA; MW cutoff of 10 kDa); 5 mg of trypsin was then
added to the spin filter and incubated at 37�C for 4 h. The digested
samples were collected from the spin filters, and the digestion was
quenched with trifluoroacetic acid.

Peptides produced by enzymatic digestion were eluted on an Acquity
ultra performance LC system (Waters, Milford, MA, USA) equipped
with an ethylene-bridged hybrid C18 reversed-phase column (1.7 mm,
2.1 mm, 150 mm) using a gradient of 0%–60% acetonitrile at a flow
rate of 0.2 mL/min (total elution time of 76 min). Peptides separated
on the columnwere identified by a UV detector and analyzed using an
Orbitrap Velos Pro mass spectrometer (Thermo Fisher Scientific).
Peak identification was based on both the exact monoisotopic mass
and the tandem mass spectrum of the target ion. Met and Trp oxida-
tion quantitation was based on peak areas from the extracted ion
chromatography of corresponding ions. Trp oxidation was quantified
using the sum of kynurenine, n-formylkynurenine, 3-hydroxykynur-
enine, and hydroxytryptophan containing peptides. Met oxidation
was quantified as the sum of Met sulfoxide and Met sulfone.

Random forest machine learning model construction

The best classification and regression models were random forest
models built in R version 4.0.3 using the ranger63 version 0.12.1
and caret88 version 6.0.86 libraries. To compare to simpler, feature-
limited models, lasso regressions were trained using the glmnet89

version 4.1 library. The hyperparameters of all models were optimized
by grid search using caret during training by stratified cross-
validation.

For both Met and Trp classification models, 500 trees were generated
with one variable tried at each split, producing cross-validation mean
AUC of 0.926 and 0.860, respectively. The probability threshold at
which we interpret the prediction as “yes” or “no” was 50%. Confu-
sion matrices and variable importance plots were generated using
the caret64 library.
mportance

tooxidation probability, Trp photooxidation probability, and Met photooxidation rate

sso models, the importance is indicated by the magnitude of each coefficient. For

f-bag accuracy when that parameter was excluded from the model.
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Figure 5. Trp photooxidation pathway

Photooxidation of Trp can occur by direct reaction with

hydroxyl radicals, yielding hydroxytryptophan (+16 Da), or

by reaction with singlet oxygen, yielding n-for-

mylkynurenine (+32 Da) and kynurenine (+4 Da) degra-

dation products. Further oxidation of kynurenine can

produce 3-hydroxykynurenine (+20 Da). Residues are

rendered as sticks with Trp carbons colored gray and Trp

photodegradation product carbons colored green. Oxy-

gen is colored red and nitrogen is colored blue.

Molecular Therapy: Methods & Clinical Development
The Met regression model was trained using 500 trees and 19 vari-
ables tried at each split. The cross-validated mean Q2 was 0.511.
Q2 was calculated and variable importance plots were generated using
the caret64 library.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtm.2021.03.023.
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