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Abstract

Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures
blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac
arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the
industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are
associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-
threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies
in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue
pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical
models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and
VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and
systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac
tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten
Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the
interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the
suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all
these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two
types of control schemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in
such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control
schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the
presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the
elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct
bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
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Introduction

Cardiac arrhythmias like ventricular tachycardia (VT) and

ventricular fibrillation (VF) are a major cause of death in

industrialised countries. Experimental studies over the past decade

or so have suggested that VT is associated with an unbroken spiral

wave of electrical activation on cardiac tissue but VF with broken

spiral waves [1–3]. There is growing consensus [4,5] that the

analogs of VT and VF in mathematical models for cardiac tissue

are, respectively, (a) a single rotating spiral wave in two dimensions

or a scroll wave in three dimensions and (b) spiral-wave or scroll-

wave turbulence [6–8]. It is imperative, therefore, to study spiral-

and scroll-wave turbulence systematically in such mathematical

models. There are several such studies [9–11] but none, to the best

of our knowledge that compares several models with a view to

elucidating low-amplitude defibrillation schemes, which are

designed to eliminate spiral-wave turbulence, especially in the

presence of inhomogeneities, such as conduction inhomogeneities

in cardiac tissue. We address this question here by considering four

models of cardiac tissue that are, in order of increasing complexity,

(a) the Panfilov model [12], (b) the Luo-Rudy Phase I (LRI) model

[13], (c) the reduced Priebe-Beuckelmann (RPB) model [14], and

(d) the TNNP model of ten Tusscher, et al. [15].

The Panfilov model [12] is of the Fitzhugh-Nagumo [16,17]

type with two fields, namely, the transmembrane potential V and

the recovery variable g, which depend on space and time; it is

much simpler than models that account for ion channels in the

membrane; nevertheless, it yields spiral waves and their break up

in a manner that is qualitatively similar to such pattern formation

in more realistic ionic models; given its simplicity, the Panfilov
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model is a good testing ground for numerical and semi-analytical

studies. Realistic ionic models, such as the LRI, RPB, and TNNP

models, are based on the Hodgkin-Huxley [18] formalism for ion

channels. The LRI model [13] uses data from measurements on

guinea-pig myocardial cells and accounts for ion channels and

voltage dependent ion-channel gating variables. The RPB model

[14] improves on the LRI model by incorporating data obtained

from human ventricular muscles; furthermore, it includes an ion

pump and an ion exchanger. The TNNP model is based on recent

experimental data from human ventricular cells; it includes an ion

pump, an ion exchanger, and more details of the calcium-ion

dynamics [15] than the LRI and RPB models.

Our goal is to carry out a comparison of spiral-wave dynamics

in these four models of cardiac tissue especially in the presence of

different types of inhomogeneities, such as conduction and ionic

inhomogeneities; a comparison of such spiral waves in the Priebe

Beuckelmann (PB), RPB, TNNP, models and the model of Iyer et

al. [19] has been presented in Ref. [20] but without inhomoge-

neities. We also study schemes for eliminating spiral-wave chaos

from the simulation domain in Panfilov, LRI, RPB, and TNNP

models in both homogeneous and inhomogeneous cases. The

motivation for undertaking this study is that cardiac tissue contains

both conduction and ionic heterogeneities. These can be caused,

inter alia, by (a) a myocardial infarction that leads to ischemia [21],

the subsequent damage or death of the affected cardiac cells, and,

in the latter case, the formation of scar tissue that is non-

conducting, (b) chronic heart failure, (c) genetic disorders, or (d)

the presence of major blood vessels.

Review of Previous Work
Conduction inhomogeneities in cardiac tissue can affect spiral

waves in several ways. Experimental studies [22–24] have found

that such inhomogeneities can anchor a spiral wave or, in some

cases, can even eliminate it completely [2]. Studies of the

dependence of such anchoring on the size of the obstacle [22–

24] reveal that the larger the obstacle the more likely is the

anchoring; however, even if the obstacle is large, the wave might

not attach to it; furthermore, small obstacles can anchor spiral

waves, albeit infrequently [24]. Such behaviors have also been

seen in numerical simulations of spiral-wave turbulence in models

for cardiac tissue: In particular, Xie et al. [25], have studied the

dynamics of spiral waves in the LRI model in a two-dimensional

(2D) circular domain with a circular hole in the middle: The

parameters and initial condition are so chosen that, without the

hole, spiral waves break up in the simulation domain. By shrinking

the radius of the hole, the system is changed continuously from a

1D ring to 2D tissue with an obstacle, and, finally, to

homogeneous 2D tissue [the hole radius is changed from that of

the simulation domain (.9.2 cm) to zero]. When the radius of the

hole is very large, the system is effectively a 1D ring; the wave just

goes around this ring. As the radius of the hole is decreased, the

wave appears as a spiral anchored on the hole but rotating around

it periodically, if the hole is large. As the hole radius is decreased a

transition occurs first to a quasiperiodically rotating spiral wave

and, eventually, to spiral-wave break up and spatiotemporal chaos

[25] with the spirals not attached to the hole.

ten Tusscher et al. [26] have studied the Panfilov model with

nonexcitable cells distributed randomly in it. In particular, they

investigate spiral-wave dynamics as a function of the percentage of

the simulation domain covered by such nonexcitable cells and find

that, when this percentage is high, spiral-wave break up can be

suppressed.

A detailed numerical and analytical study of the interaction of

excitation waves with a piecewise linear obstacle has been carried

out in Ref. [27]. This study finds that, if the excitability of the

medium is high, the wave moves around the obstacle boundary,

rejoins itself, and then proceeds as if it had not encountered any

obstacles in its path. However, if the excitability is low, the two

ends of this wavefront are unable to join, so two free ends survive,

curl up, and then develop into two spiral waves, which can in turn

break up again. In addition, apart from the excitability of the

medium and the local curvature of the wave front, the shape of the

obstacle also affects the attachment of spiral waves to it. We have

carried out a detailed numerical study [28] of spiral-wave

dynamics in the presence of conduction inhomogeneities in the

Panfilov and LRI models; our study has shown that the dynamics

of spiral waves depends very sensitively on the position of a

conduction inhomogeneity.

Summary of Our Results
Ionic inhomogeneities, formed say by local modifications of the

maximal conductance of calcium ion channels, affect the action

potential of a cardiac cell; in particular, the action potential

duration (APD) and other time scales, such as the extent of the

plateau region and the refractory period [29], are modified by

these inhomogeneities and affect spiral wave dynamics in turn. For

example, the stability of a spiral wave, in homogeneous, two-

dimensional cardiac tissue depends on the maximal amplitude of

the slow inward calcium current (governed by the conductance

Gsi) as illustrated by the numerical study of Qu et al. [30] for the

LRI model: As they increased Gsi they first observed a rigidly

rotating spiral wave, then one in which the spiral tip meandered

quasiperiodically, and eventually chaotically; finally they obtained

spiral turbulence with broken spiral waves. Furthermore, the

numerical studies of Refs. [28,31] have found that ionic

heterogeneities can play an important role in the initiation and

break up of spiral waves; and Ref. [28] has presented preliminary

studies of the Panfilov-model analog of ionic inhomogeneities.

We consider spiral-wave dynamics in an otherwise homoge-

neous medium with a square region in which the conduction or

ionic parameters are different from their values in the rest of the

simulation domain. We find that such inhomogeneities can have

dramatic effects on spiral wave dynamics. We have reported

earlier that conduction inhomogeneities can act as anchoring sites

for spirals, or lead to the complete elimination of spiral waves, or

have no effect on spiral-wave break up; which one of these results

is obtained depends on the size and position of the conduction

inhomogeneity [28]. In this paper we extend our work to ionic

inhomogeneities. We find that such inhomogeneities can also

result in the elimination of spiral waves; this depends on the

position of the inhomogeneity. Here too we find anchored spirals,

but with richer dynamics than with conduction inhomogeneities;

e.g., we find states with rotating spiral waves that show period-4

and period-5 cycles and also states that show a coexistence of a

periodically rotating spiral-wave and chaotic patterns with broken

spiral waves, in the region of the ionic inhomogeneity. Lastly we

investigate the efficacy of two low-amplitude schemes [32,33] that

have been suggested for the control of spiral-wave turbulence in

mathematical models for cardiac tissue. In particular, we carry out

detailed simulations of such control schemes in the presence of

conduction inhomogeneities; our study shows that the elimination

of spiral-wave turbulence is considerably more complicated if

inhomogeneities are present than if they are not.

This paper is organised as follows: In the Section on ‘‘Methods’’

we present the models and numerical methods that we use in our

study. In the Section on ‘‘Results’’ we present our results on studies

of spiral-wave dynamics in the presence of conduction and ionic

inhomogeneities; we then give an analysis of two different low-
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amplitude control schemes for the elimination of spiral-wave

turbulence in models for cardiac tissue; finally we examine the

efficacies of these control schemes in the presence of conduction

inhomogeneities. The concluding Section ‘‘Discussion’’ contains a

summary of the significance of our results. The Supplementary

Material S1 contains equations for the ionic models we study and

additional figures that give more details about our results.

Methods

The Panfilov model [12,34] comprises two coupled partial

differential equations (PDEs) for the transmembrane potential V

(denoted by e in Refs. [12,34]) and the slow, recovery variable g,

via which this model accounts, approximately, for the effects of the

different ion channels in cardiac tissue; both V and g depend on

the spatial coordinate x and time t:

LV=Lt~+2V{f Vð Þ{g;

Lg=Lt~e V,gð Þ kV{gð Þ:
ð1Þ

The fast initiation of the action potential of this model is encoded

in the following piecewise linear form of f(V): f(V) = C1V, for

V,V1, f(V) = 2C2V+a, for V1#V#V2, and f(V) = C3(V21), for

V.V2. The physically appropriate parameters are [12,34]

V1 = 0.0026, V2 = 0.837, C1 = 20, C2 = 3, C3 = 15, a = 0.06 and

k = 3. The time scales of the recovery variable are determined by

the function e(V,g) that is e1 for V,V2, e2 for V.V2, and e3 for

V,V1 and g,g1; g1 = 1.8, e1 = 0.01, e2 = 1.0, and e3 = 0.3; here

we deal with dimensionless quantities. To obtain dimensioned

quantities [12,34] we define dimensioned time to be 5 ms times

dimensionless time, 1 spatial unit to be 1 mm, and the

dimensioned value of the conductivity constant D to be 2 cm2/s.

In some of our studies we vary e1 to mimic the effects of ionic

inhomogeneties. Voltages in this model are scaled such that the

resting potential is zero.

Even though the Panfilov model is very simple when compared

to the LRI, RPB, and TNNP models, which retain details of ion

channels, it captures several essential properties of the spatiotem-

poral evolution of V [12,34–36]. In particular, the action potential

of the Panfilov model contains both the absolute and relative refractory

periods seen in more advanced models. Furthermore, the

appearance, propagation, and break up of spiral-wave patterns

and the ways in which they can be controlled are similar in these

models as we will illustrate here.

The LRI model uses the Hodgkin-Huxley formalism for ion

channels in a given cell. It accounts for 6 ionic currents (e.g., Na+,

K+, and Ca2+) that flow through voltage-gated ion channels; 9 gate

variables regulate the transport of ions across the cell membrane

[13]; in the quiescent state the concentration differences of the

ions, inside and outside the cell, is such that a potential difference

.284 mV is induced across this membrane. Electrical stimuli,

which raise the potential across the cell membrane above

.260 mV, change the conductances of the ion channels and

thus yield an action potential with a typical duration of .200 ms.

After the initiation of the action potential, there is a refractory

period during which a stimulus of the same strength cannot lead to

further excitation of that cell. This excitation moves from one cell

to another in the LRI model by virtue of a diffusive coupling; thus

the transmembrane potential V obeys a reaction-diffusion-type

PDE that includes ionic currents (see Section 2 of the

Supplementary Material S1 for details); the time evolution and

V dependence of these currents are given by 7 coupled ordinary

differential equations (ODEs) [13,28].

We also study the Reduced-Priebe-Beuckelmann (RPB) model

[14] that is a simplified version of the Priebe-Beuckelmann (PB)

model [37]. The original PB model is a second-generation model

based on the phase-2 Luo-Rudy model [38] of a guinea-pig

ventricular myocyte with currents scaled to fit human-cell data. In

the PB model ion concentrations in a cell can vary in time; and it

accounts for some ion pumps. Such second-generation models

reproduce ionic currents and concentrations in a single cell during

electrical activity; however, the large number of variables in these

models pose a significant computational challenge, especially in

the simulation of arrhythmias in three-dimensional (3D) and even

in two-dimensional (2D) domains. This has motivated the

development of the reduced PB (RPB) model, in which the

variables are reduced from 15 to 6 by a reformulation of some

currents and by approximating all intracellular ionic concentra-

tions by suitable constants. Nevertheless, the RPB model retains

important properties of human ventricular tissue such as

restitution properties, the shape of the action potential (AP), and

the change of this shape as a function of major ionic currents. As in

the LRI model, cells in the RPB model have a diffusive coupling

with each other; the equations for the RPB model are given in

Section 2 of the Supplementary Material S1. In particular, the

equilibrium voltage across the cardiac cell membrane is 291 mV

in the RPB model.

The most realistic model we study is the one introduced recently

[15] by ten Tusscher, Noble, Noble, and Panfilov (TNNP). It is

based on experimental data obtained from human ventricular

cells. The TNNP model allows for variations of intracellular ion

concentration, as in other second-generation models, contains 12

ionic currents, 12 gating variables, one ion pump, and an ion

exchanger. All major ionic currents are included in the TNNP

model, e.g., the fast inward Na+ current INa, the L-type Ca2+

current ICaL, the transient outward potassium current Ito, the slow,

potassium, delayed, rectifier current IKs, the rapid, potassium,

delayed, rectifier current IKr, and the inward, rectifier K+ current

IK1. These and other currents and the details of the dynamics of

calcium ions are given in Section 2 of the Supplementary Material

S1. As in the LRI and RPB models, cells in the TNNP model are

coupled diffusively.

Since this model has many variables, numerical simulations of

spiral-wave dynamics in it are considerably harder than in the

simpler LRI and RPB models. In both the RPB and TNNP

models, we can study human epicardial, endocardial, and M cells

by a suitable choice of parameters; for the RPB model we use the

parameters for M cells and for the TNNP model we use

parameters for epicardial cells (the equilibrium voltage across the

cardiac cell in the latter is 286.2 mV).

To integrate the Panfilov model PDEs in d spatial dimensions

we use the forward-Euler method in time t, with a time step

dt = 0.022, and a finite-difference method in space, with step

size dx = 0.5, and five-point and seven-point stencils, respec-

tively, for the Laplacian in d = 2 and d = 3 for spatial grids on

square or simple-cubic simulation domains with side L mm, i.e.,

(2L)d grid points. We use a similar forward-Euler method for the

LRI PDEs, with dt = 0.01 ms, and a finite-difference method in

space, with dx = 0.0225 cm, and a square simulation domain

with side L = 90 mm, i.e., 4006400 grid points. We have

checked in representative simulations for the LRI model that a

Crank Nicholson scheme yields results in agreement with the

numerical scheme described above. The simulation schemes

that we use for the RPB and TNNP models are similar to the

one we use for the LRI model; for the RPB model we use

dt = 0.01 ms, dx = 0.0225 cm, and a 5126512 square simulation

domain; for the TNNP case we use dt = 0.02 ms,
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PLoS ONE | www.plosone.org 3 March 2009 | Volume 4 | Issue 3 | e4738



dx = 0.0225 cm, and a 6006600 square simulation domain (i.e.,

L = 135 mm).

For all the models that we study, we use Neumann (no-flux)

boundary conditions. The initial conditions we use will be

specified below. For numerical efficiency, these simulations have

been carried out on parallel computers with MPI codes that we

have developed for all these models.

As suggested in Ref. [39], it is useful to test the accuracy of the

numerical scheme used by varying both the time and space steps of

integration. We illustrate this for the TNNP model by measuring

the conduction velocity (CV) of a plane wave, which is injected

into the medium by stimulating the left boundary of our simulation

domain. We find that, with dx = 0.0225 cm CV increses by 1.3%

as we decrease dt from 0.02 to 0.01 ms; if we use dt = 0.02 ms and

decrease dx from 0.0225 to 0.015 cm then CV increases by 3.3%;

such changes are comparable to those found in earlier studies

[15,39].

We introduce conduction inhomogeneities, which we also refer

to as obstacles, in the simulation domains of the models described

above by making the conductivity constant D = 0 in the region of

the obstacle. In most of our studies we use square and square-

prism obstacles in two and three dimensions, respectively. When

we set D = 0 we decouple the cells inside the obstacle from those

outside it. Furthermore, we use Neumann (i.e., no-flux) boundary

conditions on the boundaries of the obstacle; we have checked in

representative cases that, even if we do not impose Neumann

boundary conditions on the obstacle boundaries, our results are

not changed qualitatively.

We insert ionic inhomogeneities into our simulation domains by

changing the values of the maximal conductances of Ca2+

channels, in the region of the inhomogeneity, for the LRI, RPB,

and TNNP models. Since the Panfilov model does not account

explicitly for Ca2+ ion channels, we mimic ionic inhomogeneities

here by altering the value of the parameter e1 in the region of the

ionic inhomogeneity. In most of our studies we use square ionic

inhomogeneities in two dimensions.

Results

All the models described above can support spiral waves in a

homogeneous simulation domain if we use suitable initial

conditions. We begin the description of our results with an

overview of such homogeneous simulations for the TNNP model;

our work here complements that of Ref. [20]. Spiral waves in

homogeneous simulation domains in Panfilov, LRI and RPB

models are discussed in Section 3 of the Supplementary Material

S1. We then extend our study to simulations with either (a)

conduction inhomogeneities or (b) ionic inhomogeneities. This is

followed by a discussion of our results on some schemes for the

suppression of spiral-wave turbulence in these models; these

suppression schemes are the numerical analogs of defibrillation.

We consider the efficacy of a few defibrillation schemes in both

homogeneous domains and in the presence of the conduction and

ionic inhomogeneities described above.

Spiral waves in homogeneous domains
Given the diffusive coupling between cardiac cells, an action

potential, generated in one cell, can excite neighboring cells and

thus spread out as an expanding wave. However, since the initial

excitation is followed by a refractory period, a second wave cannot

follow the first one immediately. Each such wave leaves in its wake

a nonexcitable region, so the next wave can follow it only at a

distance determined by the product of the refractory period and

the wave-conduction velocity [40,41]. When two plane waves

collide in such a medium, they cannot pass through each other

because they have non-excitable wakes. Hence a collision leads to

the annihilation of these colliding waves.

Furthermore, the conduction velocities of these waves depend

on the curvature of the wavefront [42]: A concave wave moves

faster than a rectilinear wave, which in turn travels faster than a

convex wave. Any deviations from a planar wave front are,

therefore, amplified or attenuated depending on the curvature of

the deviation; and they eventually lead to the formation of rotating

spiral waves. Above a critical curvature of the wavefront, the

current flux from the wavefront is not sufficient to excite the

medium around it. This failure of wave conduction then leads to a

break up of the wave. These wave fragments move around in the

domain, regenerate themselves by using excitable regions, avoid

regions that are still in a refractory state, and the parts of these

fragments that collide annihilate one another. In a sufficiently

large excitable medium this activity of wave fragments can lead to

complex spatiotemporal dynamics. The resulting spiral-turbulence

state, an instance of spatiotemporal chaos, is characterised by

many positive Lyapunov exponents [32].

We show below how such spiral waves can be generated, and

how they break up subsequently, in representative, two-dimen-

sional simulations for the TNNP model in homogeneous domains.

(Similar simulations for Panfilov, LRI and RPB models are given

in Section 3 of the Supplementary Material S1.) Initial conditions

have to be chosen carefully to obtain spiral waves; we describe

these below. And we use these initial conditions in subsequent

Sections that are devoted to our studies of the interactions of such

spiral waves with inhomogeneities.

Spiral waves in the TNNP model. We obtain spiral waves in

the TNNP model by injecting a plane wave into the domain via a

stimulation current of 150 mA/cm2 for 2 ms at the left boundary. As

this plane wave moves towards the right boundary and 270 ms after

the first stimulus, we apply a second stimulus of 450 mA/cm2 along a

line behind this wave but parallel to it [14,15] (x = 290, 1#y#250)

for 10 ms. As the first wave moves further towards the right, the free

end of the new stimulus is able to move into the area behind the first

wave; a hook-like proto spiral appears at this free end. We now

change the conductivity D from 0.00154 to 0.000385 cm2/ms

between 304 ms to 524 ms; this yields the fully developed spiral

wave. We then reset the conductivity to its original value after

524 ms. At the moment the first plane wave is initiated the currents

and gating variables are initialised as follows: the gating variables are

given in Supplementary Material S1 and the currents are calculated

for these values of the gating variables and the resting value of V

which is 286.2 mV. We show the initiation of a spiral wave in the

TNNP model in Section 3D of the Supplementary Material S1. The

procedure described above results in the spiral wave that is shown via

the sequence of pseudocolor plots for the transmembrane potential V

(Fig. 1) and the currents INa, ICaL, Ito, IKs, IKr, IK1, INaCa, INaK, IpCa,

IpK, IbNa, and IbCa (Fig. 2); the states shown in these figures are used

as initial conditions for our subsequent simulations of the TNNP

model with and without inhomogeneities. In the absence of

inhomogeneities such an initial condition leads to a spiral wave as

shown in the illustrative pseudocolor plot of V in Fig. 1.

A comparison of spiral waves in different models. From

our studies of spiral waves in the four models described above, we

see that many qualitative features of spiral-wave dynamics are the

same in the Panfilov, LRI, RPB, and TNNP models. However,

there are important differences, some qualitative and the others

quantitative. For example, the Panfilov model cannot address

directly any questions regarding currents in ion channels since it

does not follow their evolution but only considers one slow

recovery variable g. The LRI, RPB, and TNNP models do give

Spiral-Wave Turbulence
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spatiotemporal information for several ion-channel currents as

shown, for a representative case, in Fig. 2. At any given time, the

qualitative form of the spatial organization of these currents can be

surmised from the spatial distribution of the transmembrane

potential V and the dependence of these currents on V at the level

of a single cell. To illustrate this we show for the TNNP model, in

Fig. 3, the temporal evolution of the currents from a single-cell

simulation (i.e., without the diffusion term in the TNNP

equations). For instance, at the single-cell level, the sodium

current INa is substantial only at the beginning of the action

potential (Fig. 3); the most prominent parts of the spiral waves in

pseudocolor plots of V appear in regions of the simulation domain

where, locally, V assumes a value close to the sharp peak in the

single-cell action potential; thus pseudocolor plots of the sodium

current INa (Fig. 2) show significant structure only in narrow strips

that follow closely the prominent parts of the spiral waves in

pseudocolor plots of V (Fig. 2). By contrast, the calcium current

ICaL is significant in the plateau regime of the action potential

(Fig. 3); thus pseudocolor plots of ICaL (Fig. 2) show structure in

most parts of the simulation domain, but the underlying spiral

wave in V is still discernible. The potassium current IK1 is

substantial in the repolarization regime of the action potential

(Fig. 3), so we should expect pseudocolor plots of IK1 to have

significant structure along the back of this wave, where

repolarization occurs; this expectation is borne out as can be

seen from Fig. 2. Similar considerations can be used to rationalize,

qualitatively, the remaining pseudocolor plots for other currents in

the LRI, RPB, and TNNP models; representative plots are given

in the Supplementary Material S1.

It is useful to contrast pseudocolor plots of V for the Panfilov,

LRI, RPB, and TNNP models. The qualitative features of these

plots are the same but they differ in detail [43]. Such differences

arises from the differences in the single-cell dynamics of these

models, e.g., the action-potential duration, the refractory period,

the shape of the repolarization part of the action potential, etc.

From the representatives pseudocolor plots of the four models

(Fig. 4), we see that spiral waves in the Panfilov and TNNP models

appear more sharp in these plots than their counterparts in the

LRI and RPB models. This can be understood qualitatively by

comparing the single-cell action potentials for these four models.

Figure 5 gives such a comparison, which shows clearly that the

repolarization in the Panfilov and TNNP models is sharper and

more rapid than in the LRI and RPB models. The sharpness of the

spiral waves in the former two models and their relatively diffuse

character in the latter two models is related to these differences in

repolarization.

Conduction inhomogeneities
We have elucidated the effects of conduction inhomogeneities in

the Panfilov and LRI models in Ref. [28]. We begin with a brief

recapitulation of these results and then present new ones for the

RPB and TNNP models with obstacles. Extensions to the case of

two conduction inhomogeneities and their interactions with spiral

waves are discussed elsewhere [44,45].

We first examine the dependence of spiral-wave dynamics on

the size of an obstacle by fixing its position and changing its size

(cf., Ikeda et al. [22] for similar experiments): Specifically we place

a square obstacle of side l in the Panfilov model in a square

simulation domain with side L = 200 mm and use parameter

values that yield spiral turbulence (ST) in the absence of the

obstacle. With the bottom-left corner of the obstacle at (50 mm,

100 mm) ST persists if l#(402D) mm; it gives way to a quiescent

state (Q) with no spirals if l = 40 mm, and then to a state with a

single rotating spiral (RS) anchored at the obstacle if l.(40+D)

Figure 1. (Color online) The TNNP model in a square simulation domain of side L = 135 mm. Pseudocolor plots of the transmembrane
potential V at (A) t = 0 s; (B) t = 0.8 s; (C) t = 3.2 s; and (D) t = 4.8 s.
doi:10.1371/journal.pone.0004738.g001

Spiral-Wave Turbulence

PLoS ONE | www.plosone.org 5 March 2009 | Volume 4 | Issue 3 | e4738



mm; here we vary l from 2 mm to 80 mm in steps of D= 1 mm.

Thus, as l increases, we see a clear transition from ST to RS, with

these two states separated by a state Q with no spirals. Henceforth,

when we specify the position (x,y) of a square inhomogeneity, we

will mean that the bottom-left corner of this inhomogeneity is

placed at the point (x,y).

Furthermore, we find that the final state of the system depends

on where the obstacle is placed with respect to the tip of the initial

spiral wavefront. Even a small obstacle placed near this tip [e.g.,

an obstacle with l = 10 mm at (100 mm, 100 mm)] can prevent

the spiral from breaking up; but a bigger obstacle, placed far away

from the tip [e.g., an obstacle with l = 75 mm at (125 mm,

50 mm)], does not affect the spiral. In Ref. [28] we have explored

in detail, for the Panfilov and LRI models, how the final state of

the system depends sensitively on the position of the obstacle. We

have found, in particular, that, if the spiral wave breaks up and

yields a spatiotemporally chaotic state in the absence of any

obstacles in the medium, then the introduction of an obstacle can

lead to one of the following three outcomes: (a) spiral turbulence

(ST) can persist; (b) ST can be replaced by a single rotating spiral

wave (RS) anchored to the obstacle; (c) ST can give way to a

quiescent state (Q) that occurs when all spiral waves move towards

and are absorbed by the boundaries.

We show here that this sensitive dependence of spiral-wave

dynamics on the position of an obstacle also occurs in the TNNP

models. (Similar results for the RPB model are given in Section 4

of the Supplementary Material S1.)

We have carried out a systematic study of spiral-wave dynamics

in the TNNP model in the presence of an obstacle with the initial

conditions specified above, namely, one spiral wave [Figs. 1(A)–

(D)] that would continue rotating if the obstacle were not present.

In the presence of an obstacle this rotating-spiral (RS) state can be

replaced by one of the following possibilities: (a) the spiral wave

can continue to rotate, without being anchored to the obstacle,

and eventually break down to yield the state ST with spiral

turbulence as shown, e.g., in Fig. 6; (b) the tip of the spiral wave

Figure 2. (Color online) A comparison of pseudocolor plots of ionic currents in the TNNP model to the transmembrane potential V
at t = 4.8 s (cf. the pseudocolor plot of Fig. 1D) in a square simulation domain of side L = 135 mm. (A) fast Na+ current (INa); (B) L-type
Ca2+ current (ICaL); (C) transient outward current (Ito); (D) slow delayed rectifier current (IKs); (E) rapid delayed rectifier current (IKr); (F) inward rectifier
current (IK1).
doi:10.1371/journal.pone.0004738.g002
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can get anchored to the obstacle to give the state RS in which the

anchored spiral rotates around the obstacle as shown, e.g., in

Fig. 7; (c) all spiral waves can be absorbed by the boundaries so

that the system evolves into the quiescent state Q as shown, e.g., in

Fig. 8.

Specifically, if we use a square obstacle of side l = 22.5 mm at

(54 mm, 22.5 mm), the system is in the state ST as shown in

Figs. 6(A)–(C). In this state the time series of the transmembrane

potential V (x,y,t), taken from the representative point (90 mm,

90 mm) and shown in Fig. 6(D), clearly displays nonperiodic,

chaotic behavior. The time between successive spikes in such a

time series, i.e., the interbeat interval (IBI), is plotted versus the

integers n, which label successive spikes, in Fig. 6(E); this also

shows the chaotic nature of the state ST. Figure 6(F) shows the

power spectrum E(v) of the time series depicted in Fig. 6(D); the

broad-band nature of this power spectrum provides additional

evidence for the chaotic character of ST. The chaotic nature of

such time series and the inhomogeneous pattern of waves in

pseudocolor plots of V in the state ST indicate that we have

spatiotemporal chaos; however, since the TNNP model is far more

complicated than the Panfilov model, it is not very easy to

calculate the spectrum of Lyapunov exponents and thence the

Kaplan-Yorke dimension for ionic models like the TNNP model.

If we change the position of the obstacle and place it at (45 mm,

31.5 mm), the spiral gets attached to it. For this case the analogs of

Figs. 6(A)–(C) are shown in Figs. 7(A)–(C), respectively. From the

time series of Fig. 7(D) we see that the transmembrane potential

displays some initial transients but then settles into periodic

behavior. This is also manifested in the plot of the IBI versus n in

Fig. 7(E) in which the IBI approaches a constant value [118 ms in

Fig. 7(E)]. The corresponding power spectrum in Fig. 7(F) consists

of discrete peaks at frequencies v= mvf, where m is a positive

integer and vf is the fundamental frequency of spiral rotation

(vf.8.5 Hz here).

We now place the obstacle at (63 mm, 22.5 mm); in this case

the spirals get eliminated completely and we get the quiescent state

shown via pseudocolor plots of V in Figs. 8(A)-4(C). The time

series of V (x,y,t), taken from (x = 90 mm, y = 90 mm) and

depicted in Fig. 8(D), clearly shows that we obtain a quiescent

state Q with no spirals. Plots of the IBI and the power spectrum

are not shown since V just goes to zero after an initial period of

transients. The durations for which the transients last, say in

Fig. 8(D), vary greatly depending on the position of the obstacle

relative to the spiral tip. The sensitive dependence of spiral-wave

dynamics on the position of an inhomogeneity is also obtained if

we use obstacles that do not have a square shape. We show this

Figure 3. Plots showing the dependence of the currents INa, ICaL, Ito, IKs, IKr, and IK1 on time t during the course of the action
potential from our single-cell simulation of the TNNP model. Negative currents move into the cell and positive currents move out of the cell.
doi:10.1371/journal.pone.0004738.g003
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Figure 4. Pseudocolor plots of transmembrane potential V from two-dimensional simulations of (A) Panfilov, (B) LRI, (C) RPB, and
(D) TNNP models.
doi:10.1371/journal.pone.0004738.g004

Figure 5. Action potentials from single-cell simulations of the (A) Panfilov, (B) LRI, (C) RPB, (D) TNNP models. Note that the action
potentials from the Panfilov and TNNP models fall off more sharply in the repolarization phase than those for the LRI and RPB models.
doi:10.1371/journal.pone.0004738.g005
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explicitly for a circular obstacle in the Supplementary Material S1

and for obstacles of other shapes in Ref. [45].

This sensitive dependence of the dynamics of spiral waves on

the position of an obstacle has been investigated systematically,

especially for the Panfilov model, in our earlier work [28]. We

have, in particular, obtained a stability diagram for this model as

follows: We divide the simulation domain into small squares of

side lp = 10 mm. We then carry out a sequence of simulations. In

each one of these simulations the square obstacle (slightly larger

than the squares into which the simulation domain has been

divided) is placed so that its bottom-left corner coincides with the

bottom-left corner of one of the small squares; we now study the

dynamics of spiral waves, with the initial condition described

above, and determine whether the system reaches the ST, RS, or

Q state. Our stability diagram, given in Ref. [28], depicts the

simulation domain covered with the small squares mentioned

above. The color of each small square indicates the final state of

the system when the position of the bottom-left corner of the

obstacle coincides with that of the small square: red indicates

spiral turbulence (ST), blue a rotating spiral (RS) anchored at the

obstacle, and green a quiescent state (Q) with no spirals. This

stability diagram shows that RS occurs typically when the

obstacle lies near the middle of the simulation domain whereas

ST occurs when the obstacle lies near the boundary of the

simulation domain; regions of Q occur in a few places along the

boundary between regions of ST and RS. We have found that

this boundary is very complicated; by zooming in on it, we have

provided good numerical evidence that suggests that this

boundary has a fractal-type character, which leads to the

sensitive dependence of the final state of the system on the

position of the obstacle. Even if we change the position of the

obstacle slightly (say by .0.5 mm), the final state of the system

can change from ST to RS or Q. We have suggested [28] that

this fractal-type boundary between the ST and RS regions in our

stability diagram is a manifestation of an underlying fractal basin

boundary between the domains of attraction of the ST, RS, and

Q states in the phase space of the infinite-dimensional dynamical

system, i.e., the Panfilov-model partial differential equations;

such a basin boundary is not easy to determine for an infinite-

dimensional system but its signatures can be found in the sort of

Figure 6. (Color online) The spiral-turbulence (ST) state in the TNNP model with a square obstacle of side l = 22.5 mm at (54 mm,
22.5 mm) in a square simulation domain with L = 135 mm. We start with the initial condition of Fig. 1(A); pseudocolor plots of V are shown in
(A), (B), and (C) at 0.8, 2.4, and 4.8 s, respectively. (D) The local time series for V from a sample of 100000 iterations taken from the representative point
(90 mm, 90 mm) after the removal of initial transients (the first 300000 iterations); and plots of (E) the inter-beat interval (IBI) versus the beat number
n from a sample time series of 400000 iterations, and (F) the power spectrum of V obtained from a time series of length 200000 iterations (after the
removal of initial transients in the first 200000 iterations); the non-periodic behavior of the IBI and the broad-band nature of the power spectrum are
characteristic of the spiral-turbulence state.
doi:10.1371/journal.pone.0004738.g006
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sensitive dependence on parameters, such as the position of the

inhomogeneity, that we have elucidated above.

Similar stability diagrams can be obtained, in principle, for LRI,

RPB, and TNNP models; however, as the complexity of the

models increases so does the difficulty of obtaining a stability

diagram. Though we have not found complete stability diagrams

for these detailed ionic models, the representative studies that we

have carried out indicate that their stability diagrams are

qualitatively similar to that of the Panfilov model, which we have

given in Ref. [28]. Here we restrict ourselves to parts of such

stability diagrams for the TNNP model for the initial conditions

described above. (Similar diagrams for the LRI and RPB models

are given in Section 4 of the Supplementary Material S1.) For the

TNNP model we present a partial stability diagram for

GCaL = 0.000044 in Fig. 9, with a square obstacle of side

27 mm, and all other parameters as specified in the figure

captions and in the Supplementary Material S1. (Another partial

stability diagram for the TNNP model with GpCa = 3.825 is given

in Section 4 of the Supplementary Material S1). These partial

stability diagrams suggest that the boundaries between ST, RS,

and Q states in the TNNP, LRI, and RPB models are as

complicated as in the simple Panfilov model. Thus, as we have

stated earlier, spiral-wave dynamics in all these models depends

very sensitively on the position of a conduction inhomogeneity.

Ionic Inhomogeneities. Apart from obstacles that arise from

inhomogeneities in the inter-cellular coupling, cardiac tissue can

contain other types of inhomogeneities that originate from changes

in single-cell properties, caused say by changes in the chemical

environment or metabolic modifications [21,46]. We refer to a

collection of such cells, with slightly modified properties like

conductances of ion channels, as ionic inhomogeneities; they are

different from the obstacles discussed so far in as much as the spiral

waves can enter the region spanned by an ionic inhomogeneity.

However, such inhomogeneities do affect the dynamics of spiral

waves through cardiac tissue [47,48]. In this subsection we

investigate spiral-wave dynamics in the presence of ionic

inhomogeneities in the four models we have discussed above. For

the simple Panfilov model, which does not account for ion channels

explicitly, we mimic ionic inhomogeneities via modifications of the

inverse time e1. We insert such inhomogeneities in LRI, RPB, and

TNNP models by considering spatial variations in conductances of

calcium ion channels.

Figure 7. (Color online) Pseudocolor plots of V for the TNNP model showing a spiral wave attached to a square obstacle of side
22.5 mm placed at (45 mm, 31.5 mm) and (A) t = 1.6 s, (B) t = 4 s, and (C) t = 6.4 s. This wave leads to periodic temporal evolution as can be
seen from plots of (D) the time series of V from a sample of 100000 iterations (after the removal of the first 300000 iterations) taken from the
representative point (90 mm, 90 mm) in the square simulation domain of side L = 135 mm, (E) the IBI versus the beat number n (a sample of 400000
iterations) that settles, eventually, to a constant value of .118 ms, and (F) the power spectrum of V (from a time series of 200000 iterations after
removal of the initial 200000 iterations) that has discrete peaks at the fundamental frequency vf.8.5 Hz and its harmonics.
doi:10.1371/journal.pone.0004738.g007
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In the Panfilov model (1) e{1
1 is one of the recovery time

constants [12]. As e1 increases the absolute refractory period of the

action potential decreases. In turn this decreases the pitch of the

spiral wave (cf. Fig. 3 in Ref. [35]). Thus by introducing

inhomogeneities in e1 we can investigate spiral-wave dynamics

in the presence of time-scale inhomogeneities. If the square

simulation domain, of linear size L = 200 mm, is homogeneous,

then with e1.0.03 we obtain a single, periodically rotating spiral

wave but, as it decreases, for instance, if e1=0.02, the tip of this

rotating spiral starts meandering so that the temporal evolution of

the system is quasiperiodic. At even lower values, say at e1 = 0.01

that we have used above, we see spatiotemporal chaos. These

behaviors are shown in the illustrative pseudocolor plots of V in

Section 5 of the Supplementary Material S1.

We now introduce a square inhomogeneity in e1 in the Panfilov

model (all other parameters are uniform over the simulation

domain): e1 is assigned the value ein
1 inside a square region; and

outside this square it has the value eout
1 . Different choices of ein

1 and

eout
1 lead to interesting spiral-wave dynamics. For example, with a

square patch of side 40 mm, ein
1 ~0:02 and eout

1 ~0:01, we obtain

spatiotemporal chaos for most positions of this inhomogeneity; but

for certain critical positions of this inhomogeneity all spiral waves

are completely eliminated; e.g., when the inhomogeneity is at

(x = 130 mm, y = 80 mm), spiral waves move towards the

boundaries of the simulation domain where they are eventually

absorbed. For yet other positions spatiotemporal chaos is obtained

outside the inhomogeneity but inside it the spiral wave shows a

quasiperiodic temporal evolution. Representative plots are given

in Section 5 of the Supplementary Material S1.

If, instead, ein
1 ~0:01 and eout

1 ~0:02 or 0.03, spiral-wave break

up occurs inside the inhomogeneity but it coexists with unbroken

Figure 8. (Color online) The spiral wave moves away from the square simulation domain of side L = 135 mm for the TNNP model if a
square obstacle of side l = 22.5 mm is placed at (63 mm, 22.5 mm) as illustrated in (A), (B), and (C) via pseudocolor plots of V at
t = 0.8 s, t = 2 s, and t = 3.2 s, respectively. (D) The time series of V from a sample of 200000 iterations recorded from the representative point
(90 mm, 90 mm); after t = 3.2 s the system is quiescent and V is 286.2 mV.
doi:10.1371/journal.pone.0004738.g008

Figure 9. (Color online) Detail of the stability diagram for the
TNNP model for GCaL = 0.000044 and all other parameters as in
2 C of the Supplementary Material S1 and with the initial
condition described in the text: A square obstacle of side
27 mm is placed at different positions in a square simulation
domain with side L = 135 mm. For each one of these positions of
the obstacle we determine the final state of the system; the colors of
the small squares, of side lp = 4.5 mm, indicate the final state of the
system when the position of the bottom-left corner of the obstacle
coincides with that of the small square (red, blue, and green denote ST,
RS, and Q, respectively).
doi:10.1371/journal.pone.0004738.g009
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periodically rotating spiral waves outside it (see Section 5 of the

Supplementary Material S1) as noted previously by Xie, et al. [31].

However, even in this case, in certain positions such an

inhomogeneity anchors a single rotating spiral wave (Fig. 10) as

we have seen above, and in Ref. [28], with conduction

inhomogeneities; the temporal evolution of V, at a representative

point in the simulation domain, is richer than it is with a

conduction inhomogeneity: the time series for V can show period-

m behavior (we have found cases with 4#m#10) as shown in

Figs. 10 A–D for periods m = 5 and m = 4. For example, the plot of

the interbeat interval (IBI) versus the beat number n in Fig. 10 D

jumps periodically between 167, 280, 244 ms, and 187 ms, i.e.,

the time series for V displays a period-4 cycle. Such period-m

behavior has been reported earlier in experiments [49]; in these

experiments it is attributed to the interplay of an anchored spiral

wave around very small, but nearby, conduction inhomogeneities.

It is natural to ask whether the rich spatiotemporal dynamics of

spiral waves in the Panfilov model with inhomogeneities in e1,

which lead to inhomogeneities in local times scales since e{1
1 has

the dimensions of time, have any analogs in the realistic LRI,

RPB, and TNNP models. In cardiac tissue similar changes in time

scales can occur because of inhomogeneities in ionic conductances.

For example, by changing the conductances Gsi and Gk in the LRI

model we can modify the action potential and the time scales

associated with it, such as its duration and the extent of the plateau

region, which in turn affect spiral-wave dynamics in much the

same way as alterations of e1 do in the Panfilov model. In

particular, we can effect transitions from periodic to quasiperiodic

rotating spiral waves or from quasiperiodic rotating spiral waves to

broken waves with spatiotemporal chaos by changing these

conductances; moreover, inhomogeneities in these conductances

lead to spatiotemporal patterns in LRI, RPB, and TNNP models

that are reminiscent of those we have described above for the

Panfilov model with inhomogeneities in e1. We show this in detail

below by investigating the effects of changes of the maximal

calcium and potassium conductances, Gsi and GK, respectively, in

the LRI model, of Gsi in the RPB model, and of the maximal

conductance GCaL for the L-type calcium current in the TNNP

model. Illustrative simulations for the LRI and RPB models with

ionic inhomogeneities are given in Section 5 of the Supplementary

Material S1. Here we present our results for ionic inhomogeneities

in the TNNP model.

To investigate ionic inhomogeneities in the TNNP model we

consider the calcium conductance GCaL that governs the ionic

current ICaL (in the Supplementary Material S1 see Section 2 C

and Fig. 30 that shows how the action potential (AP) is modified at

the single-cell level as we lower GCaL from 0.000175, the maximal

channel conductance, to 0.00011, then to 0.00005, and finally to 0

[i.e., ICaL channel block]). We now study the TNNP model in a

square simulation domain of side 13.5 cm with the initial

condition of Fig. 1 (A). As we decrease GCaL the spiral wave

breaks up because the slope of the APD restitution curve steepens

and eventually exceeds 1: This break up is shown in the

pseudocolor plots of V, at t = 3.2 s, of Figs. 11 A, B, and C for

GCaL = 0.000175, 0.00011, and 0.0005, respectively. In Figs. 11 D,

E, and F we show power spectra that have been obtained from

time series of V recorded from the representative point (90 mm,

90 mm) during spiral-wave activity for GCaL = 0.000175, 0.00011,

Figure 10. (Color online) Inhomogeneities in the parameter e1 in the Panfilov model can result in a spiral wave anchoring to the
inhomogeneity: With eout

1 ~0:01 and ein
1 ~0:02 (see text) and a square inhomogeneity of side 40 mm, we see a spiral wave anchored to

the inhomogeneity if it is placed at (100 mm, 90 mm). The pseudocolor plot of V in (A) is at t = 2200 ms. The plots of the IBI associated with
time series taken from a point outside the inhomogeneity and that from a point inside the inhomogeneity versus the beat number n are given in (B)
and (C) respectively; these show period-5 and period-4 behaviors; the power spectrum associated with (C) is given in (D).
doi:10.1371/journal.pone.0004738.g010
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and 0.00005, respectively. The discrete lines in the power

spectrum of Figs. 11 D can be indexed by one fundamental

frequency .8.25 Hz and integer multiples thereof; this is a

signature of the periodic rotation of a single rotating spiral wave.

The multiple strong peaks and the broad-band background in the

power spectra of Figs. 11 E and F are indicative of quasiperiodic

(with three fundamental frequencies v1.8.25 Hz, v2.9 Hz, and

v3.9.5 Hz) and chaotic states, the latter associated with the break

up of spiral waves. We get similar results if we increase the plateau

Ca2+ conductance GpCa instead of changing the L-type Ca2+

conductance.

We now insert a square GCaL inhomogeneity of side 33.75 mm

in a square simulation domain of side 135 mm and

Gout
CaL~0:000175 (maximal value) and Gin

CaL~0:00003, which is

approximately one-sixth of its maximal value. When this

inhomogeneity is placed at (22.5 mm, 22.5 mm), we observe

quasiperiodic behaviors both inside and outside it: Time series for

V are recorded from representative points inside and outside of the

inhomogeniety, namely, (33.75 mm, 33.75 mm) and (11.25 mm,

11.25 mm), respectively. From these time series we obtain the

plots of the IBI and power spectra shown in Fig. 12; we find, in

particular, that the main peaks can be indexed as

n1v1+n2v2+n3v3 with n1, n2, and n3 integers and v1.4 Hz,

v2.6.25 Hz, and v3.10.5 Hz (inside the inhomogeneity), and

v1.2.25 Hz, v2.4.25 Hz, and v3.6.25 Hz (outside the inho-

mogeneity). Since these frequencies are not related to each other

by simple rational numbers we conclude that the spiral wave

rotates quasiperiodically both inside and outside the inhomoge-

neity. In some cases we observe that the inhomogeneity does not

have a significant qualitative effect on the dynamics of spiral

waves; e.g., when the obstacle is at (45 mm, 45 mm), the position

of the spiral tip shifts towards the bottom-left corner of the

simulation domain but we still have a state with a single rotating

spiral wave whose arms pass through the inhomogeneity. Like

conduction inhomogeneities, ionic inhomogeneity can also remove

spirals from the medium to leave the system in a quiescent state,

e.g., when our GCaL ionic inhomogeneity is at (45 mm, 22.5 mm).

(See Fig. 33 in the Supplementary Material S1.)

Elimination of Spiral Turbulence
As we have mentioned above, there is growing consensus that

the breakup of spiral waves of electrical activation in ventricular

tissue leads to ventricular fibrillation (VF). In the usual clinical

treatment of VF electrical stimuli are applied to the affected heart.

This is believed to reset all irregular waves in the ventricular tissue

leaving it ready to receive the regular sinus rhythm [50]; thus, if

Figure 11. (Color online) The effect of GCaL on spiral waves in the TNNP model shown via pseudocolor plots of V at time t = 3.2 s and
(A) GCaL = 0.000175, (B) GCaL = 0.00011, and (C) GCaL = 0.00005. Panels (D), (E), and (F) show the corresponding power spectra of V (from a time
series of 200000 iterations after the removal of the initial 80000 iterations) from the representative point (90 mm, 90 mm) in the simulation domain.
These plots indicate that, as GCaL decreases, the system goes from a state with a single rotating spiral wave to the spiral-turbulence state.
doi:10.1371/journal.pone.0004738.g011
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the electrical stimulus is strong enough, it can arrest VF and

restore the sinus rhythm. Initially 60 Hz AC was used clinically to

defibrillate transthrorasically [51] but this was later discontinued

because of several reasons including the high energy requirement,

the possible induction of atrial fibrillation, the prolonged muscle

contraction, the risk of an electrical shock to the operator, and the

size of the device [50]. Clinically available defibrillation techniques

still apply massive electrical shocks to the heart; this can damage

the heart muscle. The success rate of such techniques is not quite

satisfactory [52]. Furthermore, scar tissues can be created during

the process of such defibrillation; these can make the patient

vulnerable to further arrhythmias and also act as conduction

inhomogeneities that we have investigated via numerical simula-

tions in the Section on ‘‘Results’’. Hence there is a great need for

developing low-amplitude defibrillation schemes; this must be

based on an understanding of the spatiotemporal behavior of

activation waves during VF. We begin with a brief overview of

some techniques that have been proposed for the elimination of

spiral-wave turbulence in models for cardiac tissue. We first

examine their efficacy in the homogeneous case; in the next

Section we study the relative merits of two low-amplitude

defibrillation schemes in the presence of inhomogeneities in our

simulation domains. In the context of our numerical simulations of

the Panfilov, LRI, RPB, and TNNP models we will use the term

defibrillation to mean the elimination of spiral waves or broken

spiral waves from the simulation domain.

Early attempts at controlling spiral-wave turbulence in models

for cardiac tissue focused on applying well-known techniques of

controlling low-dimensional chaos, which are based on the

principle that, if a system’s trajectory in state space comes very

close to an unstable fixed point, it stays in its vicinity for a small

duration of time. Different methods have been proposed to drive

chaotic trajectories towards such an unstable fixed point, so that

the system can stay in the neighborhood of the fixed point for the

duration of the control stimulus [53]. But, as we have seen above,

the mathematical analog of VF is a state with spiral-wave

turbulence. This state displays spatiotemporally chaos, and is,

therefore, intrinsically associated with a high-dimensional attrac-

tor, so it cannot be controlled by algorithms that have been

designed to control chaos in low-dimensional systems.

Review of Previous Work. Biktashev and Holden [54] have

proposed a method for controlling spiral-wave turbulence by

producing a directed movement of a rigidly rotating spiral wave

away from the medium by using resonant stimulation. They find

that small-amplitude, spatially uniform, repeated stimuli can be

used to produce a directed movement of the spiral wave, if the

period of stimulation is equal to the period of its rotation. This

directed movement eventually pushes this wave out of the

simulation domain [54]. However, this method can only be used

before the onset of spiral-wave turbulence.

Osipov and Collins [55] have suggested another scheme that is

based on the observation that the dynamics of excitable media can

be modelled by fast and slow variables, e.g, V and g in the Panfilov

model. They control the slow variable by applying a weak impulse

on the whole medium. This eventually changes the velocities of the

front and back of the wave. The propagation of the wave front and

wave back with different velocities leads to a shrinkage or

expansion of the pulse width. If the amplitude and duration of

the impulse are sufficiently large, then the propagating pulse

collapses and disappears. Unfortunately such control of the slow

variable over the whole medium can be achieved only by

pharmaceutical means and not by the application of electrical

pulses.

Rappel, Fenton, and Karma [56] have proposed another

method based on the application of a small control current at a

finite number of equally spaced ‘‘controlled cells’’ in a tissue, by

using a coarse lattice of electrodes with a lattice spacing of about

1 cm. This method has been demonstrated to prevent one spiral

Figure 12. (Color online) The effect of a square GCaL inhomogeneity, of side 33.75 mm in a square simulation domain of side
135 mm, with Gout

CaL~0:000175 (maximal value) and Gin
CaL~0:0003, and placed at (22.5 mm, 22.5 mm), on spiral-wave dynamics in the

TNNP model: Pseudocolor plots of V at (A) 0.08 s, (B) 0.32 s, (C) 1.2 s, and (D) 2 s; (E) the time series of V (from a sample of 50000
iterations after the removal of the initial 200000 iterations) taken from the point (11.25 mm, 11.25 mm) that lies outside the
inhomogeneity. Associated plots of (F) the IBI versus the beat number n (a sample of 400000 iterations) and (G) the power spectrum of V (from a
sample of 200000 iterations after the removal of the initial 200000 iterations) indicating quasiperiodic temporal evolution [the peaks in the power
spectrum can be indexed (see text) in terms of three incommensurate frequencies (2.25, 4.25, and 6.25 Hz)]. Figures (H), (I), and (J) are the analogs of
(E), (F), and (I), respectively, when data for V are recorded from the point (33.75 mm, 33.75 mm) that lies inside the inhomogeneity; here too we have
quasiperiodic temporal evolution with three underlying incommensurate frequencies (4, 6.25, and 10.5 Hz).
doi:10.1371/journal.pone.0004738.g012
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from breaking up. Unfortunately this method fails in the fully

developed spiral-wave turbulence state with broken spirals [32].

To suppress a spatiotemporally chaotic state with broken spiral

waves, Sinha, Pande, and Pandit [32] have proposed a scheme

based on the observation that spiral turbulence does not persist in

the hearts of small mammals, if it can at all be initiated [57]. We

will use this scheme below, so we describe it in some detail. They

have shown that spiral-wave turbulence is a long-lived transient

[32,35] whose lifetime tL increases rapidly with the linear size L of

the simulation domain, e.g., from .850 ms for L = 100 mm to

.3200 ms for L = 128 mm in the two-dimensional Panfilov

model; for large systems (e.g., L.128 mm in the Panfilov case),

tL is sufficiently long so that we obtain a nonequilibrium statistical

steady state with spatiotemporal chaos [35]. This might suggest

that a global control scheme, such as that of Osipov and Collins

[55], is essential. It turns out, however, that a judicious choice of

control points on a mesh leads to an efficient scheme for the

control of spiral-wave turbulence in such models [32]. We first

illustrate the principle of this method for a two-dimensional square

domain with side L: This is divided into K2 smaller blocks by a

mesh of line electrodes, and the mesh size is chosen to be small

enough that spirals cannot persist for long inside the block of side

‘~L=K. A voltage or current pulse is applied at all points along

the mesh boundaries for a time. This makes the mesh region

refractory and so effectively simulates Neumann boundary

conditions for any block bounded by the mesh. Thus spiral waves

formed inside the block are absorbed at the mesh bounding the

block. For example, in the Panfilov model in dimension d = 2,

L = 128, and K = 2, a time tc~41:2 ms suffices to suppress spiral

turbulence; when L = 512, and K = 8, a time tc~704 ms is

required; electrical pulses of amplitude .60 mA/cm2 are used on

the control mesh; this is much less than in conventional electrical

defibrillation which uses pulses of amplitude 1 A/cm2. This

control algorithm has been extended to suppress spiral turbulence

in the two-dimensional Beeler-Reuter and LRI models [35]. A

nave extension of this control algorithm to three-dimensions

requires a cubic array of sheets, which cannot be implanted easily

in ventricular tissue. However, in Ref. [32] it was shown that, even

if the control mesh is present only on one of the L6L faces of an

L6L6Lz domain, the above scheme works with a slight

modification: Instead of applying a pulse for a time tc, we have

to apply a sequence of n pulses, separated by tip; the duration of

each pulse is tv. A steady pulse does not control scroll-wave

turbulence in three dimensions for Lz.2 mm: its propagation in

the z direction is impeded once the interior of the simulation

domain becomes refractory. However, if we use a sequence of

short pulses and if tip is long enough for the medium to recover its

excitability, the control-pulse waves can propagate in the z

direction and lead to successful control. We refer the reader to

Refs. [32,35] for further details; we give representative three-

dimensional simulations after our discussion of two-dimensional

studies.

Recently Zhang, et al. [33], have proposed another attractive

scheme for the control of spiral turbulence in excitable media. In

their method spiral waves are driven away by periodic forcing of V
at a small number of n6n points in the center of the simulation

domain. This generates target waves that eventually drive out the

spiral waves if the amplitude C and the frequency vf of the forcing

are chosen carefully: For example, for the Panfilov model with

d = 2 it is shown in Ref. [33] that spiral turbulence in a square

Figure 13. (Color online) Defibrillation by our control scheme in the TNNP model for a homogeneous simulation domain of side
L = 135 mm. We apply a control pulse of amplitude 27.75 mA/cm2 for t = 20 ms over a square mesh with each block of size L/K = 33.75 mm, i.e., the
simulation domain is divided into 42 square blocks. Pseudocolor plots of V at (A) 0 ms, (B) 24 ms, (C) 80 ms, and (D) 280 ms, after the initiation of the
control pulse, show how spiral turbulence is suppressed.
doi:10.1371/journal.pone.0004738.g013
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5006500 simulation domain can be suppressed within 410,000

iterations when one chooses n = 6, vf = 0.82, and C~6. This

control scheme is attractive because it employs local forcing,

compared to the control scheme of Ref. [32] that uses a spatially

extended control mesh. However, as we show below, the local

control scheme of Ref. [33] inadvertently generates spiral-wave

break up if there are obstacles in the medium.

Summary of Our Results. The control scheme of Ref. [32]

is also successful in eliminating spiral turbulence in the realistic

LRI, RPB, and TNNP models that account for ion channels.

Illustrative simulations for the LRI and RPB models are given in

Section 6 of the Supplementary Material S1. Figure 13 presents

results from our simulations of the two-dimensional TNNP model;

here a control current of 27.75 mA/cm2, applied for 20 ms on a

mesh that divides our square simulation domain of side 13.5 cm

into 16 square cells of side 3.375 cm each, suffices to control spiral

turbulence. The pseudocolor plots of V in Fig. 13 give (A) the

initial spiral-turbulent state and its subsequent evolution after the

initiation of the control pulse at (B) 24 ms, (C) 80 ms, and (D)

280 ms, after which all spiral turbulence disappears.

As we mentioned above, the control scheme of Ref. [32] can be

extended to three-dimensions. For a practical implementation of

this scheme the control pulse must be applied only on one face of

the simulation domain. This suffices when the thickness in the

third dimension is small. For example, in the three-dimensional

Panfilov model, even if we apply a control pulse on a mesh on one

of the L6L faces of the L6L6Lz simulation domain, we can

suppress broken scroll waves (the three-dimensional analogs of

broken spiral waves) in the entire medium, provided that

Lz,2 mm. Illustrative simulations are given in Section 6 of the

Supplementary Material S1.

For Lz.2 mm this control scheme for a three-dimensional

domain must be modified as follows: We use a control mesh on

one face, but, instead of using a single long pulse, we use a series of

short pulses, each of duration tv and separated by an interval tip;

for suitable choices of tv and tip, we can effectively suppress spiral

turbulence. (A similar scheme, with short pulses separated from

each other, also works in two dimensions.) We illustrate this

control scheme for the three-dimensional Panfilov model in a

128612864 mm3 simulation domain, a control mesh of square

cells, each of side 16 mm, on the bottom face of the domain,

tv~2 iterations (i.e., 0.22 ms), tip~200 iterations (22 ms), and a

pulse strength of 0.48; we use a series of 32 pulses. Figure 14 shows

isosurface plots of V with the initial condition (A) and its evolution

after the initiation of the control at (B) 440 ms, (C) 1760 ms, and

(D) 1870 ms, the time by which we see the last part of a scroll wave

moving out of the simulation domain.

The Control of Spiral-Wave Turbulence in the Presence of
Inhomogeneities

In the last Section we have given a short overview of some control

schemes that have been used to suppress spiral-wave break up in

two- and three-dimensional simulations in some mathematical

models for cardiac tissue. Cardiac tissue can have inhomogeneities,

such as scar tissue. It is important, therefore, to study whether these

control schemes are effective in controlling spiral-wave turbulence in

the presence of such inhomogeneities. To the best of our knowledge

this has not been investigated systematically so far. We present such

Figure 14. (Color online) The control of scroll-wave turbulence in our simulation of the 3D Panfilov for Lz = 4 mm in a domain of size
128612864 mm3: An iso-surface plot of V shows the initial state in (A). A series of 32 pulses, each lasting for 0.22 ms, and separated by
220 ms is applied on the bottom of the domain on a mesh; the subsequent evolution of of the scroll waves is shown at 440 ms (B), 1760 ms (C), and
1870 ms (D) by which time we see the last wave moving out of the simulation domain.
doi:10.1371/journal.pone.0004738.g014
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an investigation here (for simplicity we restrict ourselves to

conduction inhomogeneities). In particular, it is important to ensure

that a control scheme does not lead inadvertently to spiral break up

in the presence of inhomogeneities.

We begin by studying the control scheme of Zhang et al. [33]

that we have outlined above. This scheme drives away broken

spiral waves from the simulation domain by using the target waves

that are created by the local periodic forcing. What happens to

such target waves when they encounter an obstacle? We examine

this for the two-dimensional Panfilov model. In Fig. 15 we present

our results with such periodic forcing [Ccos vf tð Þ with C~6 and

vf = 0.82]; we use parameters such that, in the absence of this

forcing, a single spiral wave would have been attached to the

conduction inhomogeneity (Fig. 15 A that is similar, e.g., to Fig. 1B

in Ref. [28]). The forcing we use generates target waves in the

center of the simulation domain, of side L = 25 cm and with a

square obstacle of side l = 4 cm placed at (8.5 cm, 8.5 cm). It turns

out that these target waves drive away the spiral wave that was

anchored to the obstacle in the absence of the forcing. The time

evolution of the system with the forcing (Figs. 15 B–D) shows the

break up of these target waves as they collide with the obstacle and

thus contribute to spiral turbulence in the medium [58]. Had there

been no obstacle, this control scheme would have driven away all

the broken spiral waves from the domain. However, this does not

happen in the presence of an obstacle as shown in Fig. 15; hence

this control scheme is unsuitable for controlling spiral-wave

turbulence if inhomogeneities are present.

By contrast, the control scheme proposed in Ref. [32] works

even in the presence of an inhomogeneity. Illustrative simulations

for the Panfilov, LRI, and RPB models are given in Section 6 of

the Supplementary Material S1. Here we show how the control

scheme of Ref. [32] is also successful in eliminating spiral

turbulence in the TNNP model even in the presence of conduction

inhomogeneities. In Fig. 16 a control current of 27.75 mA/cm2 is

applied for 20 ms on a mesh that divides our square simulation

domain of side 13.5 cm into 16 square cells of side 3.375 cm each.

This suffices to control spiral turbulence in the TNNP model, even

though there is a square obstacle of side 2.25 cm placed in the

simulation domain. (If this obstacle is at (45 mm, 31.5 mm), in the

absence of the control pulse, a single rotating spiral wave would

have been anchored to this obstacle; if instead the obstacle is at

(54 mm, 22.5 mm), as in Fig. 6, spirals would have broken up in

the absence of the control.) The pseudocolor plots of V in Fig. 16

give (A) the initial state and its subsequent evolution after the

initiation of the control pulse at (B) 24 ms, (C) 80 ms, and (D)

280 ms, after which all spiral turbulence disappears. A similar

simulation for the elimination of spiral turbulence in the TNNP

model is given in Section 6 of the Supplementary Material S1.

We have shown above how the control scheme of Ref. [32] can

be extended to three-dimensions in an L6L6Lz simulation

Figure 15. Pseudocolor plots of the transmembrane potential V in the two-dimensional Panfilov model illustrating the application
of the local-forcing control scheme of Ref. [33] on a spiral wave anchored to the obstacle as shown in the initial condition (A). The
subsequent evolution of the system in the presence of the forcing is shown in (B), (C), and (D). The control stimulus, of the form Ccos vf tð Þ with C~6
and vf = 0.82, is applied on a small square region of side 0.3 cm in the center of the simulation domain of side L = 25 cm; the square conduction
inhomogeneity of side 4 cm is placed at (8.5 cm, 8.5 cm). The target waves break up and contribute to spiral turbulence in the medium because of
the obstacle as shown in (B) immediately after the control is applied and in (C) and (D) after 200,000 and 400,000 iterations, respectively; given our
time discretization 1 iteration is 0.11 ms.
doi:10.1371/journal.pone.0004738.g015
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domain, if Lz,2 mm. This scheme works even in the presence of

an obstacle as is illustrated for representative cases in Fig. 17 with

an obstacle of size 2562562 mm3 placed at (80 mm, 60 mm). In

the absence of control pulses, scroll-wave turbulence is obtained.

We now apply a control pulse of strength 0.48 on a mesh with

square cells, each of side 16 mm, on the bottom face of the

simulation domain for 748 ms; the evolution of the states of the

system after the initiation of the control are depicted at (B) 220 ms,

(C) 440 ms, and (D) 880 ms in Fig. 17. By 880 ms the scroll waves

have left the simulation domain and it is completely quiescent.

When Lz.2 mm, the control scheme described in the previous

paragraph fails just as its counterpart did in the absence of an

inhomogeneity. A representative simulation for this case is given in

Section 6 of the Supplementary Material S1.

Discussion

We have presented the most extensive numerical study carried

out so far of the effects of inhomogeneities on spiral-wave

dynamics in mathematical models for cardiac tissue. In particular,

we have investigated such dynamics in the Panfilov, LRI, RPB,

and TNNP models for homogeneous simulation domains and also

in the presence of conduction and ionic inhomogeneities.

Furthermore, we have considered two low-amplitude control

schemes in detail; these have been designed to eliminate spiral-

wave turbulence in these models but have not been tested

systematically in the presence of inhomogeneities; we carry out

such tests here.

One of the principal results of our studies is the confirmation

that spiral-wave and scroll-wave dynamics in mathematical models

of cardiac tissue depend very sensitively on the positions of

conduction or ionic inhomogeneities in the simulation domain.

Our results here extend significantly those presented in Ref. [28]

for the Panfilov and LRI models. In particular, we have shown

that this sensitive dependence on inhomogeneities also holds in

realistic ionic models, which account for ion pumps and ion

exchangers and also the details of the dynamics of calcium ions;

furthermore, these results also hold in three-dimensional simula-

tion domains, as illustrated by our calculations for the three-

dimensional Panfilov model; and the nature of the inhomogeneity

also affects the spatiotemporal dynamics of spiral waves as can be

seen by comparing our simulations of conduction inhomogeneities

with those for ionic inhomogeneities. As we have seen, in the latter

case the transmembrane potential V displays rich and different

temporal behaviors inside and outside the ionic inhomogeneity.

We believe this sensitive dependence of spiral waves on

inhomogeneities in the medium is a reflection of a fractal basin

boundary between the domains of attraction of spiral-turbulence

(ST), rotating-spiral (RS), and quiescent (Q) states. In a low-

dimensional dynamical system it is possible to obtain such a basin

boundary by changing initial conditions; in a high-dimensional

dynamical system (the partial-differential-equation models for

cardiac tissue are infinite dimensional) it is not practical to find

such a boundary numerically. We have shown instead, that, by

changing parameters in these cardiac-tissue models, such as the

positions or natures of inhomogeneities, we can affect the

spatiotemporal evolution of spiral waves drastically.

Our studies have practical implications for experimental

investigations of spiral-wave dynamics in cardiac tissue. In

particular, the studies of Refs.[22–24,49] have provided a rich

Figure 16. (Color online) Suppressing spiral turbulence in the 2D TNNP model in the presence of an inhomogeneity: A control pulse
of amplitude 27.75 mA/cm2 is applied for t = 20 ms on a mesh as in Fig. 13. The square obstacle is at (54 mm, 22.5 mm) and has side
l = 22.5 mm. Without control the spiral turbulence persists as in Fig. 6. The pseudocolor plots of V in (A) 0 ms, (B) 24 ms, (C) 80 ms, and (D) 280 ms,
after the initiation of the control, show the suppression of the spiral turbulence.
doi:10.1371/journal.pone.0004738.g016
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variety of results including complicated temporal patterns in

inter-beat intervals [49] for V and the partial or complete

elimination of spiral-wave turbulence by conduction inhomoge-

neities [2]. We have described these briefly in the introduction.

Here we would like to note that our in silico simulations of spiral-

wave dynamics in the Panfilov, LRI, RPB, and TNNP models

have allowed us to carry out a much more systematic study of

inhomogeneities in these models than is possible in vitro and in

vivo. We hope our work will stimulate experiments in this field. It

is worth noting that our study yields all the types of rich

spatiotemporal behaviors (e.g., for V) that have been observed in

a variety of experiments on spiral-wave dynamics in cardiac

tissue or cell cultures, if we keep in mind that the states ST, RS,

and Q in our simulations are the analogs of VF, VT, and

quiescence in such experiments.

Our results, especially those on the elimination of spiral-wave

turbulence in the presence of inhomogeneities, should also have

important implications for the development of low-amplitude

electrical defibrillation schemes, which is a major challenge that

lies at the interfaces between nonlinear science, biophysics, and

biomedical engineering. One of the lessons of our numerical

studies, namely, the sensitive dependence of spiral-wave dynamics

on inhomogeneities, implies that low-amplitude defibrillation

schemes might well have to be tuned suitably to account for

inhomogeneities in cardiac tissue. Furthermore, it would be very

interesting to develop the mesh-based control scheme that we have

described in the previous section and to see how it might be

realised experimentally.

While this paper was being prepared for publication two new

suggestions appeared for the elimination of spiral turbulence in

models such as the LRI model [59,60]. The first of these [59] uses

a square lattice of control points through which a control voltage is

swept. Since this uses a spatially extended set of control points, it is

successful in the elimination of spiral turbulence at least in a two-

dimensional domain. The study of Ref. [60] examines a scheme

that requires the use of a bidomain model since relatively large

control voltages are used. We have concentrated instead on low-

amplitude defibrillation schemes that should not require bidomain

models; indeed such schemes have been used earlier by several

groups [32,33,56,61,62] without bidomain models.

As we have emphasized throughout this paper, one of the

principal goals of our study is a qualitative one, namely, the

elucidation of the sensitive dependence of spiral-wave dynamics on

inhomogeneities in mathematical models of cardiac tissue. We

have, therefore, carried out extensive simulations of such dynamics

in the Panfilov, LRI, RPB, and TNNP models; but we have not, so

far, extended our study to bidomain models [63] and models in

which mechanics [64] is also included. We expect our principal

qualitative results about inhomogeneities will go through even

when such models are considered; this will have to be checked

explicitly by subsequent studies.

In our earlier 3D simulations [28] we have studied the effect of

inhomogeneities on scroll waves; in this case too we find that

scroll-wave dynamics depends sensitively on the position of an

inhomogeneity. Here too we discuss some 3D simulations.

However, we have concentrated on 2D simulations for two

Figure 17. (Color online) Controlling scroll-wave turbulence in our 3D Panfilov-model simulation in a 128612862 mm3 simulation
domain in the presence of an obstacle of size 2562562 mm3 placed at (80 mm, 60 mm): The scroll wave breaks up in this case as
shown by the V iso-surface in (A). We now apply a control pulse of strength 0.48 on a mesh with square cells, each of side 16 mm, on the bottom
face of the simulation domain for 748 ms; the evolution of the V iso-surfaces, after the initiation of the control, is depicted at (B) 220 ms, (C) 440 ms,
and (D) 880 ms, by which time scroll waves have left the simulation domain and it is completely quiescent.
doi:10.1371/journal.pone.0004738.g017
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reasons: (a) it is important to have a good understanding of

spiral-wave dynamics in the presence of inhomogeneities before

embarking on similar, detailed, 3D simulations; (b) in 3D studies

it is important to include tissue anisotropy (but again we believe

this can be done systematically only after we have a good

understanding of the 2D simulations we have presented here). In

the same spirit of studying the simplest models first, we have not

considered models which include mechanics too; indeed this

purely electrical approach has been adopted by several other

studies (see, e.g., Refs. [11,12,14,25,30–33]) with the under-

standing that the mechanical system basically follows the

electrical activation at the level of a first approximation (see,

e.g., Ref. [60]).
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