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Jankowski, M.; Angelova Volponi, A.;

Mozdziak, P.; Shibli, J.A.; Bryl, R.;
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abryja@ump.edu.pl (A.B.); mjankowski@ump.edu.pl (M.J.); rutbryl@gmail.com (R.B.);
m.dyszkiewicz@ump.edu.pl (M.D.-K.)

2 Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland;
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Simple Summary: Domestic pigs express high phylogenetic similarity to humans and are often used
as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in
human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to
investigate the dynamics of complex biological system of the mucosa. Additionally, we performed
computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images
identified epithelial cells and connective tissue cells in in vitro culture.

Abstract: Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dy-
namics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of
populations of epithelial and connective lineages, are interesting and complex systems for study via
microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis
included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the
processes of differentiation and development. Most analyzed genes were upregulated after 7 days
and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis
was then extended to include automated analysis of differential interference contrast microscopy
(DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the
different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it
was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a
suitable model for reference research on human tissues. In addition, it can provide a reference point
for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications
in human tissues reconstruction.
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1. Introduction

Domestic pigs express high phylogenetic similarity to humans and are considered as
compatible model in biomedical research [1,2]. Recently, advanced genetic engineering
opened the possibility of genetically modified pigs’ application as tissue and/or organ
donors in human xenotransplantation [3,4]. They were also used as a host organism
for the formation of the heart and vascular architecture, to produce graft-ready artificial
vessels [5–7]. Moreover, porcine tissues are an accessible biomaterial for human skin
transplants and tissue architecture reconstruction [8,9]. Pigs are used worldwide, both as a
model for biomedical research and an animal donor for tissue biopsies [10–12].

Our research focuses on the porcine oral mucosa, consisting of two distinct layers (ep-
ithelium and fibrous connective tissue layer), with remarkable capacity for repair [13–15].
The unique tissue architecture is intrinsically associated with cellular remodeling through
cell survival and/or programmed death. Several morphological remodeling processes are
essential for the repair process. In the case of cell/tissue primary in vitro culture, the modi-
fications are also characterized by changes in transcriptomic, proteomic, and metabolomic
profile [16–19]. In order to capture the regenerative capacity of the mucosa, we performed
a microarray analysis of mucosa cells cultured in vitro. Moreover, it was shown that hu-
man fibroblast can be in vitro transformed to obtain cells with stem-like features [20–22],
which is the basis for further translational research in humans and pigs.

Additionally, we analyzed microscopic images of cells cultured in vitro. Current
approaches in cell imaging require many hours of manual adjustments and curation, spark-
ing the need for development of new, supervised machine learning techniques. Live-cell
imaging is a powerful tool in the investigation of complex biological systems at a single-cell
resolution [23–25]. Nevertheless, the process of accurate image segmentation, needed to
identify which parts of the image contain individual cells, often hampers the measure-
ments [26]. The insight of single cell measurements provides us with information on the
heterogeneous roles of the cells in a dynamic system and can shed light on constantly
changing differences between populations. When imaging cells in tissues and in vitro
conditions, it is important to obtain a high-quality image through differential interference
contrast microscopy (DIC). Subsequently, the image can be processed via DIC image seg-
mentation and reconstruction. DIC imaging offers a non-invasive visualization approach
and has recently been developed in combination with retardation modulation [27,28].
Mathematical modeling and computer-assisted data analytics based on the imaging data
collected from the in vitro samples is important to quantitatively assess stemness providing
solutions and models to describe the biological processes, mechanisms, and their regu-
lations on molecular and sub-molecular levels. Mathematical modelling and advanced
image identification and machine learning are considered as attractive, novel methods,
providing researchers with previously unknown insights. The objective of this study was
to present the algorithmic pipeline, which may serve as a tool in assessing differentiation
capabilities of cells in vitro.

Mathematical modeling of cellular data is an important new tool aimed at the task of
understanding the biological mechanisms of cellular differentiation.

2. Materials and Methods
2.1. Animals

Thirty young gilts of the local Landrace, used in the experiment, were raised on a
local commercial farm, and exhibited a mean age of 155 days (140–170) and weight of
100 kg (95–120). The housing and feeding conditions of the pigs were identical. All of the
experiments performed in the study were approved by resolution 32/2012 (30.06.2012) of
Local Animal Ethics Committee of the Poznan University of Life Sciences, Poland.

2.2. Buccal Mucosal Cells Isolation and In Vitro Culture

Samples of buccal mucosa were obtained within 40 min of slaughter and transported
to the laboratory in the transportation medium (0.9% NaCl, 10 mg mL−1 streptomycin,
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10 U mL−1 penicillin, 25 µg mL−1 amphotericin B). The excised tissue was washed twice
in Dulbecco’s phosphate buffered saline (D-PBS; Merck, Darmstadt, Germany). The buccal
mucosa was surgically removed using sterile surgical blades. The tissue fragments were
minced and incubated with 1 mg mL−1 collagenase type I (Gibco, Life Technologies,
Waltham, MA, USA) and 2 mg mL−1 dispase II (Gibco, Life Technologies, Waltham, MA,
USA) for 2 h at 37 ◦C in a shaking water bath. The cell suspension obtained from this
digestion was centrifuged at 300× g for 8 min. Supernatant was removed and pellet was
resuspended in 0.25% trypsin solution (Merck, Darmstadt, Germany) for 10 min. Fetal
bovine serum (FBS; Merck, Darmstadt, Germany) was used to neutralize trypsin. The cell
suspension was filtered through mesh to remove non-dissociated tissue fragments, and then
isolated cells were centrifugated at 300× g for 8 min. The final cell pellet was dissolved in
Dulbecco’s modified Eagle’s medium (DMEM; Merck, Darmstadt, Germany) supplemented
with 10% fetal bovine serum (FBS; Merck, Darmstadt, Germany) and 10 U mL−1 penicillin
G, 10 mg mL−1 streptomycin, and 25 µg mL−1 amphotericin B (Antibiotic Antimycotic
Solution; Merck, Darmstadt, Germany). Cell viability was 85% to 95% as determined using
a cell counter Adam-MC (NanoEnTek, Seoul, Korea). The cells were maintained at 37 ◦C in
a humidified atmosphere of 5% CO2. Once the cell cultures attained 70–80% confluency,
they were passaged by washing with PBS (Merck, Darmstadt, Germany), digested with
0.25% trypsin solution (Merck, Darmstadt, Germany), neutralized using the same volume
of FBS (Merck, Darmstadt, Germany), centrifuged (300× g for 8 min), and resuspended at a
seeding density of 2 × 104 cells cm−2. The culture medium was changed every three days.

In vitro primary cells culture was carried out for 30 days. During in vitro culture,
daily photos were taken with the use of Olympus IX70 microscope (Olympus, Tokyo,
Japan). In the periods of 7, 15, and 30 days, half of the cells were collected to isolate
RNA and to perform microarray and real-time quantitative polymerase chain reaction
(RT-qPCR) analysis.

2.3. Microarray Expression Analysis and Statistics

The in vitro cultured cells were collected and suspended in the TRI reagent (Merck,
Darmstadt, Germany). The RNA isolation was based on the procedure described by
Chomczynski and Sacchi [29]. Samples were collected at 7, 15, and 30 days of culture and
subjected to double cDNA amplification (Ambion® WT Expression Kit). The resulting
cDNA was biotin labelled and fragmented using the Affymetrix GeneChip® WT Terminal
Labeling and Hybridization (Affymetrix, Life Technologies, Waltham, MA, USA). cDNA
fragments prepared in that way (5.5 µg) were hybridized to the Affymetrix® Porcine
Gene 1.1 ST Array Strip (48 ◦C/20 h) (Affymetrix, Life Technologies, Waltham, MA, USA).
The microarrays were then subjected to washing and staining based on the protocol of
the Affymetrix GeneAtlas Fluidics Station. The scanning of the array strips was per-
formed using the Imaging Station of the GeneAtlas System (Affymetrix, Life Technologies,
Waltham, MA, USA). The following preliminary analysis was conducted with the use of the
Affymetrix GeneAtlasTM Operating Software (Affymetrix, Life Technologies, Waltham, MA,
USA). The gene expression data quality was evaluated based on the quality control criteria
included in the software. The resulting CEL files were imported into further software for
downstream data analysis.

All of the graphs and analysis presented in the manuscript were compiled using
Bioconductor 3.11 (Fred Hutchinson Cancer Research Center, Seattle, WA, USA) and R
3.6.3 programming language (R Foundation, Vienna, Austria). Each of the CEL files was
merged with a corresponding description file. The Robust Multiarray Averaging (RMA)
algorithm was used for result standardization, with moderated t-statistics of the empirical
Bayes method performed to enable identification of statistically significant differences.
Furthermore, Benjamini and Hochberg’s false discovery rate was used to correct the
obtained p-value for multiple comparisons. The cutoff value for differentially expressed
gene selection was assumed at p < 0.05 and expression fold change higher than |2|.
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Differentially expressed genes were subjected to selection by examination of genes
involved in cell migration regulation. The differentially expressed gene list (separated for
up and downregulated genes) was uploaded to DAVID software (Database for Annotation,
Visualization and Integrated Discovery) [30], where genes belonging to different gene
ontology (GO) groups were obtained. The relation between those genes and selected GO
terms were checked with GOplot R package [31]. The analysis included only those GO
groups for which the P value was less than 0.05. The GO groups were selected to represent
the processes occurring during in vitro culture. Single–organism cellular process (GO:0044763,
p = 0.049155456) and single–multicellular organism process (GO:0044707, p = 0.000138853)
represent processes that is carried out at the cellular level. Regulation of cellular component
organization (GO:0051128, p = 0.000127787) includes processes involved in the formation
or disassembly of cell structures. Biological adhesion (GO:0022610, p = 0.0000221), which
includes the processes responsible for cell attachment to a substrate or another cell. Other
processes responsible for the transition from proliferation to development and differen-
tiation, negative regulation of cell proliferation (GO:0008285, p = 0.0000195), developmental
process (GO:0032502, p = 0.000110534), and anatomical structure development (GO:0048856,
p = 0.0000572).

String 10.0 software (Search Tool for the Retrieval of Interacting Genes; String Consor-
tium, Zurich, Switzerland) was used for extraction of interactions between differentially
expressed genes/proteins belonging to the analyzed gene ontology (GO) terms [32]. Inter-
action prediction query was based on a list of gene names. The search criteria were based
on co-occurrences of genes/proteins in scientific texts (text mining), co-expression, and ex-
perimentally observed interactions. The results of such analyses generated a gene/protein
interaction network where the intensity of the edges reflected the strength of the interac-
tion score.

Finally, the REACTOME FIViz application, a part of the Cytoscape 3.7.2 software
(Institute for Systems Biology, Seattle, WA, USA), was used to investigate the functional
interactions between genes belonging to the chosen GO BP terms. The Reactome FIViz app
(Reactome, Toronto, Canada) is used to examine pathways and network patterns related
to cancer and other types of diseases. REACTOME accesses the pathways stored in the
Reactome database, allowing to perform pathway enrichment analysis of a set of genes,
visualize hit pathways using manually laid-out pathway diagrams directly in Cytoscape,
and investigate functional relationships among genes in hit pathways. The application
can also access the Reactome Functional Interaction (FI) network, a highly reliable, manu-
ally curated pathway-based protein functional interaction network covering over 60% of
human proteins.

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

cDNA obtained during microarray analysis was used to validate the results using
RT-qPCR technique. The RT-qPCR analysis was performed using LightCycler real-time
PCR detection system (Roche Diagnostics GmbH, Mannheim, Germany), with SYBR®

Green I serving as a detection dye, and target cDNA quantified with the use of the relative
quantification method. The relative abundance of CCL8, CXCL2, DACH1, DUSP5, FABP5,
IL6, PLK2, PPARD, PTGS2, and SPP1 was standardized to the internal standards ACTB
and PBGD. For amplification, 2 µL of cDNA solution was added to 18 µl of QuantiTect®

SYBR® Green PCR (Master Mix Qiagen GmbH, Hilden, Germany) and primers (Table 1).
One RNA sample of each preparation was processed without the RT-reaction to provide a
negative control for subsequent PCR. The average fold change in the gene expression of
experimental samples were compared with control (7-day of in vitro culture) and calculated
by 2−∆∆Ct method. The results were presented as logarithm of fold change. Differences
between experimental samples were estimated using the Kruskal–Wallis test with Tukey’s
test. Statistical analysis was conducted using Excel with Realstats extension.
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Table 1. The sequences of RT-qPCR analysis primers.

Gene Gene Accession Number Primer Sequence (5′–3′) Product Size (bp)

CCL8 NM_001164515.1 CAATGGAAAGATCCCCTTCA
CTCGCAGTCCAGGTAGGAAG 206

CXCL2 NM_001001861.2 CTGTGACCAAACGGAAGTCA
AGCCAAATGCATGAAACACA 237

DACH1 XM_001924267.6 GGCATGGACAACCACTACCT
CTTTTGTTCCATCGCCAACT 233

DUSP5 XM_003359366 TGCACGACCCACCTACACTA
GCGAGATCACACTCCTCCTC 250

FABP5 NM_001039746.2 ATGGCAAAGACCTCACCATC
CGAGTGCAGGTGACATTGTT 244

IL6 NM_214399 TGTCGAGGCTGTGCAGATTA
GCATTTGTGGTGGGGTTAGG 102

PLK2 XM_003133981 AGCCTGCTTCCAGACAAAAA
GAAGGAGGTAGAGCCGAGGT 205

PPARD NM_001130241 CAATGCCCTGGAACTCGATG
TTGATCCGCTGCATCATCTG 249

PTGS2 NM_214321 AAAGGCCTCAATCGACCAGA
ATCTGGGCGAGGCTTTTCTA 202

SPP1 NM_214023.1 ACTCCGATGAATCCGATGAG
TCCGTCTCCTCACTTTCCAC 220

2.5. Automated Morphological Analysis of DIC Imaging

The mucosal cell cultures were visualized during their first 7 days of growth with
differential interference contrast microscopy (DIC), using Olympus IX70 microscope (Olym-
pus, Tokyo, Japan). After the microarray analysis, the morphological dynamics were in-
vestigated by analyzing the DIC images. The collected DIC images during in vitro culture
were analyzed using a sequence of image processing and analysis operations, based on
the collected data followed by quantitative assessment of selected relevant morphological
features and their distributions. All methods described below were implemented using
Python 3.5 (Python Software Foundation, Beaverton, OR, USA) and image processing
libraries OpenCV 4.2.0 (OpenCV Foundation, Palo Alto, CA, USA) [33] and SciKit Image
0.16.1 (open source project; http://scikit-image.org/) [34].

2.5.1. Image Processing and Segmentation

Representative images obtained during a 7-day in vitro culture were used to perform
the analysis (Figure 1). The proposed algorithm starts from correcting the non-uniformities
in scene lighting, which we achieve with low-pass filtering using Gaussian filter with a large
mask. Subsequently, the crucial step of image segmentation follows, which is supposed
to delineate well-defined regions (segments) from the input image. The interpretation of
regions depends on the class of images with the goal to obtain exactly one separate region
for each cell. It has been a historical challenge for one segment to accurately represent each
individual cell using image analysis software if a cell is divided into two or more regions,
it is referred to as over-segmentation; if two or more cells are merged in one region, this
implies under-segmentation.

DIC images were analyzed using the watershed segmentation technique [35] and the
OpenCV 4.2.0 software library (OpenCV Foundation, Palo Alto, CA, USA) [33]. The wa-
tershed algorithm builds regions in an iterative manner, where each region starts from
a single pixel called a seed (a.k.a. marker). Feeding the algorithm with carefully selected
seeds is thus essential for the quality of the outcome. Two methods for determining seed
locations are either the Bespoke or the Feineigle method. With these two methods it was

http://scikit-image.org/
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possible to determine seed locations. The Bespoke method first removes the pixels that
are almost certain to belong to the background, with is achieved by normalizing image
brightness, calculating image gradient using the Sobel filter, and then applying Otsu’s
thresholding method [36]. The Feineigle method [37] attempts to reverse the physical
process of image acquisition in DIC by directional integration of the input image. In brief,
as a DIC image is essentially a gradient image of an unknown optical density function f (x,y)
of the examined specimen, its integration should lead to the reconstruction of f, which is
realized by formulating an optimization problem in a form of a set of equations that are
subsequently solved using Gauss-Seidel relaxation.
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In both above scenarios, the resulting segmentation undergoes further postprocess-
ing. In particular, small artifacts (impurities) are removed, which we achieve by setting
a magnification-specific minimum threshold of cell’s area (700, 1900, and 3000 pixels,
respectively, for 10×, 20×, and 40×magnification).

The next stage of the analysis was the clustering process using k-means algorithm
with the k parameter (the number of clusters) set to 3, which was applied to all 6080 cells
gathered from all images. Additionally, the isomap dimensionality reduction technique
was used to verify whether the obtained clusters are compact and thus adequately define
classes of regions [38].

2.5.2. Morphological Analysis

For morphological analysis and separation of keratinocyte and fibroblast populations
of cells cultured in vitro, the following data were collected from each cell: Logarithm of
the area, eccentricity, perimeter, major and minor axis length (the lengths of the axes of the
ellipse that has the same normalized second central moments as the cell), and solidity (the
ratio of the cell area and the area of its convex hull). To enable aggregation and comparison
of measurements obtained from images of different resolution, we adopted the common
measurement unit of 100 µm. There are 6 features that are calculated for each segmented
cell individually (or more precisely for each region resulting from the above algorithms).
For an image that contains n such regions, the features are gathered in an n × 6 array.

To capture the potentially multimodal characteristics of the cells in a given sample,
we conduct cluster analysis on those arrays using a family of k-means algorithms.

2.6. Confocal Microscopic Observations of pCK Expression and Distribution

In 7, 15, and 30 days of in vitro culture, porcine buccal mucosal cells were collected
and fixed in acetone-methanol solution (1:1) for 10 min at −20 ◦C. In the next steps, cells
were washed, and to block non-specific binding, samples were incubated in 3% BSA with
0.1% Tween-20 for 30 min at room temperature (RT). Porcine oral mucosal cells were
incubated at 1 h with a mouse monoclonal anti-cytokeratin 8 + 18 + 19 antibody (Abcam,
GB). The antibodies were diluted 1:500 in PBS with 1.5% BSA and 0.1% Tween-20. After
washing, the samples were incubated with MFP488-labeled goat anti-mouse IgG (MoBiTec
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GmbH, Göttingen, Germany) diluted 1:500 in PBS with 0.1% Tween-20 for 1 h at RT. A
similar labeling process was carried out for fibroblasts isolated from porcine mucosa.
Fibroblasts were used as a negative control. After incubation, samples were washed, and
cells were suspended in 0.1 mL of mineral oil containing 1.5 µg mL−1 of 4′,6-diamidino-
2-phenylindole (DAPI), mounted on an anti-fade medium on glass slide, and examined
by an LSN 510 confocal system with an Olympus Fluoview 10i microscope (Olympus,
Tokyo, Japan).

3. Results
3.1. Microarray Analysis

Affymetrix microarray profiling allows to analyze the gene expression changes be-
tween 7, 15, and 30 days of buccal pouch mucosa cells culture. The Affymetrix® Porcine
Gene 1.1 ST Array Strip was used to investigate the expression of 12,257 transcripts. Genes
with fold change higher than abs (2) and with corrected p value lower than 0.05 were
considered differentially expressed. This set of genes consisted of 130 different transcripts.
Up and downregulated gene sets were uploaded to the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID) search separately, with only the gene sets with
adjusted p value lower than 0.05 selected. The analysis showed that differently expressed
genes can be classified to 56 gene ontology groups. This manuscript focuses on anatomical
structure development, biological adhesion, developmental process, negative regulation of cell prolif-
eration, regulation of cellular component organization, single−multicellular organism process, and
single−organism cellular process GO BP terms. To present the genes as heatmaps the gene
sets were subjected to hierarchical clusterization procedure and presented as heatmaps
(Figure 2). On this basis, it can be concluded that comparing the results to the control level,
which was day 7 of in vitro culture, the expression level of the analyzed genes was lower.
For day 15, the exception is CCAAT enhancer binding protein alpha (CEBPA), for which
the level of expression is similar to the control day. In the case of the 30th day of in vitro
culture for the CCL2, ITGB3, TGFB1, and PLK2 genes, the expression level is higher than
on day 15 and is close to the control level. Numerical values corresponding to the data
presented in heatmaps was presented in Table 2. The enrichment of each GO BP term
between studied time periods were calculated as z-score and shown on the circle diagram
(Figure 3). It has been confirmed that the expression for the analyzed genes was lower on
days 15 and 30. In addition, an increased expression was found when comparing day 30
to day 15. Moreover, the genes can belong to multiple GO groups, making it important
consider their overlap. The relation between those GO BP terms was presented as circular
representation of clusterization (Figure 4), circle-plot (Figure 5), and as heatmap (Figure 6).
In Figure 4, the outer ring shows the relationship between the analyzed ontological groups.
The inner ring shows the level of gene expression on day 15 compared to day 7, confirming
the reduction in expression level. Figure 5 shows that most of the analyzed genes belong
to the single−organism cellular process GO BP term, and on the other hand, the groups
negative regulation of cell proliferation, biological adhesion, and regulation of cellular component
organization were represented by a smaller number of genes. Figure 6 shows that the three
genes LYN, TGFB1, and ETS1 were present in all analyzed ontological groups. Genes
SPP1, PDPN, FCER1G were present in all ontological groups except negative regulation of
cell proliferation GO BP term. LIF was presented in all GO groups except biological adhesion
GO BP term. STRING interaction network was generated to visualize relations between
the differentially expressed genes belonging to the selected GO BP terms. Using such
prediction method provided us molecular interaction network formed between protein
products of studied genes (Figure 7). Relationships between the protein products of the
analyzed genes were detected for REL and IL6, which are the main centers for these rela-
tionships. The relationships for REL are stronger because they come from experiments,
literature data, and databases. In the case of IL6, the interactions are mostly based on text
data analysis. Finally, the functional interactions between chosen genes were evaluated
with the REACTOME FIViz app to Cytoscape 3.7.2 software. The results are shown in
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Figure 8. The functional interactions were found for six genes, PPARD and FABP5, CCL8
and CCL2, and IL6 and CEBPA.
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Figure 2. Heat map representation of differentially expressed genes belonging to the anatomical
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3.2. RT-qPCR Analysis

Gene expression level in RT-qPCR was compared to the seventh day of in vitro culture.
Direction and patterns of changes revealed by microarray analysis were confirmed via
RT-qPCR (Figure 9). For one gene, PPARD, the direction of the change in expression was
not confirmed. The variation in scale of changes could be noticed and easily explained
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by the fact that RT-qPCR is far more quantitatively accurate, as it focuses on a particular
gene, as opposed to the full transcriptome. While microarrays are an excellent method of
describing the patterns in gene expression, they need validation by other, more quantitative
approaches. The differences may also be due to the fact that the method of measuring RNA
amount for RT-qPCR and microarray is different.

Table 2. Gene symbols, fold change in expression ratio, Entrez gene IDs, corrected p values, and mean value of fold change
ratio of studied genes.

Gene FC D7/D15 FC D7/D30 FC D15/D30 p Value
D7/D15

p Value
D7/D30

p Value
D15/D30 Entez Gene ID

SPP1 0.0919949 0.0701564 0.762612 0.0162712 0.0230194 0.7663359 6696

CCL8 0.1098375 0.1015572 0.9246133 0.0099092 0.002855 0.8648287 6355

CXCL2 0.1585988 0.3618252 2.2813865 0.0282106 0.1000607 0.3277437 2920

PLK2 0.1660003 0.6091754 3.6697255 0.0282106 0.3101504 0.1884621 10769

DUSP5 0.1720052 0.3392398 1.9722648 0.0407438 0.1216767 0.4625691 1847

PTGS2 0.176579 0.3277974 1.8563786 0.0332722 0.0861828 0.447703 5743

SLC5A3 0.2252244 0.3389405 1.5049016 0.0282106 0.0555304 0.5402319 6526

LIF 0.252965 0.3537276 1.398326 0.0127508 0.0230194 0.3296551 3976

CCL2 0.2544943 0.6892844 2.7084476 0.0407438 0.4043909 0.2350893 6347

ATP1B1 0.2671037 0.4974017 1.8622043 0.0311185 0.1230303 0.3265278 481

ATP13A3 0.2795739 0.291783 1.0436704 0.0338446 0.0406862 0.9731139 79572

FABP5 0.2964051 0.2663389 0.8985637 0.0268357 0.0235015 0.8617697 2171

GALNT7 0.3118498 0.5252929 1.6844421 0.0410788 0.1507523 0.415765 51809

REL 0.33281 0.5087624 1.5286872 0.0234279 0.0563739 0.3173859 5966

ITGB3 0.3427886 0.7627618 2.2251672 0.038898 0.4213886 0.2350893 3690

DACH1 0.3777917 0.3230132 0.8550034 0.0298064 0.0235639 0.7580772 1602

SCARB1 0.3812346 0.5946187 1.5597186 0.0346365 0.1343271 0.3639803 949

UGCG 0.3838483 0.584988 1.5240083 0.0237712 0.0709872 0.283766 7357

PDPN 0.3878982 0.5660052 1.459159 0.0342294 0.1033121 0.4206462 10630

LYN 0.3967411 0.4074091 1.0268892 0.0346365 0.0423341 0.980695 4067

ETS1 0.3978662 0.4650034 1.1687432 0.0311185 0.0474721 0.7511418 2113

SMPDL3A 0.4101801 0.3641437 0.8877656 0.0300194 0.0244065 0.8019706 10924

PPARD 0.4137917 0.2496635 0.6033556 0.0520061 0.0235015 0.3504653 5467

FCER1G 0.4253226 0.4158717 0.9777794 0.0268357 0.0235654 0.9761984 2207

STEAP1 0.4256007 0.5300458 1.2454063 0.0268357 0.0442024 0.5192506 26872

TGFB1 0.443799 0.8154499 1.8374307 0.0150164 0.2166007 0.0719885 7040

RFC4 0.4463921 0.4260966 0.9545343 0.0346365 0.0362881 0.9445628 5984

LMO2 0.4833797 0.5386858 1.1144154 0.0268357 0.0348947 0.744229 4005

IL6 0.5575324 0.4445759 0.7973992 0.0884648 0.0442024 0.6294546 3569

CEBPA 0.8711062 0.4597589 0.5277875 0.3207823 0.017619 0.0452298 1050
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GO BP terms. Genes are grouped together based on their expression patterns, and the clusterization pattern is represented 
by dendrogram inside the circle. The middle ring represents the logarithm of gene expression fold change of studied genes 
between 15 and 7 days of culture, respectively. The outer ring represents the terms assigned to the genes. 

Figure 3. The circle plot showing the differently expressed genes and z-score of the anatomical structure development,
biological adhesion, developmental process, negative regulation of cell proliferation, regulation of cellular component
organization, single−multicellular organism process, and single−organism cellular process GO BP terms. The outer circle
shows a scatter plot for each term of the fold change of the assigned genes. Green circles display upregulation and red ones
downregulation. The inner circle shows the z-score of each GO BP term. The width of each bar corresponds to the number
of genes within GO BP term and the color corresponds to the z-score.
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Figure 4. The representation of hierarchical clusterization, fold change, and assignment of differently expressed genes
that belongs to chosen anatomical structure development, biological adhesion, developmental process, negative regulation of cell
proliferation, regulation of cellular component organization, single−multicellular organism process, and single−organism cellular
process GO BP terms. Genes are grouped together based on their expression patterns, and the clusterization pattern is
represented by dendrogram inside the circle. The middle ring represents the logarithm of gene expression fold change of
studied genes between 15 and 7 days of culture, respectively. The outer ring represents the terms assigned to the genes.
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to genes from anatomical structure development, biological adhesion, developmental process, 
negative regulation of cell proliferation, regulation of cellular component organization, sin-
gle−multicellular organism process, and single−organism cellular process GO BP terms. The rib-
bons indicate which gene belongs to which categories. The middle circle represents logarithm 
from fold change (LogFC) between D15/D7, D30/D15, and D30/D15, respectively. The color of each 
block corresponds to the LogFC of each gene (green: Upregulated, red: Downregulated). The 
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Figure 6. Heatmap showing the gene occurrence between differently expressed genes that belongs 
to anatomical structure development, biological adhesion, developmental process, negative regu-
lation of cell proliferation, regulation of cellular component organization, single−multicellular 
organism process, and single−organism cellular process GO BP terms. The yellow color is associ-
ated with gene occurrence in the GO Term. The intensity of the color is corresponding to amount 
of GO BP terms that each gene belongs to. 

Figure 5. The representation of the mutual relationship of differently expressed genes that belongs to
genes from anatomical structure development, biological adhesion, developmental process, negative
regulation of cell proliferation, regulation of cellular component organization, single−multicellular
organism process, and single−organism cellular process GO BP terms. The ribbons indicate which
gene belongs to which categories. The middle circle represents logarithm from fold change (LogFC)
between D15/D7, D30/D15, and D30/D15, respectively. The color of each block corresponds to the
LogFC of each gene (green: Upregulated, red: Downregulated). The genes were sorted by logFC
from most to least changed gene.
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Figure 6. Heatmap showing the gene occurrence between differently expressed genes that belongs to
anatomical structure development, biological adhesion, developmental process, negative regulation
of cell proliferation, regulation of cellular component organization, single−multicellular organism
process, and single−organism cellular process GO BP terms. The yellow color is associated with
gene occurrence in the GO Term. The intensity of the color is corresponding to amount of GO BP
terms that each gene belongs to.
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Figure 8. Functional interaction (FI) between 20 chosen differently expressed genes that belongs to 
the anatomical structure development, biological adhesion, developmental process, negative regu-
lation of cell proliferation, regulation of cellular component organization, single−multicellular 
organism process, and single−organism cellular process GO BP terms. In the following figure, “->“ 
stands for activating/catalyzing, “-|” for inhibition, “-” for FIs extracted from complexes or inputs, 
and “---” for predicted FIs. 

  

Figure 7. Search Tool for the Retrieval of Interacting Genes (STRING)-generated interaction occur-
rence between gene protein products that belongs to the anatomical structure development, biological
adhesion, developmental process, negative regulation of cell proliferation, regulation of cellular com-
ponent organization, single−multicellular organism process, and single−organism cellular process
GO BP terms. Colored nodes reference to first shell of interactors, white nodes reference to second
shell of interactors.
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Figure 8. Functional interaction (FI) between 20 chosen differently expressed genes that belongs
to the anatomical structure development, biological adhesion, developmental process, negative
regulation of cell proliferation, regulation of cellular component organization, single−multicellular
organism process, and single−organism cellular process GO BP terms. In the following figure, “->“
stands for activating/catalyzing, “-|” for inhibition, “-” for FIs extracted from complexes or inputs,
and “—” for predicted FIs.
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the Feineigle technique. Once the Feineigle reconstruction is computed, it was subjected 
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Figure 9. The results of RT-qPCR validation of the analyzed genes, presented in a form of bar graph.

3.3. Morphological Analysis

Based on the watershed segmentation and using the OpenCV software library, each
connected group of pixels with brightness above the Otsu threshold was defined as a seed.
Figure 10C presents the outcome of this process for an exemplary image in Figure 10A
demonstrating that the Bespoke method proves quite reliable for small-magnification im-
ages (10× and 20×). Unfortunately, the Bespoke method leads to a relatively high degree of
under-segmentation (notice for instance the large cluster of cells in the center of Figure 10C
segmented as a single region marked in brown). To address the under-segmentation issue,
images were post-processed by handling each region individually and performing local
Otsu thresholding. The result is shown in Figure 10D; juxtaposing it with Figure 10C sug-
gests that this post-processing significantly improves the outcome (the above-mentioned
cluster of cells is now segmented into a few regions). For higher magnification (40×),
the Bespoke method does not perform satisfactorily, making it necessary to employ the
Feineigle technique. Once the Feineigle reconstruction is computed, it was subjected to two-
threshold Otsu distance transform. The outcome of this process is illustrated in Figure 11.
The outcomes of segmentation for several images acquired at several stages of culture
growth are illustrated in Figure 12. Each colored patch identifies one region. Most regions
delineate individual cells, though occasionally the segmentation algorithm groups a few
cells together into one region, or misinterprets various image artefacts as cells.

The colors of individual regions in Figure 12 reflect the outcome of the clustering
process using k-means algorithm. The sizes of the clusters formed by the cells in our
six-dimensional feature space are shown in Table 3. The two large clusters, referred to in
the following as blue and red, form the main result of this analysis: Respectively, small,
convex cells, and elongated, fiber-like cells. The smallest cluster groups mostly the regions
in which the segmentation algorithm failed to delineate individual cells, and other strongly
non-convex regions and artefacts, which are confirmed by Figure 13.
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4 (C), and 7 (D) (10× resolution).
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Table 3. The sizes and proportions of clusters in the feature space.

Cluster Number of Cells Share

Blue 4641 76.33%

Red 1320 21.71%

Green 119 1.96%
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Figure 13. Distribution of most informative features across clusters: Perimeter, major axis, and minor axis. The boxes
present median, first and third quartiles, and whiskers the furthest data point not further than from the quartile than 1.5 ×
IQR (interquartile range).

An isomap dimensionality reduction technique showed that regions of type blue and
red form a compact, dense cluster. This is not the for the regions of green type, given that
those regions are mainly outliers, conglomerates of multiple cells (Figure 14).

Animals 2021, 11, x FOR PEER REVIEW 15 of 23 
 

 
Figure 13. Distribution of most informative features across clusters: Perimeter, major axis, and minor axis. The boxes pre-
sent median, first and third quartiles, and whiskers the furthest data point not further than from the quartile than 1.5 × 
IQR (interquartile range). 

Table 3. The sizes and proportions of clusters in the feature space. 

Cluster Number of Cells Share 
Blue 4641 76.33% 
Red 1320 21.71% 

Green 119 1.96% 

An isomap dimensionality reduction technique showed that regions of type blue and 
red form a compact, dense cluster. This is not the for the regions of green type, given that 
those regions are mainly outliers, conglomerates of multiple cells (Figure 14). 

Figure 15 presents the timeline of cell types identified by the clustering process (for 
the mixed cultures), meant as the average number of regions per image. Interestingly, 
there is no clear monotonous trend: The numbers of both types of cells peak at day 4 and 
a relatively sudden drop on day 5 is observed. The proportion of red cells compared to 
blue ones starts from a very low value at day 1, increases roughly up to day 3, and then 
remains relatively stable. Outliers (the green group) are relatively rare across the entire 
timespan of experiment. 

 
Figure 14. Projection of the six-dimensional feature data to two dimensions using the isomap algo-
rithm Clusters defined by the clustering process, blue—keratinocyte-like cells, red—fibroblast-like 
cells, green—conglomerates of multiple cells. 

Figure 14. Projection of the six-dimensional feature data to two dimensions using the isomap
algorithm Clusters defined by the clustering process, blue—keratinocyte-like cells, red—fibroblast-
like cells, green—conglomerates of multiple cells.

Figure 15 presents the timeline of cell types identified by the clustering process (for
the mixed cultures), meant as the average number of regions per image. Interestingly, there
is no clear monotonous trend: The numbers of both types of cells peak at day 4 and a
relatively sudden drop on day 5 is observed. The proportion of red cells compared to blue
ones starts from a very low value at day 1, increases roughly up to day 3, and then remains
relatively stable. Outliers (the green group) are relatively rare across the entire timespan
of experiment.
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Figure 15. The average numbers of cells within the particular clusters (red, blue, green) as a function
of the age of culture.

3.4. Confocal Microscope Observations of pCK Expression and Distribution

The automated analysis of DIC images showed majority of keratinocytes (76.33%)
during the seven-day in vitro culture. To confirm the presence of keratinocytes in further
days of in vitro culture, the distribution of cytokeratin 8 + 18 + 19 (pCK) in cells was
detected using an immunohistochemistry and confocal microscope. The results obtained
from this analysis are shown in Figure 16.
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Figure 16. Confocal microscopic observation of cytokeratin 8 + 18 + 19 (pCK) levels and cellular
distribution in keratinocytes in the designated periods of 7, 15, and 30 days of in vitro culture.
pCK-labeled fibroblasts were used as a negative control. DAPI—4′,6-diamidino-2-phenylindole,
FITC—fluorescein.
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4. Discussion

Oral mucosa is an accessible tissue with remarkable capacity for repair. Composed of
lining epithelium and supporting connective tissue, it allows to obtain two types of cells,
keratinocytes and fibroblasts, in primary in vitro cultures. Interactions between these two
different cell populations are important for the homeostasis of the tissue. Keratinocytes are
described as small-sized (10–20 µm in diameter) polygonal cells that tend to change their
morphology and size when undergoing differentiation process. During the differentiation
process, they lose their ability to proliferate, and express irregular size and shape. In long-
term in vitro conditions, these cells were reported to reach up to 50 µm in diameter [39].

The fibroblasts exhibit significantly diversified morphology, which depends on the
location and different environmental conditions [40]. The tissue distribution of fibroblast
subpopulations has a substantial impact on the regulation of connective tissue function [40].
These cells may show similar differentiation patterns as keratinocytes and similar expres-
sion patterns as mesenchymal cells [41]. One of the important processes for epithelial
tissue, such is the lining of the oral mucosa, is the ability of wound healing, highlighting
the importance of this tissue as a protective barrier towards the external and internal
environment.

Analysis of primary cells obtained from porcine oral mucosa was performed using
algorithms of DIC images, carried out on cell images over seven days of in vitro culture.
The key step in image analytics of cellular cultures was the separation of individual
cells from the background (and from each other, when two or more cells happen to be
adjacent). The object separation stage, known as image segmentation in computer vision
and pattern recognition, was particularly challenging, as the boundaries of cells render
rather faintly in DIC imaging (Figure 1). Moreover, the DIC imaging process visualizes
the cellular structures as a pseudo-3D relief, which, though convenient for humans, is not
necessarily beneficial for image analysis algorithms. Watershed segmentation [35], with later
improvements as implemented in the OpenCV software library [33], proved adequate and
reliable in many past studies, and is routinely used also in biological and medical imaging.
For example, OpenCV library was used to analyze images of skin cells, and quantitatively
determine the percentage of damaged cells in the image [42]. Computer image analysis was
also used when analyzing blood cells. The algorithm helped detect and count platelets, red,
and white blood cells in blood samples [43]. Research was also conducted on the detection
of malaria inpatients through microscopic digital image of blood sample and analysis using
OpenCV library [44]. Jaccard et al. developed an algorithm for analysis of images acquired
using phase contrast microscopy. Their algorithm allowed for automated image analysis
and evaluation of key characteristics of cell cultures (confluency, morphology, and cell
density) [45].

Some problems had to be solved during the computer analysis of DIC images. For
higher magnification (40×), the Bespoke method does not perform satisfactorily, making it
necessary to use the Feineigle technique. However, images at 10× magnification following
the Bespoke segmentation method provided results that were visually more compelling
than the Feineigle method for higher magnifications. Additionally, lower magnification
allows the analysis of a larger numbers of cells and thus arrive at more significant statistical
differences. Therefore, it is better to use images with a magnification of 10× for analysis.

Our algorithm applied a colored patch to each designated region. Most regions de-
lineate individual cells, though occasionally the segmentation algorithm groups a few cells
together into one region, or misinterprets various image artefacts as cells. However, the algo-
rithm usually manages to identify individual cells even in the later stages of culture growth,
when the density of cells is high and most of them are directly adjacent to other cells.

The algorithmic approach allowed the assessment of morphological types of cells that
are present in the in vitro culture, providing the possibility for quantitative comparison
between different morphological types of cells. Analysis of DIC images permits the
determination of the percentage share of particular morphological types, which were
followed by microarray analysis. As a result of the morphological assessment, two types of
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cells were selected. Some smaller and oval cells (blue color) that correspond to keratinocytes
and second fiber-like cells (red color) that correspond to fibroblasts (Figure 4). The third
type was a dispersed cluster (Figure 6) and corresponded rather to conglomerates of
multiple cell types. Finally, after comparing the number of cells, oval cells accounted for the
majority in the images analyzed, and fiber-like cells were the smaller group. This suggested
the predominance of keratinocytes.

Following the evaluation of DIC images, a long-term culture in vitro was carried
out. Long-term cultures are usually associated with a reduction in cells’ proliferative
capacity and the transition to differentiation. This highlighted the importance to analyze
the negative regulation of cell proliferation ontology group, associated with processes that
reduce cell proliferation during our transcriptomic analysis. It is also important to analyze
the ontological groups such as regulation of cellular component organization that consists
of genes involved in formation or disassembly of cell structures, including the plasma
membranes, and developmental process ontology group that consists of genes involved in the
process of cell development and differentiation. We have also analyzed genes related to
development, marked as anatomical structure development group. The other three groups,
single–organism cellular process, single–multicellular organism process, and biological adhesion
are related to cell adhesion and communication processes.

After comparing the obtained results, only three genes belonged to the ontological
group containing genes responsible for stopping or reducing the proliferation process.
The CCAAT/enhancer-binding protein alpha (CEBPA) interacts with CDK2 and CDK4
and reduces cell proliferation by inhibiting these kinases [46]. CEBPA can be expressed in
basal keratinocytes. Increased co-expression of CEBPA and CEBPB was demonstrated in
keratinocytes, that leave the basal layer and undergo terminal differentiation [47].

The IL6 gene expression product is responsible for regulating the immune response
process and haematopoiesis. IL6 also influences the proliferation of normal and tumor-
derived cells [48]. Previous studies showed that IL6 inhibits proliferation and increases
cell migration in the T47D breast carcinoma cell line [48]. Various cell types produce
IL6. Among these cells are also keratinocytes and fibroblasts [49]. In human epidermal
keratinocytes, IL6 can promote proliferation, but it is lower than proliferation induced
by epidermal growth factor (EGF) or transforming growth factor alpha (TGFA) [49]. In
another study, a sheet of mucosal cells was used to promote wound healing in skin. The
authors observed early wound closure and limited scar tissue formation, with low-level
expression of IL6, which is an inflammatory marker [50].

The negative regulation of cell proliferation ontology group included peroxisome proliferator-
activated receptor delta (PPARD), which is a nuclear receptor that plays an important role
in glucose and lipid homeostasis [51]. In the case of keratinocytes, it is a factor promoting
the differentiation and accumulation of lipids [52,53]. It was also shown that PPARD acti-
vation in vivo did not display anti-proliferative or pro-apoptotic effects [52] and suggested
that it inhibits the production of IL6 [54].

Three genes were upregulated after seven days of in vitro culture. After 15 days
of in vitro culture, the expression of CEBPA was at a similar level with IL6 and PPARD
showing slightly lower level of expression. In the last period of long-term culture, the
three genes described above were downregulated. Increased CEBPA expression after 7
and 15 days is consistent with previously reported results by Lopez et al. [47]. It appears
that PPARD and IL6 could influence the differentiation processes of keratinocytes during
in vitro culture.

Single-organism cellular process ontology group contains genes that influence processes
carried out on cellular level. One of the genes present only in this ontological group
is ATPase type 13A3 (ATP13A3), which is expressed in epithelial cells [17]. The high
level of ATP13A3 may indicate the intensity of proliferation processes, and a significant
decrease in its expression is associated with the process of apoptosis [17,55]. Another
gene belonging to this ontological group is six transmembrane epithelial antigen of the
prostate 1 (STEAP1) [17]. The protein product of this gene may play a role in intercellular
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communication. At the same time, the increase in STEAP1 expression correlates with the
increase in cell adhesion to the culture dish [17].

Among the analyzed ontological groups, only three genes were represented in all
groups. Transforming growth factor beta 1 (TGFB1) was downregulated after 15 days of
in vitro culture and was upregulated after 7 days and 30 days of in vitro culture [56]. TGFB1
is responsible for the control of cell proliferation and differentiation. It is secreted by fibrob-
lasts and epithelial cells [56,57]. The next gene, v-ets erythroblastosis virus E26 oncogene
homolog 1 (ETS1), regulates cell development. ETS1 is normally expressed in the prolifera-
tive layer of epithelium. It was presented that ETS1 can block terminal differentiation of
keratinocytes and promote their proliferation [58]. It was also showed that ETS1 induces
expression of metalloproteases and might contribute to increased keratinocyte motility [58].
The last gene that belongs to all analyzed groups is v-yes-1 Yamaguchi sarcoma viral
related oncogene homolog (LYN). The expression of LYN has been previously reported in
the mouse keratinocytes [59,60]. It has been shown that LYN is a substrate for caspases,
involved in the regulation of apoptosis and inflammation [60]. Phospholipase C gamma
1 (PLCG1) can be phosphorylated and activated by various tyrosine kinases, and one of
these kinases is LYN [61]. Xie et al. showed that PLCG1 is required for calcium-induced
keratinocytes differentiation, but in this process, mediated SRC and FYN kinases [61]. The
next gene, sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A), may be function-
ally related to other sphingomyelinases. It was investigated that SMPDL3A expression is
regulated by liver X receptor (LXR) and may be species-specific [62]. It was also noticed
no LXR-mediated induction of SMPDL3A expression in immortalized cell lines obtained
from kidney, liver, and skin fibroblasts [62]. Otherwise, the diacylglycerol pathway, in
which SMPDL3A is responsible for signal transduction, may be involved in regulating
the differentiation of the epidermis [63]. Participation in the differentiation process of
keratinocytes may also be controlled by polypeptide N-acetylgalactosaminyltransferase 7
(GALNT7), that can also regulate the osteogenic differentiation [64].

Replication factor C subunit 4 (RFC4) encodes a protein that is responsible for elonga-
tion DNA and was described in an earlier study [65]. Some data confirming the expression
of RFC4 in skin cells were presented by Phatak et al. [66]. RFC4 protein is involved in the
post replication repair process and is expressed in proliferating cells.

Based on the analysis of the STRING interaction network and information contained
in databases and comparison of text information from published scientific articles, there is
a correlation between ETS1 and CEBPA. Since the increased expression of CEBPA induces
the differentiation of keratinocytes, that migrating from the basal layer to the surface
layers, we assumed that ETS1 could also contribute to this process. ETS1, although it
blocks the terminal differentiation of keratinocytes, may affect their mobility. Analysis
of such dependence requires further studies. Most interactions were found for IL6 and
v-rel reticuloendotheliosis viral oncogene homolog (REL), confirming the multi-regulatory
function of IL6. A large number of interactions with REL generated by STRING is related
to the fact that this factor belongs to the NFKB family. Lorenz et al. described REL as a
key regulator of the growth and death of keratinocytes that may be playing an important
role in epidermal carcinogenesis [67]. Another study showed that REL and RELA are
necessary for normal epidermal development [68]. In the case of keratinocytes with silent
REL expression, decreased proliferation was observed. These cells were very small and did
not form colonies in culture [68].

Standardizing and normalizing primary cultures is essential to achieve repeatable
results and to create a model that allows reliable analysis, which could bring us closer to
translational research on oral mucosa regeneration.

5. Conclusions

The DIC images analysis algorithm that we used to extract cell images, and that further
enabled us to map the different morphological populations among the cells obtained from
porcine oral mucosa, is a great tool that could offer significant opportunities in future



Animals 2021, 11, 15 20 of 23

biomedical research. The use of machine learning allows to obtain more precise results, as
well as to automate the entire process through the use of appropriate software. Automated
image analysis can significantly reduce the costs associated with the identification of
cell types and eliminate human errors. Further transcriptomic studies that followed the
analysis obtained by DIC complemented our aim to characterize the cellular identities of
oral mucosa in long-term in vitro conditions.
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