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abstract

PURPOSE Despite decreased screening-based detection of clinically insignificant tumors, most diagnosed
prostate cancers are still indolent, indicating a need for better strategies for detection of clinically significant
disease before treatment. We hypothesized that patients with detectable circulating tumor DNA (ctDNA) were
more likely to harbor aggressive disease.

METHODS We applied ultra-low-pass whole-genome sequencing to profile cell-free DNA from 112 patients
diagnosed with localized prostate cancer and performed targeted resequencing of plasma DNA for somatic
mutations previously identified in matched solid tumor in nine cases. We also performed similar analyses of data
from patients with metastatic prostate cancer.

RESULTS In all cases of localized prostate cancer, even in clinically high-risk patients who subsequently had
recurrent disease, ultra-low-pass whole-genome sequencing and targeted resequencing did not detect ctDNA in
plasma acquired before surgery or before recurrence. In contrast, using both approaches, ctDNA was detected
in patients with metastatic prostate cancer.

CONCLUSION Our findings demonstrate clear differences between localized and advanced prostate cancer with
respect to the dissemination and detectability of ctDNA. Because allele-specific alterations in ctDNA are below
the threshold for detection in localized prostate cancer, other approaches to identify cell-free nucleic acids of
tumor origin may demonstrate better specificity for aggressive disease.
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INTRODUCTION

During the past two decades, prostate cancer has
remained the most diagnosed neoplasm in American
men, representing approximately 20% of all new di-
agnoses in 2019.1 Overtreatment of newly diagnosed,
indolent prostate cancers detected by increasing levels of
prostate-specific antigen (PSA) has been mitigated by
increasingly widespread adoption of active surveillance,
magnetic resonance imaging–targeted biopsies, nomo-
grams, and molecular tests for assessing the risk posed
by unsampled higher-grade disease.2-5 Although the
absence of adverse pathologic features, such as high
Gleason score or seminal vesicle invasion, from a biopsy
specimen is associated with improved outcomes after
definitive therapy (ie, surgery or radiation), sampling er-
rors may lead to underestimation of the risk of bio-
chemical recurrence. The potential for failure to detect
pathologic features motivates increased biopsy frequency
and premature withdrawal from active surveillance.6-8

Numerous recent studies have explored the genomic
basis for development of localized prostate cancer,

showing distinct evolutionary paths in nonindolent
versus indolent disease. The fate of tumors to progress
from their somatic progenitors is set early, with alter-
ations in ATM, PTEN, and MYC having predictive
power for the existence of higher-grade disease, in-
cluding occult oligometastases, at the time of radical
prostatectomy.9-13 The vast majority of these alter-
ations occur as copy number gains or deletions; thus,
the percentage of the genome affected by large
chromosomal rearrangements is similarly predictive of
biochemical recurrence and poor outcome.10,14,15

Analysis of plasma cell-free DNA (cfDNA) has rapidly
gained traction for profiling tumor genomics in pa-
tients with metastatic disease, especially in prostate
cancer, in which dissemination to the bone occurs
frequently.16 Allele-specific assays that detect major
driver events, such as mutations to AR, APC, EGFR,
and ERBB2 are commercially available for identifi-
cation of recurrent, targetable clonal alterations in
advanced stages of several cancers, including pros-
tate, colorectal, lung, and breast cancer.17 Compre-
hensive cancer panels, as well as whole-genome and
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-exome sequencing, can also be used to interrogate so-
matic copy number alterations (SCNAs) from plasma DNA,
with varying resolution depending on the sequence mo-
dality and depth.18,19 Personalized sequencing assays have
shown sensitivity for the detection of urothelial and co-
lorectal cancers.20,21 The success of these approaches has
been thought to depend on high tumor burden and the
propensity of the tumor to shed circulating tumor DNA
(ctDNA) into the bloodstreamwith proportional contribution
of subclones to the ctDNA pool.22,23 However, the feasibility
of applying these approaches to assess the clinical tra-
jectory of patients with newly diagnosed prostate cancer
has not been established.

In this study, we performed ultra-low-pass (ULP) whole-
genome sequencing (WGS) of cfDNA from 112 pa-
tients with localized prostate cancer to assess genome-
wide SCNAs and their association with biochemical
recurrence-free survival (median follow-up, 50 months).
We also performed deeper, targeted sequencing of cfDNA
in nine cases with matched multiregion sequencing of
prostate tumor tissue to identify subclones in ctDNA that
may associate with adverse pathologic features or mediate
relapse. The absence of signal from ctDNA in plasma from
patients with localized, but not metastatic, prostate cancer
demonstrates that the strategy of using tumor-specific
somatic alterations for assessing disease burden is of
minimal clinical utility.

METHODS AND RESULTS

Large SCNA Events Were Not Detectable in the Plasma of

Patients With Localized Prostate Cancer

ULP-WGS has been proposed as a screening technique to
detect large SCNAs in cfDNA for the rapid and inexpensive
determination of ctDNA content.19 To assess the feasibility
of this analysis in patients with localized disease, blood was
obtained from 112 consecutive patients (case numbers
L001 to L112) between April 2014 and January 2016.

Patients consented to participate in tissue and blood
procurement protocols while undergoing radical prosta-
tectomy (RP) as definitive therapy for newly diagnosed
prostate cancer or previously diagnosed prostate cancer
that had progressed on active surveillance. Clinical de-
mographics for this cohort are given in Table 1. Blood was
collected from an additional seven consecutive patients
(case numbers M01 to M07) with radiographically con-
firmed metastatic prostate cancer who would be expected
to harbor ctDNA on the basis of high tumor volumes
(Table 1).

We performed ULP-WGS on plasma collected before RP in
the 112 patients with localized disease (Fig 1A) to an av-
erage depth of 0.36× (range, 0.19× to 0.74×). Plasma from
the first 40 patients was collected in K2-EDTA tubes; the
remainder of blood samples were collected in Streck Cell-
Free DNA blood collection tubes (BCTs; Streck, La Vista,
NE). With the exception of systemic artifacts in chromo-
somes 5, 6, 8, and 12 from all plasma collected in the EDTA
tubes, no SCNAs were detected. Similarly, in the Streck-
collected samples, no SCNAs were detected except for
random sequencing artifacts in five patients. Because
average percent tumor content (PTC) is calculated on the
basis of all SCNA events, removal of these artifacts resulted
in no calls of PTC. The majority of patients (95 of 112) had
PSA levels no higher than 10 ng/mL. Even the patient with
the highest PSA level in the entire cohort, 43.63 ng/mL, did
not have nonartifactual SCNAs typical of prostate cancer.
Consequently, PTC and percent genome altered were in-
determinate for the localized cohort.

In contrast, four of the seven patients with metastatic
disease had plasma harboring substantial quantities of
ctDNA, as detected by ULP-WGS (Fig 1B). The SCNA
profile of this cohort was similar to that of The Cancer
Genome Atlas prostate cohort (Fig 1C) and even more
similar to themetastatic Prostate Cancer Foundation–Stand
Up to Cancer cohort (Fig 1D). The patient with the highest

CONTEXT

Key Objective
We evaluated whether detection of circulating tumor DNA (ctDNA) in patients with localized prostate cancer was associated

with high-grade pathologic features and biochemical recurrence. We examined ctDNA detection using unbiased ultra-low-
pass whole-genome sequencing approaches as well as focused resequencing on the basis of multiregion sampling from
radical prostatectomy tissue.

Knowledge Generated
ctDNA was not detectable in plasma from patients before radical prostatectomy. In patients who subsequently experienced

biochemical recurrence, ctDNA was not detectable in serially collected plasma over 24 months after surgery, including
a patient who had disease recurrence.

Relevance
DNA-based liquid biopsy approaches for localized prostate cancer are hampered by the low overall abundance of ctDNA.

Although these methods work well in metastatic disease, prostate-specific antigen remains the gold standard for sensitivity
for diagnosing recurrence after primary therapy.
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PTC (30.66%) had a PSA level of 190.9 ng/mL, and the
patient with the lowest detectable PTC (6.8%) had a PSA
level of 144.2 ng/mL. In contrast, in metastatic prostate
cancer, the lowest PSA level associated with detectable
tumor was 42.3 ng/mL, corresponding to 13.94% tumor
content. Therefore, we conclude that ULP-WGS is not
sensitive for the detection of SCNAs in the plasma of pa-
tients with localized prostate cancer and that PSA level in
the localized setting is a poor surrogate for likelihood of
detecting ctDNA by ULP-WGS.

Requirements for a Patient-Specific Assay

Development of primary prostate cancer is driven primarily
by structural rearrangements and SCNAs; hotspot point
mutations in oncogenes and tumor suppressors, such as
HRAS and TP53, are rare.24 Commercial, off-the-shelf
ctDNA tests are focused on these recurrent mutations,
limiting their utility for detecting ctDNA in primary prostate
cancer. Even the most recurrent mutation in primary
prostate cancer, at codon 133 of SPOP, occurs in less than
5% of tumors.24 Presuming mutation events that occur
early in a tumor’s natural history are present in all daughter
cells, truncal passenger mutations would be present in
ctDNA and, therefore, might be used to detect ctDNA on
a per-patient basis.

When mapped, prostate cancers branch substantially at
their index lesion (Fig 2A), such that repeated sampling of
multiple tumor regions (Fig 2B) is needed to empirically
infer mutations that are shared by all or most tumor lesions,
and thus would be candidates for detection in ctDNA. Our
approach attempts to identify such mutations through
several steps, as illustrated in Fig 2C: (1) immunohisto-
chemistry was performed on serial sections of multiple
blocks of tumor tissue from each patient; (2) laser capture
microdissection was used to isolate histologically distinct
foci from which DNA was extracted; (3) extracted DNA was
subjected to WGS and whole-exome sequencing (WES);
and (4) WGS and WES data were integrated into tumor
phylogenies encompassing SCNAs and point mutations
(Fig 2D). Point mutations composing the “trunk” or major
“branches” of these evolutionary “trees” were selected for
incorporation into the patient-specific assay.

Single Molecule Detection

Discordance between different commercial tests and even
repetitions of standard polymerase chain reaction (PCR) to
detect and quantify rare alleles can often be linked to high
false-positive rates.26,27 Consequently, we designed a locus-
specific, Illumina-compatible (San Diego, CA) library
design that incorporated 7-base unique molecular iden-
tifiers for tagging individual template molecules. Coupled
with analysis scripts that use heuristics, this design dis-
tinguished mutations arising from errors during library
preparation from those present in the starting material,
making it robust to false-positive results. Details of library
design and analysis are provided in the Appendix.

TABLE 1. Characteristics of Men With Localized Prostate Cancer and Men With
Metastatic Prostate Cancer
Characteristic Data

No. of patients with localized disease 112

Demographics

Age, median (IQR), years 63 (58-67)

Race

Black 10 (8.9)

White 83 (74.1)

Asian 1 (0.9)

Hawaiian or Pacific Islander 1 (0.9)

Unknown 17 (15.2)

Clinical

PSA, median (IQR), ng/mL 5.75 (4.5-8.08)

Histology

Pathologic stage

T2 53 (47.3)

T3a 45 (40.2)

T3b 14 (12.5)

N0/Nx 109 (97.3)

N1 3 (2.7)

Gleason score (grade group)

3+3 (1) 11 (9.8)

3+4 (2) 67 (59.8)

4+3 (3) 26 (23.2)

4+4 (4) 1 (0.9)

4+5; 5+4; 5+5 (5) 7 (6.3)

No. of patients with metastatic disease 7

Demographics

Age, median (IQR), years 59 (55-71)

Race

Black 2 (28.6)

White 5 (71.4)

Clinical

PSA, median (IQR), ng/mL 42.3 (19.2-97.77)

Metastatic sites by imaging

Bone 7 (100)

Soft tissue 1 (14.3)

Clinical history

Gleason score of primary tumor prostatectomy
(grade group)

3+3 (1) 1 (14.3)

4+3 (3) 2 (28.6)

4+5; 5+4 (5) 4 (57.1)

(Continued on following page)
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To verify and benchmark this design, we first generated
target amplicons of 139 or fewer base pairs (Data Sup-
plement), containing eight different heterozygous and
homozygous alleles from PC3 and DU145 genomic DNA
(gDNA), to serve as synthetic ctDNA. Fresh plasma was
obtained from a single male donor with no known cancer
diagnoses, through the National Institutes of Health De-
partment of Transfusion Medicine. Synthetic ctDNA was
spiked into separate 3-mL aliquots of plasma in duplicate
for both DU145- and PC3-derived gDNA in approximate

copy number amounts spanning six logs (ie, 101, 102, 103,
104, 105, and 106) for a total of 24 plasma samples plus four
negative controls. Samples were frozen overnight and later
thawed for extraction of cfDNA. Two rounds of library
preparation were performed per cfDNA sample, for a total
of 56 libraries.

As shown in the Data Supplement, the assay demonstrated
high reproducibility between spike-in targets at similar
quantities, with robust detection of mutant alleles at the 10 and
100 spike-in amounts. Although the expected limit of detection
on the basis of the total possible number of unique molecular
identifiers was 16,384 (ie, 47) template molecules, our ob-
served mean saturation was closer to 1,000 molecules (Data
Supplement), as a result of the abundance of the wild-type
allele, which our analysis ignored. Although we spiked in
excess quantities of target for the purpose of estimating re-
covery, yield, and complexity loss during library preparation,
this assay demonstrated robust recovery of rare alleles, which
was its intended purpose.

Positive Detection of ctDNA Alleles in Plasma From

Patients With Metastatic Prostate Cancer

Tissue biopsy specimens from four of seven patients with
metastatic cancer (M03, M04, M06, and M07) with high
plasma tumor content, as determined by ULP-WGS (Fig 1),

TABLE 1. Characteristics of Men With Localized Prostate Cancer and Men With
Metastatic Prostate Cancer (Continued)
Characteristic Data

Prior systemic therapy*

Abiraterone 5 (71.4)

Enzalutamide 2 (28.6)

Docetaxel 3 (42.9)

Sipuleucel-T 1 (14.3)

Prostvac 2 (28.6)

NOTE. Data presented as No. (%) unless otherwise indicated.
Abbreviation: IQR, interquartile range; PSA, prostate-specific antigen.
*Sum of percentages exceeds 100% as a result of patients receiving more than

one prior therapy.
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FIG 1. Ultra-low-pass whole-genome sequencing of circulating tumor DNA. (A) Somatic copy number alteration (SCNA) profile of circulating tumor DNA
(ctDNA) from patients with localized prostate cancer, encompassing National Comprehensive Cancer Network risk groups of low, intermediate-favorable,
intermediate-unfavorable, high, and very high-risk disease (n = 112). Gray bars represent PGA and PTC values before artifact removal. Ploidy values are
uncorrected. (B) SCNA profile of ctDNA from patients with radiographically confirmed,metastatic, castration-resistant prostate cancer (n = 7). (C) SCNA profile
of patients in the prostate The Cancer Genome Atlas24 cohort (n = 333). (D) SCNA profile of patients in the Prostate Cancer Foundation-Stand Up to Cancer25

cohort (n = 150). Abi, abiraterone acetate plus prednisone; Enz, enzalutamide; GG, International Society of Urological Pathology grade grouping; Met,
metastatic; PGA, percent genome altered; PSA, prostate-specific antigen; PTC, percent tumor content; TGP, tertiary Gleason pattern; Tx, therapy.

Hennigan et al

4 © 2019 by American Society of Clinical Oncology



were unavailable for sequencing. WES was performed on
cfDNA from these four cases, using their matched buffy
coat gDNA as a benign control. cfDNA and buffy coat DNA
were sequenced to mean on-target depths of 140× and
90×, respectively. As expected, the SCNA profile from
exome sequencing generally matched the SCNA profile
from ULP-WGS for each patient (Fig 3A), although the
substantially higher resolution of exome sequencing per-
mitted detection of smaller genomic events (Fig 3B).

Importantly, for samples with orthogonally confirmed
ctDNA levels, we generated a catalog of somatic mutations
by comparing each sample with its matched benign control
(Fig 3C; Data Supplement). Following our protocol for
bespoke library design, four sets of primers were generated
for the detection of high-clonality mutant alleles in each
sample (Data Supplement). These primer pairs success-
fully amplified 36 of 36 targets from all four cases and

detected mutant ctDNA alleles in 32 of 36 amplified targets
(Fig 3D; Data Supplement). When back calculated to an
expected molecule number using the spike-in curve fit, raw
deduplicated mutant read counts from the patient-specific
assay correlated well with the unique mutant read counts
from exome sequencing (Fig 3E).

Detection of mutant alleles in cfDNA was also positively
correlated with raw read count abundance (Spearman’s
ρ = 0.5575; P , .001; Data Supplement). Although in-
terpolation of actual read counts to estimate the number of
starting template molecules generally increased the ab-
solute number of alleles reported, the interpolated values
were more similar in range to the number of deduplicated,
exome-sequenced detected alleles than the actual count
(Wilcoxon matched-pairs signed rank test; Data Supplement).

We next asked whether lower read count thresholds would
affect binary detection (presence or absence) of ctDNA
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below defined read-count thresholds. When sequence
reads were downsampled before alignment to 1 million
reads per library, or 100,000, 50,000, or 10,000 reads per
target, the observed read count was consistently higher
than what would be expected, because of lower depth
(Data Supplement), such that reduction to 10,000 reads
per target (greater than 90% downsampling) only reduced
mutant allele detection by approximately 50%. At the
lowest level of downsampling (10,000 reads per target), all
mutant alleles were still detected. Importantly, at sites
where mutations were not previously detected, analysis of
full-sequence output did not reveal mutations that would
represent artifacts of library preparation or sequencing.
Therefore, from these data, we conclude that our patient-
specific assay can robustly resequence mutant cfDNA
alleles with greater than 93% sensitivity and 100% spec-
ificity for the target regions assessed.

Lack of Detection of ctDNA Alleles in Plasma From

Patients With Localized Prostate Cancer

With a highly sensitive patient-specific assay robust against
false-positive results, we applied our ctDNA detection
approach to men newly diagnosed with localized disease.
Our initial hypothesis was that detection of ctDNA at
baseline would predict adverse pathologic features asso-
ciated with recurrence (such as high Gleason score) or
would predict recurrence itself. We selected nine of the 112
localized disease cases, representing a range of Gleason
scores, pathologic T stages, sample ages, baseline PSA
levels, and biochemical recurrence statuses (3 years or
more after prostatectomy), from which to identify clonal
markers in plasma (Table 2). A list of microdissected and
sequenced foci is given in the Data Supplement.

Before laser capture microdissection, we performed im-
munohistochemistry against ERG to select concordantly
positive or negative foci (Data Supplement). We previously
established that chromosomal breakpoints serve as a de-
finitive clonal marker in TMPRSS2:ERG fusion-positive
tumors.28 In only one (L001) of two ERG-positive cases
(L001 and L003) for which WGS was performed did we
successfully read through the TMPRSS2-ERG breakpoint
(Data Supplement). However, even a nested PCR approach
failed to amplify the fragment of DNA containing the
breakpoint from plasma (Data Supplement).

Therefore, we used the approach illustrated in Figure 2, in
which we integrated SCNA andmutation clonality data from
multiple foci (Data Supplement) to identify point mutations
as either trunks, branches, or leaves of a given tumor tree;
truncal mutations were shared by all foci, branch mutations
were shared by most or some foci, and leaf mutations were
unique to a given focus. The complete list of somatic

mutations considered for this analysis and the mutations
selected for bespoke sequencing ctDNA analysis are given
in the Data Supplement. Despite high specificity and
coverage, no mutated alleles indicative of ctDNA were
detected from the cfDNA sampled before RP (Table 3).
Surprisingly, any ctDNA that may have been present from
patient L015, who had Gleason 10 prostate cancer and
subsequently had disease recurrence, was below the limit
of detection for both ULP-WGS (Fig 1) and allele-specific
measurement (Table 3; Data Supplement).

Finally, we asked whether we could detect ctDNA in this same
group of patients after RP when PSA levels are low before
biochemical recurrence. Although only one patient in this
cohort has had disease recurrence to date, ctDNA was not
detected in any of the nine patients over multiple time points
(Table 3; Data Supplement). Taken together, we conclude that
although allele-specific detection is a robust approach for
identifying ctDNA alleles in patients with metastatic prostate
cancer, it is inferior to the sensitivity of PSA testing in a localized
prostate cancer population for measuring disease burden.

Data Availability

Sequence data has been deposited into dbGaP (accession
ID phs001813.v1.p1).

DISCUSSION

In light of concerns that PSA levels simply reflect tumor
volume rather than grade, and that they may fail to detect
androgen receptor–low or indifferent tumors, PSA mea-
surement remains an excellent biomarker for treatment re-
sponse, and it is the gold standard for diagnosing biochemical
recurrence after primary therapy.29 In our study, we hy-
pothesized that higher grade, more poorly differentiated
cancers could be distinguished from indolent tumors on the
basis of detection of ctDNA in preoperative plasma. We also
hypothesized that plasma from patients with more aggressive
tumors that ultimately recurred would also harbor ctDNA that
could be detected preoperatively, or postoperatively before
biochemical recurrence defined by PSA level. Using un-
biased ULP-WGS, we were unable to detect ctDNA in lo-
calized prostate cancer before surgery from patients with
a wide range of PSA levels and tumor aggressiveness. Our
allele-specific assay, which is sensitive to as few as 10mutant
alleles of spiked-in DNA, similarly did not detect either ctDNA
from preoperative plasma or from plasma before biochemical
recurrence. In contrast, both assays detected ctDNA in pa-
tients with metastatic prostate cancer.

If ctDNA levels were directly proportional to PSA levels, then
a subset of patients with localized prostate cancer with
higher PSA levels would have been expected to have de-
tectable ctDNA.30 Indeed, in our metastatic cohort, three

FIG 3. (Continued). actual and adjusted (interpolated) bespoke sequencing mutant read counts versus mutant read counts from exome sequencing.
Correlation statistic Spearman ρ and P values are the same for actual and interpolated counts. cfDNA, cell-free DNA; Seq, sequencing; VAF, variant allele
fraction (mutant reads/total reads). (*) Mutant allele.
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patients with PSA levels below 30 ng/mL did not show any
SCNAs by ULP-WGS, with the remainder (including one
patient with PSA level of 51.34 ng/mL) having ctDNA de-
tectable by ULP-WGS, WES, and allele-specific sequenc-
ing. However, among the localized cohort, even the patient
with the highest preoperative PSA level (L039; 43.63 ng/mL)
did not harbor detectable ctDNA. This finding suggests
that intrinsic differences between primary and metastatic
prostate cancer, including the kinetics of ctDNA shedding
and turnover, low proliferative rate of localized disease, and
poor proximity to vasculature relative to metastases, may
result in degradation of cfDNA before it reaches circulation.

Because ctDNA potentially represents a pool of multiple
subclones shedding cfDNA, alleles detected in ctDNA may
only represent the most clonal and truncal of alterations,
especially when the percentage of ctDNA in total cfDNA is
low.16 To address this challenge, we reconstructed tumor
phylogenies from genome and exome sequencing of tissue
to select alleles representing the major subclones that
would be present at the time of surgery and further mediate
relapse. Before executing these experiments, we developed
and tested a patient-specific, allele-specific sequencing
assay that satisfied requirements for reproducibility, ac-
curacy, sensitivity, and specificity.16,31,32 This assay con-
sistently detected spiked-in alleles and showed 100%
concordance to unbiased WES of the same sample at very
high coverage. However, after applying this assay to pre-
operative and postoperative plasma samples, we found that
the lack of detection of clonal alleles in ctDNA was not pre-
dictive of adverse final pathology, recurrence, or metastasis.

There is an important limitation of this finding. Although
rare, some prostate cancer tumors recur that were only
a minor subclone at the time of RP.33 In our study, we
focused on the index lesion as the tumor system most likely
to drive relapse. Given the prospective and unselected

population of our cohort, the vast majority have remained in
remission after surgery, with the only one recurrent tumor
(patient L015) having undergone in-depth primary tumor
sequencing. Moreover, we were unable to acquire meta-
static tissue from this patient to sequence and compare
with the targets selected from the prostatectomy. Conse-
quently, it is possible that the clone driving metastasis was
independent of the tissue sequenced. Despite using the
most sensitive allele-specific assay possible, design of
these assays was based on comprehensive tumor sam-
pling. Therefore, we cannot state with absolute certainty
that allele-specific analysis assessed the correct clone and
that ctDNA levels in patients were below limits of detection.

There have been a limited number of published studies that
evaluated cfDNA as a biomarker prognostic of advanced
disease in the localized prostate cancer setting.34-36 The
largest of these studies to date examined the total burden of
cfDNA and ctDNA by hypermethylation of the GSTP1
promoter in DNA extracted from the serum of 192 patients.35

Although GSTP1 hypermethylation in serum cfDNA was in-
creased in the recurrent and metastatic populations com-
pared with indolent prostate cancer, contribution of GSTP1
equivalents in serum from normal tissue affected by oligo-
metastases may have contributed to this finding, because
GSTP1 hypermethylation is not a tumor-specific event.35

Moreover, the PCR assay used for detecting circulating
GSTP1 amplifies a DNA fragment in excess of the approxi-
mately 165-bp ctDNA fragment, suggesting it is of nontumor
origin despite reflecting increased tumor aggressiveness.35

Bespoke approaches to detect ctDNA from urothelial and
colorectal cancers have demonstrated success in risk
stratification and therapy monitoring. In a cohort of 68
patients with muscle invasive bladder cancer, a personal-
ized assay to sequence somatic variants as markers of
ctDNA in preoperative plasma was highly prognostic for

TABLE 2. Clinical and Experimental Data of Patients for Whom Tissue Sequencing and Subsequent Circulating Tumor DNA Assessment From Plasma Was
Performed (n = 9)

Case
Gleason
Score

Baseline
PSA T Stage Race

Patient Age
(years)

BCR
Status

Sample Age
(years)

Sequencing
Approach

Foci
LCM

No. of Samples
Sequenced*

L001 3+4 T5 3.38 T3a W 51 R 5 WGS 5 2

L002 4+3 6.3 T3a W 65 R 5 WGS 6 2

L003 3+4 8.82 T3b W 66 R 5 WGS 4 2

L004 4+3 T5 5.8 T3b W 55 R 5 WES 9 9

L015 5+5 T4 1.6 T3b W 69 BCR 4 WES 5 5

L039 5+4 43.63 T3b W 68 R 4 WES 13 11

L040 4+5 6.8 T2c B 62 R 4 WES 7 7

L107 3+3 T4 2.8 T2c W 56 R 3 WES 7 4

L108 3+4 17.3 T3a B 64 R 3 WES 15 8

Abbreviations: B, black; BCR, biochemically recurrent; LCM, laser capturemicrodissection; PSA, prostate-specific antigen; R, remission; T, tertiary pattern;
W, white; WES, whole-exome sequencing; WGS, whole-genome sequencing.
*Tissue foci from the same block or histologically distinct tumor may have been pooled before sequencing. Number does not include additional samples of

benign material sequenced as reference controls.
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recurrence after cystectomy.37 Among patients with
recurrent disease, ctDNA detected before chemotherapy
also tracked with worse overall survival.37 Similar successes
were achieved in a cohort of 130 patients with colorectal
cancer: A personalized ctDNA detection assay detected
ctDNA in 88.5%of preoperative plasma samples, and 70%of
patients with detectable ctDNA at the start of adjuvant che-
motherapy subsequently experienced disease recurrence.21

The striking difference between our findings and these re-
ports from bladder and colorectal cancer cohorts may reflect
some of the same differences between primary and metastatic
prostate cancer with respect to ctDNA shedding, including cell
proliferation rate and proximity to vasculature.

Nonetheless, to the best of our knowledge, this is the first
comprehensive analysis to conclude definitively that

somatic mutation and copy number alterations in
cfDNA do not effectively measure ctDNA levels in an
untreated localized prostate cancer cohort. Because
these locus-level analyses of individual genomes are below
the limits of detection, other circulating nucleic acid analytes
may be more representative of phenotype and thus offer
better detection characteristics. Circulating tumor cells,
circulating cell-free microRNA, circular RNA, post-
transcriptionally modified RNA species, and genome-
wide tissue-of-origin patterns of DNA methylation do not
correlate 1:1 with tumor cell number, and thus may give
a much greater signal than allele-dependent assays for the
early, noninvasive detection of aggressive and potentially
recurrent prostate cancer.37,38
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APPENDIX

MATERIALS AND METHODS

Study Approval

This research was conducted in accordance with the principles of the
Declaration of Helsinki. The collection and analysis of plasma, tissue,
and demographic data from patients with localized prostate cancer
was approved by the institutional review boards of Beth Israel Dea-
coness Medical Center (protocol no. 2010-P-000254/0) and Dana-
Farber/Harvard Cancer Center (DFHCC; protocol no. 15-008 and 15-
492). The collection of plasma and demographic data from patients
with metastatic prostate cancer was approved by the National In-
stitutes of Health Institutional Review Board (protocol no. 02-c-0179).
All patients provided informed consent before participating in tissue
procurement protocols.

Blood Collection

Blood was obtained from patients diagnosed with localized prostate
cancer pre- or perioperatively to radical prostatectomy and again at
intervals coinciding with urology follow-up visits. At each time point, 8
to 10 mL of whole blood was collected into K2-EDTA Vacutainer
(Becton Dickinson, Franklin Lakes, NJ) or Cell-Free DNA (cfDNA)
blood collection tubes (BCTs; Streck, La Vista, NE) following recom-
mended guidelines for venipuncture, collection order, and inversion.
K2-EDTA–collected blood was stored on ice and processed within
1 hour of collection. cfDNA BCT-collected blood was stored at room
temperature and processed within 3 days of collection (if shipped from
DFHCC to the National Institutes of Health) or within 8 hours of col-
lection (if processed at DFHCC).

Blood was obtained from patients with metastatic, castration-resistant
prostate cancer after progression while being treated. At a single time
point before receiving subsequent therapy, 8 to 10 mL of whole blood
was collected into cfDNA BCTs as described. Sample processing
occurred within 8 hours of collection.

Tissue Histology

Radical prostatectomy specimens were grossly examined and then
formalin-fixed and paraffin-embedded according to standard pro-
cedures. Hematoxylin-and-eosin–stained slides were reviewed by
a board-certified surgical pathologist following the 2014 International
Society of Urological Pathology guidelines. For each case, maps were
created to identify the distribution of cancerous regions throughout the
entire resected specimen.

Laser Capture Microdissection

Serial sections of tumor tissue (and benign regions uninvolved with
tumor) were cut onto metal frame PEN-membrane slides (Micro-
Dissect, Herborn, Germany), stained with Paradise Stain (Thermo
Fisher Scientific, Waltham, MA), and laser capture microdissected
using an ArcturusXT Ti microscope (Thermo Fisher Scientific) onto

CapSure Macro LCM Caps (Thermo Fisher Scientific). Slides were
stained with hematoxylin and eosin, ERG, PTEN, and PIN-4, scanned
and visualized using ZEN Browser (Carl Zeiss, Oberkochen, Germany)
on an adjacent monitor as references. Per focus, 50,000 to 100,000
cells were captured. For each cap, a photomicrograph was acquired to
estimate tumor cell purity in each sample.

Whole-Genome and Whole-Exome Sequencing of Tissue

DNA

Genomic DNA (gDNA) was sheared using acoustic sonication (Covaris,
Woburn, MA). For whole-genome sequencing, target genomic frag-
ment sizes were longer than 300 bp and selected by Pippin Prep (Sage
Science, Beverly, MA). After end-repair and A-tailing, modified Illu-
mina adaptors containing 7-base inline unique molecular identifiers at
the 3′ end of each adaptor were ligated to each library insert. Libraries
were sequenced on a HiSeq X10 (Illumina, San Diego, CA) to a target
depth of 30× to 40× coverage.

For whole-exome sequencing (WES), target fragments were sonicated
to a target size of 200 bp and selected by AMPure XP SPRI beads
(Danaher, Washington, DC). WES libraries were prepared using the
SeqCap EZ Exome Kit v3 (Roche, Basel, Switzerland) or the SureSelect
Human All Exon V7 Low Input Exome kit (Agilent, Santa Clara, CA).
Equimolar pooled libraries were sequenced on aHiSeq 2000 and 4000
(Illumina) to a targeted on-bait depth of 150×. Agilent libraries in-
cluded an additional R3 read to sequence the 10-base unique mo-
lecular identifier.

Ultra-Low-Pass Whole-Genome Sequencing of Plasma

DNA

From 10 to 100 ng of cfDNA from plasma samples (corresponding to
approximately 10 μL of eluate) or 100 ng of gDNA was assembled into
paired-end libraries using the NEBNext Ultra II DNA Library Prep Kit
(New England BioLabs, Ipswich, MA). Approximately 60 libraries were
pooled per lane before sequencing on a HiSeq 4000 to a target depth
of 0.5×.

WES of Plasma DNA

From 10 to 100 ng of cfDNA from plasma samples (corresponding to
approximately 10 μL of eluate) or 100 ng of gDNA was assembled into
exome sequencing libraries using the SureSelect Human All Exon V7
Exome kit (Agilent). DNA samples were pooled to achieve an on-bait
depth of 100× for the buffy coat gDNA and 300× for the plasma cfDNA.

Statistical Analyses

Statistical analyses were performed using GraphPad Prism 8 for Mac.
Statistical tests used and relevant variables are indicated in the legend
of each figure.
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