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Integrated molecular characterization
of chondrosarcoma reveals critical determinants
of disease progression
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Chondrosarcomas are primary cancers of cartilaginous tissue with highly contrasting prog-
noses. These tumors are defined by recurrent mutations in the IDH genes and other genetic
alterations including inactivation of CDKN2A and COL2AT; however, these have no clinical
value. Here we use multi-omics molecular profiles from a series of cartilage tumors and find
an mRNA classification that identifies two subtypes of chondrosarcomas defined by a balance
in tumor differentiation and cell cycle activation. The microRNA classification reveals the
importance of the loss of expression of the 14932 locus in defining the level of malignancy.
Finally, DNA methylation is associated with IDH mutations. We can use the multi-omics
classifications to predict outcome. We propose an mRNA-only classifier to reproduce the
integrated multi-omics classification, and its application to relapsed tumor samples shows the
progressive nature of the classification. Thus, it may be possible to use mRNA-based sig-
natures to detect patients with high-risk chondrosarcomas.
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ARTICLE

hondrosarcoma is a heterogeneous type of primary bone

cartilage malignancies with highly contrasting clinical

outcomes. Chondrosarcomas may be distinguished by the
body-location of the bone from which they arise, which may have
an impact on the surgical resectability. Cartilage tumors may also
be classified according to their location related to the bone, with a
majority of central chondrosarcoma arising from the medullar
cavity (more than 85%) and the less common peripheral and
periosteal chondrosarcomas arising from the surface of the bone.
Regardless of location, all chondrosarcomas are classified by their
histology in three grades from the well-differentiated lowly cel-
lular exceptionally metastatic grade I chondrosarcoma to the
poorly differentiated and highly cellular grade III chon-
drosarcoma with 70% of patients developing metastasis!. In the
context of high-grade cartilaginous tumors, the exceptionally
aggressive dedifferentiated chondrosarcoma subtype may also be
discerned. Decisive for clinical and surgical course of treatment,
histological grading is to date the best predictor of clinical
behavior. Unfortunately, histological grading is subject to high
inter observer variability with disagreement between pathologist
observed in a majority of cases®. This important limitation of
histological analysis to select the most appropriate clinical man-
agement uncovers an urgent need for molecular markers to more
robustly predict clinical behavior.

Recent genomic analyses focusing only on DNA mutations
identified frequent activating mutations of isocitrate dehy-
drogenase genes IDHI and IDH23 as well as inactivating muta-
tions in the Collagen Type II Alpha 1 Chain COL2A 4. While of
major biological relevance, neither of these alterations could be
used to predict the prognosis of chondrosarcomas.

In this study, a series of 102 cartilage tumors (Supplementary
Table 1, Supplementary Data 1) is collected from eight clinical
centers in France between 1997 and 2013. This series is mostly
composed of chondrosarcomas (n=91, 89.2%) of all grades
including 16 dedifferentiated chondrosarcomas. This series is
used to uncover the molecular diversity of chondrosarcomas
through the profiling of mRNA, microRNA, DNA methylation,
DNA copy number aberrations, and DNA somatic mutations
among those identified in previous whole-exome screening?.

A consensus clustering approach is applied separately to
mRNA, microRNA, and DNA methylation profiles to classify
chondrosarcomas into molecular subtypes. A multi-omics clas-
sification is then obtained by integrating the three molecular
subtyping systems. This reveals three major molecular features
delineating the diversity of clinical outcomes in chon-
drosarcomas: a high mitotic state, regional 14q32 loss of
expression and IDH mutations leading to genome-wide DNA
hypermethylation. These three robust and simple molecular fea-
tures classify chondrosarcoma in subtypes with superior clinical
value as compared to the current grading system.

Results

mRNA identifies a differentiation-proliferation balance. In
order to classify chondrosarcomas based on the gene expression
of tumor cells, the set of 102 mRNA transcriptomic profiles were
first subject to an Independent Component Analysis (ICA), a
blind source separation algorithm, to decompose the global
transcriptomic components of chondrosarcoma. This revealed six
components (Supplementary Fig. 1), two non-neoplastic com-
ponents related to muscle tissue and hematopoietic lineages, three
tumor-related components associated to the tumor’s differentia-
tion, proliferation and glycolytic state, and one component
associated to a technical metric. The gene expression measure-
ments associated to non-neoplastic or technical components were
removed prior to a class-discovery procedure. The unsupervised

classification was obtained using an unsupervised consensus
clustering approach, consisting in applying a hierarchical clus-
tering method in a resampling framework to obtain a robust
classification from high-dimensional datasets.

This revealed two robust mRNA-based subtypes (Fig. 1a, b).
The first subtype E1 (n = 67) was defined by the over-expression
of chondrogenic differentiation markers such as aggrecan,
chondroadherin, or parathyroid hormone 1 receptor (PTHIR).
The second subtype E2 (n = 35) lacked the expression of cartilage
markers genes and was associated with high levels of cell-cycle
related genes. Consistently, gene expression components levels, as
well as pathway analysis (Fig. 1c, d) showed an overall increased
in proliferation-related genes in the E2 subtype and higher levels
of chondrogenic differentiation pathways, including of the TGF-
beta signaling pathway, in E1. The association with histology was
overall significant with a higher proportion of lower grade G1 and
G2 in El while E2 was enriched in G3 and dedifferentiated
chondrosarcomas (Fig. 1c). The analysis of genetic characteristics
showed that tumors of the E2 proliferative subtype showed a
higher chromosomal instability index and were more often
polyploid. Furthermore, the deletion of the CDKN2A locus was
prevalent in E2. Patient classified in the E2 subtype were
associated to a poor overall survival with a hazard ratio (HR)
of 4.29 (95% confidence interval [CI] 1.84-10; 36 months median
overall survival E1: 86.77% [77.44%, 97.23%] versus E2: 44.32%
[27.92%, 70.35%]) altogether highlighting the greater aggressivity
(Fig. le and Supplementary Fig. 1).

microRNA highlight the loss of expression of the 14q32 locus.
Similarly to the analysis of the mRNA, the microRNA tran-
scriptomes were first subject to an ICA decomposition (Supple-
mentary Fig. 2), revealing two tumor-related components
(proliferation and extracellular matrix interaction with loss of
expression of the 14932 locus) and one technically-related com-
ponent (depth of microRNA sequencing). The consensus clus-
tering of microRNA profiles after the removal of the microRNA
associated to the technical component, revealed four robust
microRNA-based subtypes (Fig. 2a, b) of which the most differ-
ential microRNAs were frequently found in the 14q32 locus
(Fig. 2c). Three subtypes, Mir2 (n = 26), Mir3 (n = 19), and Mir4
(n=14), were characterized by an overall decreasing level of
expression of 86 microRNAs in this particular region of the
genome (84% of the 102 total microRNAs measured in this
region, FDR 1%). The Mir4 cluster was associated with an
intermediate decrease in 14q32-located microRNA expression
levels as well as to downregulation of other cancer-related
microRNAs such as miR-27B, miR-125A, and miR-140. As the
14932 locus is an imprinted region of the genome, we sought for
genetic events that could explain such an effective regional
silencing. Only few copy number losses or Loss of Heterozygosity
(LOH) were identified and could be held accountable for the
14q32 regional loss of expression. The limited number of genetic
alterations associated with the 14q32 loss of expression suggests
additional epigenetic events, possibly beyond DNA methylation
as none of the 178 microRNA-associated CpG measured could
explain this regional loss of expression. Figure 2d shows the
expression of the 102 microRNAs identified and quantified along
the 14q32, illustrating broad regional silencing in all groups
compared to the Mirl cluster and highlighting miR-154, miR-382
and miR-384 previously shown to inhibit tumor growth in bone
sarcomas®~/. Inhibition of the microRNAs located in the 14932
locus was previously found to regulate proliferation in prostate
cancer and osteosarcoma®®. A pathway analysis of the genes
correlating to the median expression of the 14q32 microRNA
cluster revealed that 14q32 loss of expression was associated to
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the downregulation of pathways involved in extracellular matrix
interactions and composition suggesting a remodeling of the
tumor cell environment (Fig. 2e and Supplementary Fig. 2). The
microRNA classification demonstrated a prognostic value (log-
rank test p-value: 6.54e-8, Fig. 2f) and in particular patients
belonging the subtypes characterized by the loss of expression of

Time (months)

the 14q32 locus (i.e., Mir2, Mir3, and Mir4) were associated to the
poorest prognosis with a hazard ratio of 5.04 (95% CI 1.71-14.9,
Fig. 2g).

DNA methylation mirrors IDH mutations. Similarly to the
analysis of RNA profiles, the DNA methylation were first
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Fig. 1 mRNA expression classification. a Cophenetic correlation coefficient for increasing number of clusters. Red point shows the chosen number of
clusters (two) selected as the number previous to the largest decrease in the cophenetic correlation coefficient. b Heatmap of the co-classification matrix
resulting from the consensus clustering approach. The matrix is symmetric and shows the frequency of co-classification of all 102 by 102 samples in the
1000 resampling iterations of the consensus clustering procedure at the selected cut of 2 clusters. ¢ Characterization of the identified mRNA-based
transcriptomic classification of chondrosarcoma using: subtype-specific marker gene expression, grading and histology features, metagenes extracted from
the transcriptome profiles, general characteristic of genetic stability and gene-specific genetic alterations. When relevant, the association between the
features shown as a heatmap and the two-class transcriptomic classification is shown (Student's t-test for continuous variables or chi-squared test for
discrete variables Significance of an FDR correction of the p-values are shown on the right of each line using the following encoding: ***FDR < 0.1%, **FDR
< 1%, *FDR < 5%, and no symbol for FDR > 5%. d Gene Set Enrichment Analysis (GSEA) comparing E2 versus E1 samples. e Overall survival comparison of
E1 and E2 tumors. Source data are provided as a Source Data file. CIN: Chromosomal instability index. Dediff Dedifferentiated chondrosarcoma, NES

Normalized enrichment score

subjected to an ICA decomposition (Supplementary Fig. 3),
revealing two tumor-related components (proliferation and dif-
ferentiation) and one non-neoplastic related component (hema-
topoietic lineage).

The consensus clustering of Chondrosarcoma DNA methyla-
tion profiles after the removal of the CpG associated to the non-
neoplastic component, uncovered three subtypes (Fig. 3a, b): the
IDH"! subtype M1 (n = 53) covering all benign cartilage tumors
and enriched in G1 chondrosarcomas, the IDH™* M2 subtype
(n = 39) enriched in high-grade G2 and G3 tumors, and a smaller
third subtype M3 (n = 10) predominantly composed of dediffer-
entiated chondrosarcomas (Fig. 3c). IDH-mutated subtypes M2
and M3 displayed a hypermethylated genome as shown by the
increase in the median level of CpG island methylation (Fig. 3c).
COL2AI mutations and CDKN2A deletions were more frequently
found in M2 tumors, which were also diagnosed in older patients
than the M1 subtypes, suggesting that these tumors are more
advanced. The M3 subtype is characterized by a low chondro-
genic differentiation metagene, consistent with both the enrich-
ment in the dedifferentiated histology as well as the
downregulation of the endochondral ossification pathway (Fig. 3¢
and Supplementary Fig. 3). The IDH activating mutations driving
a genome-wide hypermethylation in M2 tumors were found in
both IDHI and IDH2 genes. However, only IDH2 activating
mutations (R172S/W/T) were found in M3, suggesting differences
in the effect of IDH mutations as previously shown by a higher
production rate of 2-hydroxyglutarate in IDH2 mutations!0.
Identification of the pathways upregulated in IDH-mutant
samples shows that global hypermethylation in chondrosarcoma
leads to the activation of proliferative and glycolytic state, the
latter potentially driven by the hypoxia inducible factor!!
(Fig. 3d). While several factors tend to indicate that IDH™Ut
subtypes M2 and M3 are more advanced tumors, no difference in
survival was found between M2 and M1 tumors, indicating no
prognostic impact of mutations in the IDH genes (Fig. 3e).
However, patients in the M3 subtype were associated to a severe
outcome with a median survival of 7.34 months and a hazard
ratio of 13.7 (95% CI 4.51-41.3).

Chondrosarcoma multi-omics classification. Single-omics clas-
sifications highlighted three major events in the carcinogenesis of
chondrosarcomas: the acquisition of a proliferative state, the
silencing of the 14q32 imprinted locus and the hypermethylation
of DNA at a genome-wide level induced by IDH mutations. In
order to unravel the combined effect of these molecular, a multi-
omics classification was derived from the mRNA, microRNA, and
methylation subtyping systems (Fig. 4a, b, Supplementary Fig. 4).
In essence, the similarity between each pair of the 102 chon-
drosarcomas was computed as the mean of the probability of
belonging to the same subtype in each single-omics classification
system. A consensus clustering approach was then applied to this
integrated multi-omics sample-similarity matrix in order to group

samples by their similarity in all three molecular levels, poten-
tially grouping single-omics subtypes into clusters with increased
similarities when considering all molecular levels.

This revealed six subtypes that can be mostly distinguished by a
combination of the three molecular characteristics: the IDH
mutations and its hypermethylation effect (IDH" vs IDH™Y), the
14932 locus silencing (14q32high vs 14q321°") and a low-
differentiation/high-proliferation mRNA profile (Mitotic vs
Quiescent). The two IDH"!Y/Quiescent subtypes (Cl and C2,
n=18 and n =19, respectively) are enriched in G1 chondro-
sarcomas or in benign forms of cartilage tumors and are scarcely
mutated in major genes. The IDH%!/14q32high/Mitotic subtype
(C3, n=15) is also rarely IDH mutated yet enriched in high-
grade G3 tumors. The IDH™"t/14q32high subtype (C4, n =19) is
systematically IDH mutated similarly to the IDH™Ut/14q32low
subtype (C5, n = 20), which is also enriched in CDKN2A deletion
and COL2A1 mutations. Finally, another IDH™u/14q32low
subtype was also identified and found to be enriched in the M3
methylation class, the Mir4 microRNA class, the E2 mRNA
expression class as well as in the dedifferentiated histology tumors
and was therefore termed dedifferentiated-like (C6 or dediff-like,
n = 11). The analysis of the abundance of immune cell infiltration
using  MCPcounter!? revealed that the dedifferentiated-like
subtype is enriched in T lymphocytes (Fig. 4c) and associated
to a concomitant up-regulation of major immune checkpoint
such as PDLI (Fig. 4d). These results suggest that this molecular
definition of the most aggressive subtype of chondrosarcoma
is defined by an immune-active microenvironment, as previously
described for approximately half of the tumors histologically
defined as dedifferentiated!?.

The proposed multi-omics classification was highly associated
with overall survival (Fig. 4e and Supplementary Fig. 4). In
particular, the three subtypes that were defined as Quiescent and
did not bear the combination of both IDHM“t and 14q32low
alterations (i.e., C1, C2, and C4), were associated to a highly
favorable outcome and categorized as the alteration low group.
This multi-omics classification remains relevant to predict
survival outcome in a multi-variate model including the O’Neal
et Ackerman grading system!# with substantial hazard ratios
ranging from 9.05 (for the IDH™1/14q321°W C5 subtype, 95% CI
2.07-39.51) to 4756 (95% CI 7.52-300.82) for the
dedifferentiated-like C6 subtype (Fig. 4f). Given that the proposed
multi-omics classification is based on three distinct type of
molecular profiles, mRNA, microRNA, and DNA methylation,
the possibility of using mRNA gene expression profiles alone to
classify chondrosarcomas was investigated. Three gene expression
only classifiers based on Support Vector Machine models were
derived and tested in a cross-validation setting and were able to
classify tumor samples with an accuracy of 96%, 95.1%, and
91.9% for the gene expression, DNA methylation and a simplified
14q32high/low microRNA classification, respectively (Supplemen-
tary Fig. 4, Supplementary Data 2).
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The multi-omics classification suggests a path describing
chondrosarcoma progression in which IDH mutations and the
silencing of the 14q32 locus are major steps driving the malignant
progression. In order to investigate the progressive nature of the
proposed classification, the transcriptomic profiles were generated
from tumors that were resampled at relapse for a small group of
patients. In total, eight relapsed tumor material was available for
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six distinct patients, among which four demonstrated a progres-
sion towards a more aggressive subtype including the acquisition
of a mitotic phenotype, an IDH™U profile or a loss of expression
of the 14932 locus (Fig. 4f). No mutations in the IDH genes were
detected in the primary tumor associated to a relapse with an
IDH™Yt profile (patient 3 in Fig. 4f). This result substantiates a
multistep carcinogenic process in chondrosarcoma in which the
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Fig. 2 microRNA classification. a Cophenetic correlation coefficient for increasing number of clusters. Red point shows the chosen number of clusters
(four) selected as the number previous to the largest decrease in the cophenetic correlation coefficient. b Heatmap of the co-classification matrix resulting
from the consensus clustering approach. The matrix is symmetric and shows the frequency of co-classification of all 102 by 102 samples in the 1000
resampling iterations of the consensus clustering procedure at the selected cut of four clusters. ¢ Characterization of the identified microRNA-based
transcriptomic classification of chondrosarcoma using: subtype-specific microRNA expression annotated based on their genomic position, median
expression of all microRNA in the 14g32 locus, genetic state of the 14932 locus, and grading and histology. When relevant, the association between the
features shown as a heatmap and the four-class micro-RNA classification is shown (Student's t-test for continuous variables or chi-squared test for
discrete variables). Significance of an FDR correction of the p-values are shown on the right of each line using the following encoding: ***FDR < 0.1%,
**FDR < 1%, *FDR < 5%, and no symbol for FDR >5%. d Sample-centered expression of microRNA plotted by their genomic position in the 14g32 locus.
Each expression value is colored by the microRNA subtype and smoothened subtype-specific mean expression value with 95% confidence interval is
shown. e Gene Set Enrichment Analysis (GSEA) comparing 14g32"8h versus 14¢32'°% samples. f Overall survival comparison of the four microRNA
subtypes. g Overall survival comparison of the 14g32high samples, corresponding to the Mirl subtype, versus the 14g32/°W subtype comprising the Mir2,
Mir3 and Mir4 subtypes. Source data are provided as a Source Data file. log-FC: log fold-change. LOH loss of heterozygosity, Dediff Dedifferentiated
chondrosarcoma, NES Normalized enrichment score, ECM Extracellular matrix

consecutive acquisition of a high-proliferation phenotype, the
IDH mutation and the loss of expression of the 14q32 locus leads
to a subtype of tumor with increasing aggressivity.

Discussion

Altogether, the analysis of chondrosarcomas molecular profiles
uncovered three major molecular features involved in cartilage
tumor progression: IDH mutations implicating broad hyper-
methylation of the genome, the regional loss of expression of the
14932 locus and in particular of the cluster of microRNAs at this
location, and a transcriptomic state indicator of high mitotic
potential. In addition, dedifferentiated chondrosarcomas, a his-
tological entity with a dismal outcome, is defined by specific
profiles in all three molecular dimensions analyzed here. The
integration of these proposed single-omics features into a multi-
omics classification revealed the effect of their combination on
the aggressivity of cartilage tumors. This integrative molecular
perspective of chondrosarcomas has superior prognostic value
compared to the established grading system in this series and
defines a subgroup representing approximately half of all chon-
drosarcomas as non-aggressive. It is also shown that a single
mRNA-based profile is sufficient to obtain an accurate surrogate
of the multi-omics classification. The analysis of relapsed samples
suggests that chondrosarcoma tumors may progress to acquire
aggressive features, potentially leading to adverse outcomes. It is
still unclear at what point these features can be detected. Overall,
our results support the importance of molecular diagnostic of
chondrosarcomas for an accurate prognosis.

Methods

Patient series. Frozen tumor tissues were obtained in the context of diagnosis for
102 patients from different French hospitals (CHRU Tours, Hopital Cochin APHP,
CHU Toulouse, CHU Lille, Centre Léon Bérard, CHU Nancy, CHU Nantes and
Hopital la Timone APHM). The patient series was collected through the RESOS
INCA network of bone with the support of the Groupe Sarcome Frangais - Groupe
d’Etude des Tumeurs Osseuses (GSF - GETO). This retrospective study was
approved by the French ethic committee in human research and agency in charge
of non-interventional studies: Espace de reflexion ethique region centre (EREC:
number of approval 2015 009; date of approval: February 16, 2015). With respect to
regulatory procedures, the databases received authorizations from the Advisory
Committee on Information Processing in Material Research in the Field of Health
(CCTIRS) and the French Data Protection Authority (CNIL). The design of this
retrospective study was done in agreement with the requirements for the use of
biological material in research proposed by our institutional ethics guidelines. This
study complies with all relevant ethical regulations for work with human partici-
pants, including concerning the systematic collection of informed consent.

RNA isolation method. Two of ~50 mg fragments of frozen tissues were used per
patient to obtain sufficient RNA vyield. Tissues samples were transferred into
homogenization tubes (Precellys lysing kit CK28R, Bertin Technologies) containing
1 mL TRIzol® Reagent (Invitrogen™) with 200 ul Guanidine thiocyanate 4 M
(Sigma-Aldrich™). Tissues were homogenized with the Precellys 24-Dual

homogenizer (Bertin Technologies) three times 15 s at 6500 rpm speed with 10 s
pause between homogenization steps. After grinding, a volume of lysis buffer (i.e.,
1 mL Trizol reagent with 200 pl Guanidine thiocyanate 4 M) was added to each
lysate bringing the total volume to 2400 ul. The phase separation step was carried
out in two tubes by adding 200 pl of chloroform per 1200 ul of lysate. The aqueous
phase was recovered after a 20 min centrifugation at 4 °C and 12000 x g, and one
volume of 70% ethanol was added. Purification was then performed on a single
purification column for each patient using the miRNeasy Mini kit (Qiagen™)
according to the manufacturer’s instructions.

DNA isolation method. DNA have been extracted from cartilage tumors

tissues and cartilage non-tumors tissues from different French hospitals (CHRU
Tours, Hopital Cochin APHP, CHU Toulouse, CHU Lille, Centre Léon Bérard,
CHU Nancy, CHU Nantes and Hopital la Timone APHM). Approximately 50 mg
fragments of frozen tissues were transferred into homogenization tubes
(Precellys lysing kit CK28R, Bertin Technologies) containing 160 pl PBS
(Sigma-Aldrich™). Tissues were homogenized with the Precellys 24-Dual homo-
genizer (Bertin Technologies) three times 15 s at 6500 rpm speed with 10 s pause
between homogenization steps. A digestion step was then performed at 56 °C
during 2 h in ATL buffer and proteinase K solution. Finally, DNA was purified
using the QIAamp DNA Mini kit (QiagenTM) according to the manufacturer’s
instructions.

Nucleic acids quality and samples selection. RNA and DNA concentrations
were determined by the NanoDrop ND-1000 spectrophotometer at 260/280 nm
(Nanodrop Technologies Inc). Quality and integrity of total RNA were analyzed
with an Agilent 2100 Bioanalyzer (Agilent Technologies, UK) and DNA quality
was checked with pre-cast 2% agarose gel (Invitrogen™). Results lead to the
selection of 170 RNA samples and 177 DNA samples. A unique tumor sample from
102 patients had sufficient RNA and DNA quality and quantity to perform all
omics analysis.

Chondrosarcoma Copy Number Aberration and LOH using SNP arrays. Illu-
mina OmniExpress v12 SNP chips were used to measure the genome-wide Copy
Number profiles according to the manufacturer’s recommendations. Raw fluor-
escent signals were extracted using the BeadStudio software to obtain log R ratio
(LRR) and B allele frequency (BAF) values. The tQN normalization procedure!®
was used to correct the bias between the two dyes used in Illumina assays. The
circular binary segmentation algorithm!® was used to segment genomic profiles
and smooth log R ratio and B allele frequency values. The Genome Alteration Print
(GAP) method was used to estimate ploidy, the level of non-tumor cell con-
tamination and the allele-specific copy number of each segment!”. Chromosomal
instability index (CIN) was estimated by the mean number of SNP probes with a
loss or gained status normalized by chromosomes length.

Chondrosarcoma DNA CpG methylation profiling using microarrays. Illumina
Infinium HumanMethylation450 chips were used to measure genome-wide CpG
methylation profiles following manufacturer’s instructions. Beta-values were
extracted using Illumina’s GenomeStudio software. Probes containing single-
nucleotide and indel polymorphism or overlapping with a repetitive element that
was not uniquely aligned to the human genome were removed.

Chondrosarcoma microRNA profiling using RNAseq. Small RNA were selected
from total RNA using the miRNeasy kit used to construct sequencing libraries
based on previously published protocols!8. Libraries were sequenced on an Illu-
mina HiSeq system. Raw demultiplexed FASTQ files were quality controlled and
further processed using the “Trim_adapter” script provided by the mirExpress
software. SRNAbench!” software (version 10/14) was used to quantify read counts
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for each human microRNA referenced in mirBase21. Mature microRNA with more
than two counts in more than two samples were kept for further analysis. miRNA
counts were normalized using the upper-quartile method?’.

Chondrosarcoma mRNA transcriptomic profiling using microarray. The
Ambion WT Expression Kit (Cat # 4411974) and the Affymetrix GeneChip® WT
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Terminal Labeling Kit (Cat # 900671) were used to prepare biotinylated cDNA

from 200 ng of total RNA. cDNA were hybridized to Affymetrix Human Gene 2.0
ST arrays. Chips were washed and strained in the GeneChip® Fluidics Station 450
(Affymetrix) and scanned with the GeneChip® Scanner 3000 7 G (Affymetrix) at a
resolution of 0.7 um. Raw.CEL data were extracted from the scanned images using
the Affymetrix GeneChip” Command Console (AGCC) version 4.0. CEL files were
processed using the Affymetrix Expression Console software version 1.3.1. Raw
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Fig. 3 DNA methylation classification. a Cophenetic correlation coefficient for increasing number of clusters. Red point shows the chosen number of

clusters (3) selected as the number previous to the largest decrease in the cophenetic correlation coefficient. b Heatmap of the co-classification matrix
resulting from the consensus clustering approach. The matrix is symmetric and shows the frequency of co-classification of all 102 by 102 samples in the
1000 resampling iterations of the consensus clustering procedure at the selected cut of three clusters. ¢ Characterization of the identified methylation-
based classification of chondrosarcoma using: grading and histology features, subtype-specific CpG methylation level, median level of all CpG found in CpG
islands, components extracted from the methylation profiles, gene-specific genetic alterations and age of the patient at diagnosis. When relevant, the

association between the features shown as a heatmap and the three-class methylation classification is shown (Student’s t-test for continuous variables or
Chi-squared test for discrete variables). Significance of an FDR correction of the p-values are shown on the right of each line using the following encoding:
***FDR < 0.1%, **FDR < 1%, *FDR < 5%, and no symbol for FDR >5%. d Gene Set Enrichment Analysis (GSEA) comparing IDH™Ut versus IDH"t samples.
(e) Overall survival comparison of M1, M2, and M3 tumors. Source data are provided as a Source Data file. Dediff Dedifferentiated chondrosarcoma, NES

Normalized enrichment score

probe set signal intensities were normalized using the Robust Multi-array Average
(RMA) algorithm.

Chondrosarcoma point mutations using a targeted gene panel. A custom gene
panel involving all RefSeq exons of three genes (TP53, COL2A1 and CDKN2A) as
well as the known IDHI1 (V71 and R123) and IDH2 (R172) mutation hotspots.
Targeted enrichment is performed with a PCR method on the Access Array
microfluidic support from Fluidigm (as previously?!). The genes IDH1, PTCHI,
COL2A1, IDH2, TP53 were covered with 110 primer pairs designed with Primer3.
The average size of the PCR is 291pb. Twelve control primers pairs are added for
SNP genotyping and are used for sample-ID tracking. Forty-eight primers pools are
created, each primer pair is present in three different pools. two hundred fifty
nanogram of each purified sample are engaged on Access Array. This device allows
the PCR combinations of 48 samples with 48 pools of primers. To process the
116 samples, a total of three Access Array are performed. The protocol of library
preparation is following the description of the Access Array User Guide with
Integragen optimizations (AmplIG) to increase the level of multiplexing. The
output of one Access Array is 48 pools of 121 PCR. Each pool is subjected to a
second round of PCR for eight cycles in a standard microplate format in order to
add specific barcodes for sample identification and P5/P7 Illumina adapters for
Illumina sequencing. The 48 pools recovered from the Access Array, corresponding
to the specific enrichment of each sample, are controlled and quantified on
Fragment Analyzer to perform 1 equimolar pool of 48 samples. This final pool is
purified with SPRI beads and sequenced on a MiSeq V2 at 2 x 150b.

The bioinformatics analysis of sequencing data is based on the Illumina pipeline
(CASAVAL.8.2). CASAVA performs alignment of a sequencing run to the
reference sequence of each gene (hgl19), calls the SNPs based on the allele calls and
read depth, and detects variants (SNPs & Indels). The alignment algorithm used is
ELANDvV2 (performs multiseed and gapped alignments). Genetic variation
annotation is realized from IntegraGen in-house pipeline. It consists on genes
annotation (RefSeq), known polymorphisms (dbSNP 132, 1000Genome)
followed by a mutation characterization (exonic, intronic, silent, and nonsense).
For each position, the exomic frequencies (Homo & HTZ) are determined
from all the exomes already sequenced at IntegraGen, and the exome results
provided by HapMap, 1000Genome, EVS. Mutations were annotated using
ANNOVARZ

Unsupervised classification of chondrosarcoma genome-wide profiles. Iden-
tical methodological approaches were applied to the three post-genetic genome-
wide profiles, namely mRNA and microRNA transcriptomes and DNA CpG
methylome. For each genome-wide profile dataset, a first analysis consisted in
applying a dimension reduction technique, Independent Component Analysis, to
identify the non-neoplastic and technical signals in each dataset. Then, a consensus
clustering approach was applied independently to each dataset after the removal of
non-neoplastic or technical components.

Independent Component Analysis (ICA) was used to extract biologically
relevant components from transcriptome or methylation datasets. ICA was
performed using the JADE (joint approximate diagonalization of eigenmatrices)
algorithm?3. The optimal number of independent components to select was
determined by comparing the distance between samples in the original dataset and
in the reduced dimensions. The optimal number of components was set as the one
prior to the highest drop in distance-correlation gain, as shown in Supplementary
Figs. 1 to 3. The sample projections and feature correlation to each component
were then used to identify the source of each components.

Unsupervised classification was performed using a hierarchical consensus
clustering approach. To remove the unwanted signal associated with non-
neoplastic tissue contamination or technical bias, features with a high Pearson’s
correlation with the unwanted components were removed (20%). The remaining
probes were used to obtain a robust unsupervised classification by applying an
extension of the ConsensusClusterPlus algorithm?%. In brief, using a Pearson
distance and Ward linkage, hierarchical clustering was resampled in 1000 iterations
of resampling of a selection of the most variant features estimated by standard
deviation (20% most variant for CpG methylation and mRNA, no selection for

microRNA). For a given selection of k clusters (1 <k < 10), the result is a symmetric
co-classification matrix with a number of rows and columns equal to the number of
sample (n = 102) containing the frequency at which each pair of samples was
found in the same cluster in the 1000 iterations. The consensus was given by a final
hierarchical clustering using the complete linkage and the one minus the frequency
of co-classification as sample distance. In order to select K, the number of clusters,
the correlation coefficient between the final hierarchical clustering cophenetic
distance and the original inter-sample distance was computed, resulting in the
cophenetic correlation coefficient. The cophenetic distance between two samples is
the height of the dendrogram at which the two branches that separately include
both samples merge into a single branch. The optimal number of consensus cluster
was selected as K preceding the largest drop in the cophenetic correlation
coefficient.

Chondrosarcoma mRNA classification. Among the 46,394 probes associated to
autosome located genes, ICA was applied to the expression values of first half of
probes with the highest standard deviation (total of 23,197 probes) following gene-
wise zero-centering without variance scaling. Six independent components were
retrieved using the last maximum inter-sample distance-correlation gain (Supple-
mentary Fig. 1) Three components were considered to be associated with non-
neoplastic tissue (ICA1 with muscle and ICA3 with hematopoietic cells) or tech-
nical bias (ICA6 associated to Affymetrix QC). The 9428 probes remaining after
the removal of these component-associated genes were used for the unsupervised
consensus classification task. Consensus clustering identified two mRNA clusters
based on the cophenetic correlation coefficient.

Chondrosarcoma microRNA classification. ICA was applied to the expression
values of all of the 1566 microRNAs detected following mir-wise zero-centering
without variance scaling. Three independent components were retrieved using the
last maximum inter-sample distance-correlation gain (Supplementary Fig. 2, details
in previous section classification methodology, subsection Independent Compo-
nent Analysis). One component was considered to be associated with technical bias
(ICA3). The 721 microRNAs remaining after the removal of the technical
component-associated genes were used for the unsupervised consensus classifica-
tion task (using 50% most variant microRNAs instead of 20%). Consensus clus-
tering identified four microRNA clusters based on the cophenetic correlation
coefficient.

Chondrosarcoma DNA methylation classification. Among the 285,631 probes
associated to autosome located CpG, ICA was applied to the methylation values of
first half of probes with the highest Standard Deviation (total of 142,815 probes)
following CpG-wise zero-centering without variance scaling. Three independent
components were retrieved using the last maximum inter-sample distance-corre-
lation gain (Supplementary Fig. 3, details in previous section classification meth-
odology, subsection Independent Component Analysis). One component was
considered to be associated with non-neoplastic tissue (ICA2 with hematopoietic
cells). The 150,399 probes remaining after the removal of the non-neoplastic
component-associated genes were used for the unsupervised consensus classifica-
tion task. Consensus clustering identified three DNA methylation clusters based on
the cophenetic correlation coefficient.

Chondrosarcoma multi-omics classification. A multi-omics unsupervised clas-
sification was obtained by combining the results of the consensus clustering of each
of the single-omics, namely mRNA, microRNA and DNA methylation. The sample
co-classification matrix of each omics was averaged and the resulting combined
matrix was used as an inter-sample multi-omics similarity matrix. Given the nature
of the data used to construct the multi-omics classification (a similarity matrix
instead of a data matrix), the consensus clustering for unsupervised classification
approach used on the single-omics profiles was adapted. A Partition Around
Medoids (PAM) approach was applied on the multi-omics similarity matrix in a
resampled framework (1000 iterations) using the ConsensusClusterPlus imple-
mentation?4. The optimal number of clusters was defined by computing the
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dispersion of the resulting consensus clustering matrix2°. The dispersion coefficient
estimates the level of agreement between all the resample run with a value ranging
from 0 to 1 with 1 denoting a perfect consensus matrix for which all resample

iteration provided the same output.

The resulting final multi-omics classification was composed of 6 classes as

shown in Fig. 4 and Supplementary Fig. 4.
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Chondrosarcoma functional analysis. Pathway enrichment analysis was per-
formed using a fast implementation of GSEA2°. All GSEA were performed with a
pre-ranked list of genes using either Pearson’s correlation to a given component’s
sample projections or limma’s moderate t statistic when comparing two sets of
samples. Pathways references included Reactome?” and KEGG?®. WikiPathway was
only used for its reference of the Endochondral ossification pathway. Immune and
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Fig. 4 Multi-omics classification. a Schematic of a multi-omics classification of chondrosarcoma based on the three single-omics classifications. b Multi-
omics classification of chondrosarcoma along each of the single-omics classification as well as its characterization using grading and histology features, and
gene-specific genetic alterations. All of the 102 patient samples are represented as a column in the same order in each of the lines of the heatmaps. When
relevant, the association between a feature shown as a heatmap and the 6-class multi-omics classification is shown (Student'’s t-test for continuous
variables or chi-squared test for discrete variables). Significance of an FDR correction of the p-values are shown on the right of each line using the following
encoding: ***FDR < 0.1%, **FDR < 1%, *FDR < 5%, and no symbol for FDR > 5%. ¢ Relative quantification of T lymphocytes cell population infiltration using
MCP-counter and of d of the PDLT immune checkpoints. Boxplots show the median, the first and third quartile and whiskers extend to 1.5 times the
interquartile range. e Overall survival comparison of the 6-class multi-omics classification. f Forest plot of the multi-variate analysis of survival including
grade and the multi-omics classification after the simplification of the three alteration low subtypes into one (C1, C2, and C4). g. Follow-up study of
patients with mRNA profiled relapse sample. x-axis shows time after initial diagnosis and each dot corresponds to a sample, including the initial sample.
Dots are colored depending on the mRNA-based multi-omics subtype prediction. The right panel summarizes the main molecular events identified in at
least one the relapse sample as compared to the initial sample, if any. Dediff Dedifferentiated chondrosarcoma

stromal cell infiltration were estimated using MCP-counter!2. Associations between
binary and discrete variables (e.g., mutations or grading and histology vs classifi-
cation) were tested using the Chi-square test. Associations between discrete and
continuous variables (e.g., histology vs independent components) were tested
using ANOVA.

For each test, statistical significance was set at a two-sided p-value of <0.05.

Survival analysis of patients with chondrosarcoma. Overall survival (OS) was
defined as the time from surgery to death resulting from any cause. Relapse-free
survival (RFS) was measured from the date of surgery to the time of relapse or
death. All survival analyses were performed after the removal of benign samples
including: three enchondromas, one chondroma, one osteochondroma, and one
chondroblastoma-like. It is to be noted that all the survival analyses in this study
were also done with the inclusion of benign samples and did not change any of the
conclusions. Survival curves were estimated using the Kaplan-Meier technique and
compared with the log-rank test. The Cox proportional hazard regression model
was used for both univariate and multi-variate analyses and for estimating the
hazard ratio with 95% confidence interval. Univariate and multi-variate Cox
regression analyses as well as Kaplan-Meier curves were computed using the
survival package of the R statistical suite. Forest plots were drawn using the for-
estmodel R package.

Follow-up recurrence analysis and classification. Among the 102 patients
included in the multi-omics analysis, six relapsed and were resampled. The mRNA
of these recurrences, eight sample in total, were profiled using the same micro-
arrays and processed in the same batch as the rest of the main series. In order to
define the molecular class of these sample, a supervised classifier was devised using
mRNA expression only for each of the omics classification: microRNA, mRNA,
and DNA methylation.

For each omics, a Support Vector Machine (SVM) classifier with a linear kernel
as implemented in the kernlab R package?” was used on the mRNA profiles of the
102 multi-omics series to predict the single-omics classifications. The two-class (E1
and E2) mRNA classifier was trained on a selection of the 200 most over-expressed
genes (using a moderate t test) of each subtype. Similarly, the three-class (M1, M2,
and M3) DNA methylation classifier was trained on a selection of the 200 most
over-expressed genes (using a moderate t-test) of each subtype versus all others. The
four-class microRNA classification was simplified to a two-class classification for
this task: 14q32 loss of expression subtypes (Mir2, Mir3, and Mir4) were merged.
All of the 93 differential genes (using a moderate t test, FDR = 5%) were used to
train an SVM classifier. An evaluation of these three classifiers were performed in a
10-times repeated 10-fold cross-validation settings. Results of this evaluation for
each single-omics classification is reported in Supplementary Fig. 4 showing average
Accuracy measures from 91.9 to 96%. The 6-class multi-omics classification was
defined using each of the single-omics classification mRNA-based classifier
following the recursive partitioning diagram illustrated in Supplementary Fig. 4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The mRNA gene expression data, microRNA sequencing data, methylation data, and
SNP array data are available from the ArrayExpress website under the accessions number
E-MTAB-7264, E-MTAB-7265, E-MTAB-7263 and E-MTAB-8213 respectively. All the
other data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request.
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