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Abstract: Cancer treatment has evolved tremendously in the last few decades. Immunotherapy
has been considered to be the forth pillar in cancer treatment in addition to conventional surgery,
radiotherapy, and chemotherapy. Though immunotherapy has resulted in impressive response, it is
generally limited to a small subset of patients. Understanding the mechanisms of resistance toward
cancer immunotherapy may shed new light to counter that resistance. In this review, we highlighted
and summarized two major hurdles (recognition and attack) of cancer elimination by the immune
system. The mechanisms of failure of some available immunotherapy strategies were also described.
Moreover, the significance role of immune compartment for various established cancer treatments
were also elucidated in this review. Then, the mechanisms of combinatorial treatment of various
conventional cancer treatment with immunotherapy were discussed. Finally, a strategy to improve
immune cancer killing by characterizing cancer immune landscape, then devising treatment based on
that cancer immune landscape was put forward.

Keywords: immune escape; cancer; immunotherapy; T cell; immunosuppression; antigen presentation;
immune checkpoint; resistance; treatment

1. Introduction

The immune system not only functions to keep foreign pathogens away from the host, it also
has a role in suppressing cancer [1]. The precursor of cancerous cells is initially a normal cell that
becomes malignant due to multiple mutations within its genome. The mutated genes, when expressed,
will result in the production of non-self-antigens. Theoretically, those mutated tumor neo antigens will
be recognized and eliminated by our immune system because there has been no tolerance toward those
tumor neo antigens. However, cancer cells could develop mechanisms to trick that immune system.

The mechanism of immune escape is one of the major mechanisms of mutated cells to gain
potential to grow and eventually metastasize [2]. Understanding the mechanism of immune escape
by cancer cells will provide us with the required insight to potentially develop treatment to reverse
that mechanism. In general, immune escape is due to tolerance or failure of two main functions of
the immune system: failure of immune recognition and failure of immune attack. Here, we reviewed
the process of immune recognition until immune attack toward cancer cells and how cancer cells
acquired resistance toward immunotherapy. Furthermore, the importance of various established
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cancer treatment were discussed followed by a strategy to combine various established treatments
with immunotherapy.

2. Major Histocompatibility Complex (MHC) Are Core Molecules in Immune Recognition

Generally, there are two main mechanisms for cancer cell recognition by immune cells. The first
mechanism is self-presentation of tumor antigen through MHC or human leukocyte antigen (HLA)
Class I. The second mechanism is tumor antigen presentation through professional antigen presenting
cells (APCs) via MHC or HLA Class II [3]. Both methods of tumor antigen presentation are essential in
immune surveillance and recognition [3,4]. Cancer cells generally harbor multiple mutations within
their genome. Some parts of the mutated genes may express foreign antigens [5]. These mutated genes
are not previously known by the host immune system, therefore, they should be able to be recognized
by immune cells [5,6].

The process of antigen presentation of those cancer cells to the immune system requires a properly
functioning MHC Class I molecule. MHC Class I molecule is expressed in all nucleated cells as part
of the physiologic cellular defense apparatus from foreign antigens. The process of tumor antigen
presentation starts with cleavage of tumor antigen in the cytoplasm of the tumor until the tumor
antigen becomes a small sequence of amino acids [3,6]. These cleaved segments will combine with
MHC Class I molecule in endoplasmic reticulum. These complexes will later be transported to the
plasma membrane [6]. The T cells will be able to bind and recognize the tumor antigen-MHC Class I
complex on the plasma membrane through a specific T cell receptor.

Many cancers circumvent the process of immune recognition or tumor antigen presentation from
the cancer cells to T cells by downregulating MHC Class I within tumor cells [7–10] (Figure 1a). Various
methods were thought to be employed by cancer cells to suppress the expression of MHC Class I.
Epigenetic silencing within tumor cells resulted in direct methylation of MHC Class I gene by DNA
methyltransferase. The methylation process has been observed in various types of cancers [7,10,11].
The methylation of various essential genes resulted in suppression and downregulation of MHC Class I
expression, thus preventing those tumor cells to be recognized by the immune system.

Figure 1. Mechanisms of tumor escape immune recognition. (a) Through downregulation of MHC
Class I in tumor cells, rendering tumor cells unrecognized. (b) Through engulfment of tumor debris
and further presentation through MHC Class II and APC cells (chronic process of that event leads to
chronic inflammation resulting in sensitization and differentiation of CD4+ T cells toward immune
suppressive CD4+ T regulatory cells phenotype).

Furthermore, tumor cells can also downregulate MHC Class I molecule by suppressing various
MHC Class I transcriptor activators. Loss of Interferon regulatory factor 2 (IRF2) and NOD-like
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receptor (NLR) family and caspase recruitment (CARD) domain containing 5 (NLRC5) expression have
been shown to be correlated with lower expression of MHC Class I and higher expression of immune
exhaustion maker [8,9]. These transcriptor activators in cancer cells were suppressed by various means
including methylation, copy number loss, or somatic mutation [8,9]. These are some of the known and
most common mechanisms of cancers to fail the process of immune recognition via MHC Class I.

Tumor cell recognition through professional antigen presenting cells and the MHC Class II molecule
is also an important process in cancer immune surveillance and recognition [12,13]. Though MHC Class
II is only expressed in professional antigen presenting cells, its role has been shown to be as critical as
MHC Class I in cancer immunotherapy [4]. Tumor cells will continuously proliferate until a point in
which the supply of nutrients and oxygen through neo-vasculature becomes inadequate. At that point,
the tumor becomes hypoxic and later dies. This process of cell death is commonly immunogenic
in nature. This immunogenic tumor death will result in the release of various damage-associated
molecular patterns (DAMPs) such as adenosine triphosphate (ATP), high-mobility group protein B1
(HMGB1), and heat-shock proteins that will recruit various antigen presenting cells [14,15].

The immunogenic cell death will also trigger engulfment of tumor debris by phagocytic cells.
The phagocytic cells will process the engulfed antigen and finally present it through the MHC Class II
molecule to other antigen presenting cells and T helper [16]. The MHC Class II–antigen complex can
also be secreted as exosomes, which later fuse with other antigen presenting cells or CD4+ T cells [16].
This fusion will activate that cells and enable those cells to also become potent presenter cells [16].
The antigen presentation toward CD4+ helper T cells through the MHC Class II molecule will enable
secretion of various cytokines and chemokines. This antigen presentation of CD4 T cells when in an
acute setting will further recruit and activate CD8+ T cells to kill the identified tumor cells.

Nevertheless, tumor antigen presentation through MHC Class II does not always end up with
enhanced tumor recognition. When chronic inflammation ensues due to various reasons including
chronic necrosis, the chronic exposure of tumor antigens would promote the maturation and recruitment
of immunosuppressive immune infiltrate [17] (Figure 1b). Elevated HMBG1 from necrotic cells have
been shown to correlate with poor prognosis in many cancer types [18]. Chronic recognition of tumor
antigens via antigen presenting cells and MHC Class II molecule does not promote elimination of
cancer cells. Instead, the chronic recognition results in local immune-tolerance, thereby promoting
tumor growth.

A recent strategy to exploit the tumor recognition via MHC Class II can be performed by inducing
MHC Class II expression directly in tumor cells [4]. Though MHC Class II was not commonly expressed
in tumor cells, it has been shown to be inducible [4,19,20]. The induction could be carried out by
transfecting the tumor cells with the Class II, major histocompatibility complex, transactivator (CIITA)
loaded vaccine [4]. This CIITA is a major transactivator of MHC Class II expression. Therefore,
by vaccinating the tumor cells with this CIITA loaded vaccine, the tumor cells would express MHC
Class II. These tumor cells can then become the antigen presenting cells themselves. This would
eventually lead to a strong tumor antigen presentation followed by immune attack.

3. Recruitment and Priming of T Cells

The T cells are essential in establishing and maintaining the homeostasis of immune response.
The presence of T lymphocytes within the tumor microenvironment, especially the cytotoxic CD8+

subsets and to some extent the CD4+ subsets, have been shown to correlate with better prognosis
of the patient [21–26]. The deficiency of CD8+ T cells have been shown in experimental models to
result in tumor progression, while tumor regression was observed in the CD8+ proficient model [27].
The spatial distribution of CD8+ T cells within the tumor microenvironment were very variable among
different patients and different cancer types [28]. Those distribution of CD8+ T cells were likely related
with prognosis, with dense CD8+ T cells between the tumor being more positive than dense tumor
stromal CD8+ T cells [29].
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The recruitment of T cells to the tumor microenvironment plays an initial important role in
determining the magnitude of tumor immune restrain. Generally, T cells from systemic circulation
recruited to the tumor microenvironment follows common processes of tethering, rolling, adhesion
on endothelial surfaces until diapedesis, as in common inflammatory process [30,31]. The differences
in T cell density within the tumor microenvironment was suggested due to differential chemokine
expressions in different type of tumors [30,32]. The lack of pro-inflammatory chemokine expression
in certain tumors such as CXCL9, CXCL10, and CXCL11 resulted in low CD8+ T cells extravasation
to tumoral tissue [32]. Some tumor even expressed chemokines that resulted in the recruitment of
T regulatory cells (a potent immunosuppressive T cell) such as CCL22 or T cell repellants such as
CXCL12 [30]. All those chemokines over or under expressed by tumor cells are postulated to be
responsible for ineffective T cells recruitment, which eventually leads to less inflamed tumors.

Furthermore, vascular endothelial growth factor (VEGF) secreted by tumor cells can also act to
impede T cell recruitment [33]. Administration of anti VEGF that somehow normalized the vasculature
has been found to significantly increase T cell recruitment into the tumor microenvironment [33].
Once recruited into tumor microenvironment, the T cells need to cross react with tumor antigens through
the antigen presentation process. The priming of T cells will enable the T cells to differentiate into
effector cytotoxic CD8+ T cells. There are complex processes of T cells priming with the involvement
of various cells and molecules. Every defective process could fail the priming process, thus abrogating
the T cell attack. Failure of tumor cells to present its antigen through MHC class I to CD8+ T cells as
described in the previous section could lead the tumor to be in a non-recognized state [8,34].

Cancerous cells are in a constant state of proliferation. Sometime during its growth, some parts of
the tumor can be deprived of nutrition and oxygen due to imbalance between angiogenesis and tumor
cells proliferation rate, thereby resulting in tumoral cell death. These tumoral cell deaths will trigger
the uptake of tumor antigen by dendritic cells. The dendritic cells will further present the processed
tumor antigen through MHC Class II molecules to various other immune cells, thereby triggering an
enhanced immune response.

Nevertheless, in various cancers, the tumor cells expressed various cytokines, for instance,
transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), interleukin-10
(IL-10), macrophage colony-stimulating factor (M-CSF), which blunt various functions of dendritic
cells [35]. These anti-inflammatory cytokines act to prevent the maturation of dendritic cells
until antagonizing the pro-inflammatory function of dendritic cells by promoting T regulatory
cell differentiation [35]. Thereby, these molecules further prevent tumor recognition and T cell priming.

4. Immune Checkpoint Inhibition

Cancer cells with their tumor neo-antigens that are successfully recognized by T cells would
hypothetically trigger a rejection process. The CD8+ T cells will be primed, then multiple cytokines and
chemokines secretion will follow. There will be extensive recruitment of multiple pro-inflammatory
cells toward the tumor microenvironment. Nevertheless, in many cancers, even with the presence of
tumor cell specific antigens that have been successfully recognized by T cells, immune cells still fail
to prevent tumor growth in many patients [36]. This phenomenon happens because some negative
immuno-regulatory pathways exist to inhibit the function of CD8+ T cells in order to attack the tumor
cells. This paradoxical coexistence of primed CD8+ T cells and the continued growth of tumors in
cancer patients was known as the paradox of Hellström [37].

Multiple immune checkpoints molecules have been known to be able to inhibit the function of CD8+

T cells by sending negative regulatory signals. Some of these molecules are Cytotoxic T-lymphocyte
antigen 4 (CTLA-4/ CD152), Programmed cell death protein 1 (PD-1/ CD279), Lymphocyte-activation
gene 3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), and V-domain immunoglobulin
suppressor of T cell activation (VISTA) [38–40]. Generally these immunosuppressive molecules work
by exhausting the CD4+ and CD8+ T infiltrating lymphocytes; promoting T regulatory differentiation;
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abrogating the CD8+ cytotoxic effect; downregulating T cell proliferation; and all those effects
culminating in enhancing immune tolerance [38,39].

With the accumulated understanding about the mechanism of immune tolerance mediated by
those immune checkpoints molecules, today, many immune checkpoint inhibitors have been developed
to reverse that mechanism. The most extensively studied immune checkpoints molecules are CTLA-4,
PD-1, and Programmed cell death Ligand 1 (PD-L1). The PD-L1 is the ligand for PD-1 receptor.
Both PD-1 and PD-L1 are expressed in broad range of immune cells and tumor cells including T cells,
B cells, dendritic cells, and myeloid cells [41]. The interaction between PD-1/PD-L1 results in abrogation
of fully primed effector CD8+ cytotoxic function [41]. Thus, by blocking PD-1 or PD-L1, we can expect
a reversal of that immune-inhibitory effect. (Figure 2)

Figure 2. Mechanism of immune checkpoint inhibitions (a) PD1–PDL1 binding results in abrogation of
those primed CD8+ T cells, while blocking the PD1–PDL1 axis results in unopposed CD8+ effector
T cells functions. (b) Binding of costimulatory CTLA4 in CD4+ T cells with B7 in APC in the MHC
Class II-Tumor antigen presentation process results in cancellation of T cell recognition and priming
(c) binding of CTLA4 receptor in CD4+ Treg+ T cell by monoclonal antibody results in the antibody
dependent cellular cytotoxicity (ADCC) process, thus eliminating immunosuppressive T regulatory
cells within the tumor microenvironment.

The CTLA4 checkpoint inhibitor is another important immune checkpoint molecule that exerts its
effect during T cell priming. The anti CTLA-4 was thought to exert its immunotherapeutic effect by
blocking interaction between the CTLA-4 receptor on T cells and B7 receptor on the antigen presenting
cell [41]. The B7 receptor is a co-stimulatory molecule of the MHC-TCR complex. Upon binding of B7
to CD28 on the T cell, it initiates a signal that promotes T cell survival and proliferation. The binding
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of CTLA-4 with B7 would render CD28 unable to bind with B7, thus disabling the T cell priming
process [41]. However, recent evidence indicating anti CTLA-4 in fact exerted its immunotherapeutic
effect not by blocking B7/CTLA-4 interaction, but most likely because the anti CTLA-4 binding to
T cells resulted in antibody-dependent cellular cytotoxicity (ADCC) [42]. The CTLA-4 blocking
was attributed to decreased Treg levels, as these Treg cells showed elevated CTLA4 expression [42].
Therefore, that process results in the elimination of T reg cells with the positive effect of loss of major
immunosuppressive cells within the tumor microenvironment (Figure 2).

5. Functional T Cells for Effective Immune Attack

Even though the administration of immune checkpoint inhibitors described in the previous
section have successfully reversed the immunosuppressive mechanism by cancer cells in some cases,
however, a substantial number of cases still did not show tumor regression or, at most, only a temporary
tumor regression. This persistent immune tolerance is due to the proliferation of dysfunctional to
exhaustive T cells within the tumor microenvironment [43–45]. An in-depth study analyzing the
transcriptome of every single immune infiltrating lymphocytes in melanoma samples revealed that
majority of CD8+ T cells were indeed lacking a complete cytotoxic gene expression, thus making them
dysfunctional [43]. Furthermore, those dysfunctional CD8+ T cells were clonal and very proliferative
within the tumor microenvironment [43] (Figure 3).

Figure 3. Abundance of dysfunctional CD8+ T cells expressing various immune inhibitory molecules (PD-1,
LAG-3, VISTA, TIM-3, PD-L1) within the tumor microenvironment resulted in failure of tumor attack.

Apart from the presence of highly proliferative dysfunctional CD8+ T cells, tumor rejection is also
hampered by the presence of a highly immunosuppressive microenvironment elicited by T regulatory
cells. T regulatory cells that exhibit an immunosuppressive phenotype generally express CD45RA-,
FOXP3+high, CD4+ and CD25+high markers [46]. A study revealed that those T regulatory cells were
found to be abundant in the tumor sample compared to systemic circulation (10–50% vs. 2–5%) [46,47].
Various chemokines and cytokines secreted by tumor cells are thought to be the main perpetrator of T
regulatory cells recruitment [46]. The T regulatory cells also express immune checkpoint molecules
such as CTLA-4 and PD-1 [46,48]. The administration of anti CTLA-4 monoclonal antibody resulted in
ADCC, thus reducing the number of T regulatory cells [42,46], while the anti PD-1 effect on T regulatory
was not very clear. Some evidence suggests that anti PD-1, contrary to that expected, promotes an
enhanced immunosuppressive T regulatory activity [46,48].
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In order to enable a fully functioning immune system to reject tumor cells, the ultimate goal
of functioning specific cytotoxic CD8+ T cells have to be achieved. Various strategies have to be
developed to deal with the immune-tolerance mechanism elicited by tumor cells. A focus on the
tumor microenvironment by detecting what went wrong on that particular cancer seems to be able
to pave the way for a more comprehensive understanding of immune escape. Finally, it has to be
understood that an effective immunotherapy is unlikely without tackling all aspects of immune evasion
mechanism by the cancer cells. The following section will discuss the specific failure of each form of
immunotherapy available.

6. Hurdles of Immunotherapy

There are various forms of immunotherapy available as cancer treatment. The oldest form
of immunotherapy is in the form of pro-inflammatory cytokine administration such as interferon.
Later, immune checkpoint inhibitors were developed based on monoclonal antibody. These immune
checkpoint inhibitors are the most commonly utilized immunotherapy today. The other forms of
immunotherapy are adoptive cell transfer and oncolytic virus vaccine [49,50]. Adoptive cell transfer is
based on isolation or engineering of immune cells such as cytotoxic T cells or NK cells that are able to
recognize tumor neo antigens [49,50]. Then, these adoptive cells are expanded ex vivo and then infused
into the patients [49]. It is expected that those infused killer cells would recognize and attack the
cancer cells. Oncolytic virus vaccine is based on engineered virus with its virulence gene deleted [51].
The administration of oncolytic virus into the tumor will trigger tumor infection, which later leads to
cell lysis with positive inflammatory response [51].

The effectiveness of all modes of immunotherapy is very dependent on the intrinsic and dynamic
tumor microenvironment of each patient. Any immunotherapy will only be effective if strong
response of tumor recognition and tumor attack are elicited. In cytokine based immunotherapy,
the interferon increases dendritic cell maturation, favors T helper 1 differentiation, increases
cytotoxic function of Natural Killer (NK) cells, and increases tumor MHC class 1 expression [52,53].
However, interferon has also been shown to induce upregulation of immune checkpoints such as
PD-L1 [54,55]. Therefore, immune tumor attack becomes suboptimal. Combining interferon and
immune checkpoint inhibitor has a sound rationale. Phase I and II trials have shown the safety and
initial efficacy of these combinations [56,57] Nevertheless, complete response was only observed in a
small subset of patients [56,57]. This observation underscores that some other mechanisms were in
place that rendered either tumor recognition or tumor attack suboptimal.

Various immune checkpoint inhibitors have been approved and used in clinic. A phase III
trial comparing chemotherapy and a single agent pembrolizumab, an anti PD-1, has shown a
remarkable survival benefit of pembrolizumab over chemotherapy in metastatic non-small cell lung
cancer [58]. Furthermore, an analysis of a KEYNOTE-001 study showed that 16% of patients receiving
pembrolizumab for metastatic melanoma had a durable complete response [59]. These significant
findings were clinically very meaningful, but unfortunately was only observed in small subsets of
patients. Immune checkpoint inhibitors generally act to re-invigorate the tumor immune attack,
as discussed in the previous section. In a condition where there is a lack of tumor immune recognition
per se, then immune checkpoint inhibitors are unlikely to be clinically beneficial.

Adoptive cell transfers can provide superb clinical outcomes in some circumstances. In B cell acute
lymphoblastic leukemia, genetically engineered chimeric antigen receptors (CARs) T cells resulted in
up to 80% complete remission [60,61]. However, clinical success of adoptive cell transfer in other types
of cancers is limited. In adoptive cell transfer, it is a prerequisite to identify the target of immune attack,
which is the tumor expressed antigens [62]. Most solid tumors do not have exclusive tumor antigens.
Most tumor expressed antigens were also expressed in normal tissue, though in lower concentration.
The targeting of non-exclusive antigens could result in severe toxicity [60,63]. Therefore, the main
hurdle of adoptive cell transfer is identifying exclusive tumor neo antigens that are suitable to become
the target of immune attack.
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Augmenting the function of natural killer cells or adoptive transfer of NK cells have shown some
clinical benefit as immunotherapy [64–67]. Unlike T cells, NK cells do not depend on MHC Class I
expression to recognize tumor cells [67]. There are numerous activating and inhibiting receptors on
NK cells that constantly interact with other cells [64]. In normal cells, the ligands for NK cell activating
receptors are poorly expressed, thereby maintaining NK cells in a non-activated state [64]. In tumors
expressing inhibitory receptors, the ligand of NK cells will blunt the activity of NK cells. Furthermore,
an immunosuppressive tumor microenvironment will also result in exhausted NK cell phenotype [64],
similar to exhaustive T cells. Therefore, a complete understanding of tumor, immune, and its tumor
microenvironment interaction is necessary to tackle the hurdle of NK cells immunotherapy.

Oncolytic virus is another interesting type of immunotherapy. Talimogene laherparepvec (T-VEC),
this Food and Drug Administration (FDA) approved oncolytic virus, has been tested in a phase III
trial that showed superior clinical benefit in patients with advanced melanoma compared to cytokine
granulocyte-macrophage colony-stimulating factor injection [68]. Though oncolytic virus showed
a promising result, the development is very challenging. There are various hurdles of effective
oncolytic virus including the rapid elimination of virus by the host immune system in a patient with
pre-existing viral antibody, the inadequate specificity of virus infectivity toward tumor cells, until the
pre-existing immunosuppressive tumor microenvironment [69,70]. The latter would eventually render
an inadequate tumor immunity.

The hurdles of immunotherapy have to be viewed in a more comprehensive perspective.
The hurdles are due to the establishment of inherent subversion mechanisms of immune recognition
and immune attack of tumor cells. Immunotherapy alone in most cases would not be able to counteract
all of these mechanisms. One way to counteract these mechanisms is by combination therapy. Various
commonly employed anti-cancer treatments are able to tackle some of these mechanisms. When
combined with immunotherapy, multiple mechanisms could be reversed simultaneously and result
in better tumor control. Next, in the following section, we will discuss various commonly employed
anti-cancer treatment and its relationship with tumor immunity. Later in this review, we propose a
way to rationally combine these treatments.

7. Hot Tumor Induction by Radiation Therapy

Cold and hot tumors is a notion for tumors with heavy tumoral T cell infiltration or scarce
tumoral T cell infiltration, respectively [36]. Cold or hot tumors are dependent upon the specific
tumor intrinsic mechanism in escaping immune recognition and attack. A hot tumor generally escapes
tumor attack, but they are readily recognized by immune cells, while cold tumor could escape both
immune recognition and immune attack. Therefore, a hot tumor confers a better prognosis than a cold
tumor [71,72]. There is still a spectrum of tumor in between hot and cold tumors, known as altered
tumors. In order to improve the treatment result, conversion to a more favorable hot tumor is a more
detailed discussion of various kinds of tumor states based on their immune signatures.

Radiation therapy is a traditional modality that has been used for many decades for cancer
treatment. In the past, radiation therapy was generally considered immunosuppressive. Lymphocytes
are very sensitive to radiation [73]. A radiation dose of just 2 Gy to the whole body could result in
pancytopenia [74]. Radiation also used to be indicated to treat benign conditions due to inflammation
such as osteoarthritis. A low dose of 0.5 Gy per fraction with a total dose of 6 Gy has been historically
used to treat inflammation conditions with great success [75]. However, numerous evidence indicates
that radiation can also be immuno-stimulatory when given at a higher dose in certain conditions [76–80].

Radiation can enhance inflammation response by increasing the production of interferon type I
(IFN-1) [80,81]. IFN-1 will later promote recruitment of dendritic cells and increase antigen presentation.
Radiation results in double strand DNA (dsDNA) breaks. The broken DNA fragments within the
cytoplasm of the cells will trigger the activity of the cyclic GMP-AMP synthase (cGAS) [82]. The activity
of cGAS will eventually lead to the activation of stimulator of IFN genes (STING) [81,83]. The STING
will phosphorylate interferon regulatory factor 3 (IRF3), resulting in activation and translocation of
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IRF3 into the nucleus. This IRF3 acts as transcriptor activator of the IFN-1 gene [81,83]. All these
processes eventually lead to the transcription of the IFN-1 gene.

Nevertheless, not all radiation will result in stimulation of IFN-1. A very high dose of radiation,
beyond 20 Gy in a single fraction was not associated with the increase in IFN-1 production [80].
This was due to the elimination of DNA fragments in the cytoplasm by DNA exonuclease Trex1 [84].
A higher radiation dose was associated with higher Trex1 expression, typically occurring in a dose of
12 Gy and beyond, depending on cell types [81]. The high expression of Trex1 in cytoplasm resulted
in elimination of the DNA fragment necessary to induce the cGAS-STING-IFN1 pathway [80,81].
Meanwhile, an 8 Gy radiation dose, a moderately high dose of radiation compared to the conventional
radiation of 2 Gy, has been shown to produce a greater number of DNA fragments in the cytoplasm of
the irradiated cells [80], thus this higher cytoplasmic DNA enables a greater stimulation of IFN-1.

Radiation therapy was also able to increase the recognition of tumor cells by the immune system
through upregulation of MHC Class I molecules in tumor cells [76,77,85,86]. Induction of MHC
Class I expression after radiation therapy was related with IFN-1, in particular, IFN-β secretion by
tumor cells themselves [86]. The induction of MHC Class I expression was due to stimulation of IFN
receptors by IFN-β in an autocrine and paracrine fashion [86]. However, the upregulation of MHC
Class I after radiation could also occur without IFN-β. Radiation has been proven to increase the
expression of NLRC5 [85], an MHC class I transactivator, as discussed above. The induction of NLRC5
following radiation induced MHC class I expression independent of IFN-β [85]. The higher MHC Class
I expression will later lead to improved tumor recognition through enhanced antigen presentation.

Irradiated tumor cells would also undergo immunogenic cell death with the release of
tumor antigens and various danger-associated molecular patterns (DAMPs) molecules [87,88].
This immunogenic cell death will further increase the process of immune recognition by antigen
presenting cells, as discussed above. The secretion of chemo attractants such as CXCL16 was also
shown to be enhanced after radiation therapy [89]. All these factors contribute to enhanced recruitment
of CD8+ T cells into tumor microenvironment and overcome at least part of the tumor resistance of
immune recognition. When combined with immune checkpoint inhibitors, theoretically, part of both
resistance of tumor recognition and tumor attack would be overcome.

Though radiation therapy has shown promising results in creating a so called in situ tumor
vaccine that proved to be beneficial when combined with immune checkpoint inhibitor [36] a
greater understanding is necessary. As radiation can be immune-stimulatory and at the same time
immunosuppressive, greater fundamental studies on the radiation dose, mode of the delivery, radiation
target, number of radiation fractions, and how to sequence the combination with immune checkpoint
inhibitor are required. However, for now, radiation therapy has proven to have a plausible rationale in
tackling some resistance of immunotherapy.

8. Synergistic Effect of Chemotherapy and Immunotherapy

Chemotherapy has been used for decades to treat cancer. Chemotherapy induces cell death through
direct cytotoxicity by various mechanisms include inhibition of cell proliferation. However, a sustained
tumor regression after chemotherapy is now known to be dependent on the immune system [90,91].
In an animal model, chemotherapy combined with a macrophage depleting agent resulted in tumor
regression only for a short period of time, while a more sustained regression was found without a
macrophage depleting agent [90]. This finding indicated that even with traditional treatment such as
chemotherapy, immune system plays a great role in determining the success of that particular treatment.

Chemotherapy has been shown to be able to synergize with immunotherapy to improve
cancer killing [92–94]. Chemotherapy agents that induce immunogenic cell death such as
anthracyclines (i.e., doxorubicin), platinum compounds (i.e., oxaliplatin), and alkylating agents
(i.e., cyclophosphamide) are generally more likely to synergize with immunotherapy [93–95].
Chemotherapy induced immunogenic cell death requires induction of stress signals or DAMPs.
The stress signals have to be either translocated to plasma membrane in order to be recognized by
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the dendritic cells or secreted by the tumor cells. These stress signals include calreticulin (CALR),
protein disulfide isomerase family A member 3 (PDIA3/ERp57), heat shock protein (HSP70/HSP90),
ATP, HMGB1, and type I IFN [94,96].

The secretion or exposure of stress signals is the prerequisite of chemotherapy induced
immunogenic cell death. The initial event is marked by stress toward endoplasmic reticulum.
Then, an activation of unfolded protein response (UPR) is initiated with various downstream
effects [96]. One of the effects is the increased synthesis of endoplasmic reticulum chaperones [96].
These endoplasmic reticulum chaperones will later be phosphorylated by eukaryotic translation
initiation factor 2A (eIF2A), resulting in translocation and exposure of stress signals [94].
Some chemotherapy agents such as cisplatin are unable to initiate the endoplasmic reticulum stress
response, thus inherently unable to generate immunogenic cell death [94].

Other important stress signals (ATP, HMGB1, and type I IFN) released by tumor cells are also
important in triggering immunogenic cell death. When chemotherapy induces endoplasmic reticulum
stress, the process of autophagy proceeds with the accumulation of ATP in autolysosomes [96,97].
Then, an exocytosis process occurs with the result of ATP secretion [97]. The HMGB1 has also been
shown to induce the process of immunogenic cell death, especially when present in reduced state [96].
Though HMGB1 can also reverse the process of pro-inflammation when present in the oxidative state,
it has been shown to be a critical molecule in chemotherapy induced immunogenic cell death [96].
Type I IFN has been known to be a potent inflammatory chemokine [95]. The secretion of type I
IFN occurring following chemotherapy has been shown to be dependent on Toll-like receptors 3
(TLR3) [96,98]. The activation of TLR3 further leads to the secretion of type I IFN to the tumor
microenvironment, thus recruiting immune cells [98].

Apart from secreting pro inflammatory stress signals, there are also other mechanisms of
chemotherapy promoting inflammation. Some chemotherapy such as cyclophosphamide, paclitaxel,
and temozolamide could deplete Treg cells [92,93]. Furthermore, paclitaxel has been shown to
selectively induce greater cell death in myeloid-derived suppressor cells (MDSCs) compared to
dendritic cells [99]. These MDSC cells are potent anti-inflammatory immune cells. The differential
sensitivity to paclitaxel was thought to be due to a greater abundance of P450 reductase enzyme in
MDSC cells compared to dendritic cells [99]. The P450 reductase enzyme metabolizes this paclitaxel into
its toxic active metabolite, thus selectively killing more MDSC cells and eliminating negative regulatory
cells [92,99]. Nucleoside analogs such as gemcitabine and 5-fluorouracil could also reduce the number
of MDSC cells [92]. Apart from that, gemcitabine has been shown to significantly increase MHC Class
I expression in tumor cells [100], therefore increasing the chance of tumor immune recognition.

Combining chemotherapy with immunotherapy in an attempt to increase tumor killing without
resulting in excessive side effects is possible, though challenging. As described above, chemotherapy
could induce immunogenic cell death, favoring increased tumor recognition until tumor attack.
However, multiple mechanisms elicited by tumor cells impede the process of tumor cells killed by
immune cells. An in-depth understanding of immune response and immune contexture of each
associated chemotherapy agent is necessary to properly combine both modalities. The sequence of
combination, type of chemotherapy agent combination, dosage, timing, number of cycles, and response
assessment are all important clinical questions yet to be explored in order to obtain the best synergy
between chemotherapy and immunotherapy.

9. Targeted Therapy Reverses Immunotherapy Tolerance

The understanding of the molecular carcinogenesis process has led to the development of
various targeted agents. Specifically, these agents were initially developed to put a brake or
even reverse the derailed intracellular signaling processes that lead to the development of cancer.
However, these targeted agents have also been shown to be able to modulate the immune system
to enhance immune recognition and immune attack in some instances [92]. Therefore, there is a
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rationale to combine targeted therapy with immunotherapy to enhance immune mediated tumor
killing. The mechanisms of these immune related tumor killing is discussed below.

Many types of targeted therapies are based on monoclonal antibody functioning to inhibit the
abnormal function of a specific receptor on the plasma membrane (i.e., Anti-Epidermal Growth Factor
Receptor (EGFR)). An anti EGFR, for example, cetuximab has been shown to induce internalization of the
EGFR, followed by degradation of EGFR through cellular lysosomes [101]. Thereby, the process results
in downregulation of the EGFR and suppression of proliferation. Apart from that, these monoclonal
antibody targeted agents can also induce immune related cell killing through the process of ADCC
and complement dependent cytotoxicity (CDC) [101]. However, as EGFR is also expressed in normal
cells [102], enhancing the effect of ADCC or CDC of these monoclonal antibodies could potentially
increase the toxicity. Thus, this limits the exploitation of immune mediated cell killing using monoclonal
antibodies targeted agents.

Another available targeted therapy is based on small molecules that inhibit the intracellular
tyrosine kinases. For instance, EGFR has an intracellular tyrosine kinase domain. The inhibition of
abnormally activated EGFR will suppress the proliferation of tumor cells. Furthermore, the inhibition
of EGFR with anti-EGFR tyrosine kinase inhibitor (TKI) (i.e., Afatinib) has been shown to upregulate
the MHC Class I receptor [36,103]. The abnormal activation of EGFR due to various kinds of mutation
within the cancer resulted in sustained downstream activation of mitogen-activated protein kinases
(MAPK) pathway [103]. The activation of the MAPK pathway was associated with suppression of
the MHC Class I expression [36,103]. Therefore, the inhibition of EGFR with TKI or any intracellular
kinases involved in the MAPK pathway resulted in enhanced upregulation of the MHC Class I molecule.
The increase in the MHC Class I receptor would enhance the antigenicity of the tumor cells and aid
tumor recognition.

Another important molecule that drive cancer progression is vascular endothelial growth factor
(VEGF). Currently, there are various TKI targeted agents that target VEGF, for instance, sunitinib. VEGF
has been known for some time to be an important molecule in cancer progression. VEGF can induce
angiogenesis, increase vascular permeability, remodel extracellular matrix, and sustain self-renewal
until recruiting T regulatory cells to the tumor microenvironment [104]. Therefore, blocking VEGF with
anti VEGF is mechanistically rational. Apart from inhibiting T regulatory cell recruitment to the tumor
microenvironment [92], anti VEGF TKI has also been shown to be able to reverse the immune-inhibitory
environment created by the tumor.

As discussed above, one of the hurdles of effective tumoral immune attack is due to dysfunctional
cytotoxic T cells. The VEGF molecule is one of the molecules responsible for causing the stimulation of
various immune-inhibitory molecules such as PD-1, TIM-3, and LAG-3 in cytotoxic T cells, rendering
the immune cells dysfunctional [92,105]. The inhibition of VEGF resulted in reduced expression of
the immune-inhibitory molecules in cytotoxic T cells, thus reversing the T cell exhaustion within the
tumor microenvironment [105]. Furthermore, combining anti VEGF with anti PD-1 has been shown to
enhance tumor shrinkage [105], validating the concept of combining those two modalities.

10. Treatment Based on Cancer Immune Landscape

As discussed above, there are many mechanisms in which the tumor can put forward to escape
host immune surveillance and attack. However, there is a common agreement that the immune
system plays a tremendous role in harnessing cancer growth and even dictating the chance of relapse
after treatment [106]. Furthermore, even with the conventional cancer treatment modalities such as
radiotherapy and chemotherapy, they also rely very much on the host immune system to sustain
tumor regression. A cancer immune profile, therefore, would significantly determine the prognosis
of a particular patient [36]. Moreover, a sound cancer treatment strategy can be devised by utilizing
the information on the tumor microenvironment immune contexture. It is expected that knowing a
precise mechanism of tumor immune escape will allow treatment administered with a greater chance
of success (Figure 4).
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Figure 4. Proposed multimodality treatment combining immunotherapy with various other treatments based
on cancer immune landscape. Immunotherapy described in this figure is limited to checkpoint inhibitor.

In the following discussion, we proposed and summarized a combinatorial strategy that can be
utilized to improve tumor recognition and tumor attack by knowing the exact cancer immune landscape.
The proposed combinatorial strategy is limited to combination of various immune checkpoint inhibitors
with other traditional agents that have been described above. There are many novel treatments such as
adoptive cell transfer, cancer vaccine with oncolytic virus, NK cell treatment, and so on, which can also
be used in selected settings as cancer immunotherapy [107–109]. However, these novel treatments are
not readily available in most cancer centers. Therefore, this proposed combinatorial strategy can be
adopted more readily and widely.

The immune profile in a tumor microenvironment of a particular cancer can be classified
into hot tumors (inflamed tumor), altered tumors, and cold tumors (non-inflamed tumor) [36,110].
An altered tumor is a wide spectrum in between inflamed and non-inflamed tumor. For the purpose
of simplification, altered tumors are generally classified into immunosuppressed and excluded
states [36]. An immunosuppressed tumor is a state in which there are tumor infiltrating lymphocytes
(sometimes possibly with immune-inhibitory phenotype) intermingled between tumors. There are
also relatively abundant negative regulatory cells such as T regulatory cells or MDSCs between tumor
cells in immunosuppressive tumors, while in excluded tumor, there are abundant lymphocytes at
the periphery or stromal border of the tumors. In this excluded tumor, there is a kind of barrier for
effective tumor infiltration.

In a hot tumor, immune system is generally able to recognize the tumor cells. It is marked by a
dense infiltration of tumor infiltrating lymphocytes within tumor microenvironment. Nevertheless,
the expression of various immune-inhibitory molecules by tumor cells such as PD-1, LAG-3, TIM-3,
and VISTA results in abrogation of tumor attack by cancer cells. In such cases, the use of immune
checkpoint inhibitors is theoretically sufficient to promote immune attack and result in tumor regression.
In immunosuppressed tumors, this state closely resembles hot tumors, however, the presence of
multiple negative regulatory cells within the tumor microenvironment resulted in a more complex



Molecules 2020, 25, 4096 13 of 20

failure of tumor immune attack. This immunosuppressed tumor can be counteracted by combining
immune checkpoint inhibitors with regulatory cell depleting agents [111].

Another altered state of tumor, the excluded tumor, less resembles hot tumors. This state of
excluded tumor is probably, to some extent, still able to be recognized by tumor cells, determined by
abundant lymphocytes on the tumor periphery, but not intermingled between tumor cells. The reason
for this is probably a lack of various chemokines or cytokines necessary to recruit these lymphocytes
to the tumor microenvironment [110]. Furthermore, tumor cells could also affect the extracellular
matrix and local vasculature, for instance, by secreting VEGF. The presence of VEGF does not favor
the process of T cell recruitment to the tumor microenvironment [36]. This excluded tumor can be
initially counteracted by stimulating the production of various pro-inflammatory chemokines and
administration of an anti-angiogenesis agent.

Once this excluded tumor receives an initial treatment and become more infiltrated by lymphocytes,
it is required to have a second look at its tumor microenvironment. It is possible that other mechanisms
are in place to hinder tumor attack. A study assessing the tumor microenvironment of primary and
relapsed tumor found that the tumor microenvironments were completely different [112]. The relapsed
tumor was bathed with numerous immunosuppressive cells [112]. Furthermore, mutational signatures
of a clinical cancer specimen before treatment and the specimen during recurrence after treatment
showed a complete different mutational signature [113]. This dynamic tumor mutation might also
contribute to different stimuli and result in a different tumor microenvironment. These findings
indicated that the tumor microenvironment is certainly dynamic and constantly evolving [112,114].
Therefore, after an initial treatment that would disrupt its microenvironment, a second assessment
of the tumor microenvironment is necessary. Other treatments, for instance, immune checkpoint
inhibitors have to be added later on, depending on this changing tumor immune landscape.

A cold tumor has none to very scarce tumor infiltrating lymphocytes within the tumor
microenvironment. This cold tumor phenotype indicates that the tumor is not recognized by immune
cells. One way to counteract this cold tumor is by inducing tumor recognition by various means
such as upregulating tumor MHC Class I receptors, stimulating tumor neo-antigens until enhancing
the recognition and activation of dendritic cells. The induction of tumor recognition can be achieved
by administering radiotherapy in a certain fashion where radiotherapy is expected to work as a kind of
tumor vaccine. Apart from radiotherapy, the administration of agents that can elicit immunogenic cell
death is also an alternative, as previously discussed. However, even though the resistance of tumor
recognition has been solved, there is still a possibility of various other mechanisms elicited by tumor
cells that are in place that fail the tumor immune attack [114]. Similar to the case of excluded tumors,
in this kind of cold tumor, a staged approach for a second assessment is required. A second biopsy will
determine the tumor immune profile after successful induction of tumor recognition. The information
on further evolution of the tumor immune landscape is again used to guide further choice of treatment.

Though, theoretically, this approach seems to be promising, there are various hurdles in
implementing this approach in clinical trials and clinical settings. The characterization of the
tumor immune landscape is technically complicated and challenging. Furthermore, there is
a lack of standardized guidance on the steps and techniques required for immune landscape
characterization. Most clinical trials combining immunotherapy with radiotherapy, chemotherapy,
or even targeted therapy are not selecting patients treatment based on cancer immune landscape
characterization [115–118]. However, biological cancer specimens are generally stored for further
retrospective analysis to understand the effect of the cancer immune landscape and various
combinatorial treatment. Future clinical trials with specific emphasis on selecting treatment strategy
based on cancer immune landscape compared with just standard practice is required to prove the
benefit of this approach.
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11. Conclusions

Immune escape by cancer is mainly due to the failure of recognition and failure of attack.
There are abundant mechanisms in which cancer cells can escape immune recognition including
downregulating MHC Class I and promoting immune suppressive CD4+ T regulatory cells/MDSCs
within the tumor microenvironment. The failure of immune attack could occur due to upregulation of
various immune checkpoint molecules, thus making the immune cells dysfunctional and exhaustive.
Failure in cancer attack can be reversed partly by administering immune checkpoint inhibitors,
however, abundant proliferating dysfunctional T cells within the tumor microenvironment render
those immune checkpoint inhibitors useless. Therefore, it is necessary to understand the basic
mechanism that fail immune surveillance.

There are many combinatorial strategies that can be used to reverse the resistance of
immunotherapy to synergize with immunotherapy or even to sensitize the effect of immunotherapy.
Many traditional modalities of cancer treatment can be combined with immunotherapy to improve
cancer killing. However, a prior characterization of the cancer immune landscape seems to be necessary
due to the heterogenicity of the tumor microenvironment, even in the same kind of tumor in the same
patient, but in a different period. This information is necessary in order to understand the mechanisms
that underlie the failure of immune recognition and immune attack. Then, the best strategy to target
those mechanisms of immune escape can be developed. The future of cancer treatment is going to
evolve very rapidly. Hopefully, with the understanding of this basic mechanism of immune escape,
further trials can be designed utilizing this strategy with the main aim to increase our ability to fight
and control cancer.
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