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Chemical RNA modifications are present in all
kingdoms of life and many of these post-transcriptional
modifications are conserved throughout evolution.
However, most of the research has been performed on
single cell organisms, whereas little is known about how
RNA modifications contribute to the development of
metazoans. In recent years, the identification of RNA
modification genes in genome wide association studies
(GWAS) has sparked new interest in previously neglected
genes. In this review, we summarize recent findings that
connect RNA modification defects and phenotypes in
higher eukaryotes. Furthermore, we discuss the
implications of aberrant tRNA modification in various
human diseases including metabolic defects,
mitochondrial dysfunctions, neurological disorders, and
cancer. As the molecular mechanisms of these diseases
are being elucidated, we will gain first insights into the
functions of RNA modifications in higher eukaryotes and
finally understand their roles during development.

Introduction

Chemical RNA modifications are a universal phenomenon of
molecular biology and occur in all 3 kingdoms of life.1 Virtually
every class of RNA molecules in the cell can be post-transcrip-
tionally modified, and certain modifications are evolutionarily
conserved and may be indispensable for translation.2 This appar-
ent conservation has benefited our understanding of RNA modi-
fication pathways tremendously, because it allowed for the use of
simple model organisms like yeast and bacteria. However, this
powerful approach has left us with a puzzle. Why are so many
RNA modifications evolutionarily conserved, but show no obvi-
ous phenotypes in single cell organisms when grown under labo-
ratory conditions?

This apparent lack of phenotypes in yeast has discouraged
further studies in higher eukaryotes, preventing us from
obtaining a realistic view of the function of RNA modifying
pathways in developing organisms. However, it is worth tak-
ing a closer look. For example, deleting the ELP1 gene,
which is required for 5-methoxycarbonylmethyluridine
(mcm5U) and 5-carbamoylmethyluridine (ncm5U) formation
at tRNA wobble uridines (U34), leads to subtle phenotypes in
yeast.3 In contrast, deleting Ikbkap, the ELP1 homolog in
mice, results in early embryonic lethality, revealing an essen-
tial role of these modifications in higher eukaryotes.4 Further-
more, the prolific use of next generation sequencing and its
application in genome wide association studies (GWAS) have
unexpectedly linked several RNA modification genes to
human diseases. While this has brought RNA modifications
to center stage in certain fields, we still know very little about
RNA modifying enzymes in higher eukaryotes.

In this review, we discuss recent findings that link RNA modi-
fications to phenotypes in higher eukaryotes and consider their
implication in human disease. Importantly, we will not cover
capping, adenylation, deadenylation and editing, but will instead
primarily focus on chemical modification of tRNA, mRNA, and
to a certain degree, rRNA.

Phenotypes linked to mutations in RNA modifying
enzymes have been described in many multicellular organisms
(Fig. 1). Their analyses are complicated by several factors:
First, functional orthologues of known RNA modifying
enzymes have not been identified in all species.5 Second, the
modification status of many RNA molecules has been charac-
terized only in a few metazoans,6 and we often rely on analo-
gies to yeast. Finally, phenotypes are complex and diverse.
For an overview of phenotypes linked to RNA modification
deficiencies, please refer to Table 1 for humans, Table 2 for
mice, and Table 3 for zebrafish and flies.

However, common themes emerge from these studies, and it
is possible to separate the defects into 4 classes: i) perturbed
metabolic pathways, ii) mitochondrial defects, iii) neuronal dis-
orders, and iv) increased susceptibility to cancer. It will become
apparent that this classification is somewhat artificial. Certain
genes fall into more than one class and it may be a matter of
preference, which one is emphasized. Furthermore, complex
phenotypes can obscure classification, as it is sometimes difficult
to distinguish between primary and secondary defects. Never-
theless, these categories can act as a good starting point to
address the complexity.
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Metabolic Defects

Metabolic defects combine changes in cellular or organismal
metabolism, which lead to altered metabolite levels in the blood
of patients. In the last decades, the spread of a high sugar and
high fat diet has lead to an epidemic of metabolic disorders. In
particular, type 2 diabetes (TIID) receives a lot of attention since
it affects health and economies on a global scale.7

Several modification genes have been linked to metabolic
defects, including the fat mass and obesity associated (FTO) gene,
CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1),
tRNA aspartic acid methyltransferase 1 (TRDMT1), and tRNA
methyltransferase 10 homolog A (TRMT10A). FTO, initially
called fatso, was identified in a mouse mutant characterized by
fused toes and defects in brain development and body axis con-
trol.8 However, FTO immediately entered the limelight when
independent GWAS linked single nucleotide polymorphisms
(SNPs) in intron 1 of FTO to TIID and obesity.9-12 The causative
SNPs are strongly associated with early onset obesity and are

predictive for average weight differences
of 3 kg.9,11,13 FTO is a 2-oxogluterate
dependent oxygenase and can demethylate
6-methyladenosine (m6A) or form N6-
hydroxymethyladenosine (hm6A) and
N6-formyladenosine (f6A) in mRNA.14-17

The tight regulation of m6A methyla-
tion in mRNA is crucial during gameto-
genesis in Drosophila and mice and
embryogenesis in Arabidopsis.18,19 In
flies and plants the gene is also essential
later during development.19,20 Thus, it is
conceivable that FTO is critical in regu-
lating mRNA by modulating their modi-
fication, which may change mRNA
turnover and translation and its interac-
tion with RNA binding proteins. For an
in-depth review, please refer to. 21

FTO is expressed in many human tis-
sues. Expression levels in the hypothala-
mus are very high, which is consistent
with a role in energy regulation9,14 Mice
with a FTO knockout die soon after
birth as a result of a growth retardation
that starts at day 2.22,23 Both lean mass
and fat mass are reduced in the neuron-
specific or full knockout strains, while
oxygen consumption and CO2 produc-
tion increase.22,23 Interestingly, a domi-
nant missense mutant, which reduces
FTO activity to »30%, develops a simi-
lar phenotype.24 Complementary results
stem from mouse models that overex-
press additional cDNA copies of FTO,
leading to a dose dependent increase of
body weight.25

Analyses of the m6A pattern in cellu-
lar transcripts identified thousands of potential mRNA targets26-
28 and different mechanisms downstream of m6A methylation
have been proposed, including dopamine receptor response and
Wnt signaling.28,29 Knockdown of FTO in zebrafish reduces
brain and eye size and perturbs neural crest cell migration and
cilia formation.29 This is consistent with pathologies reported in
humans. While certain SNPs were found to affect brain size of
healthy individuals with no apparent damage,30 other reports
link FTO variants to mental retardation and microcephaly.31,32

Recently, the direct role of FTO in obesity was questioned
and explained by a long-range interaction of FTO intron 1 with
the promoter of the homeobox gene IRX3.33 Importantly, the
authors found no correlation between FTO expression levels and
obesity. Even though very compelling, the described mechanism
does not fully explain the phenotypes of the dominant mouse
mutant and of the cDNA overexpression in mice.24,25

CDKAL1 was linked to TIID and obesity at the same time as
FTO.10,34-36 It is a methylthiotransferase, required for the genera-
tion of 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) at

Figure 1. tRNA modification defects and phenotypes in higher eukaryotes. Schematic representation
of a tRNA. Modified nucleosides that have been linked to phenotypes in higher eukaryotes are indi-
cated as red circles. The color inside the circle denotes the type of defect observed. Chemical modifi-
cations and their causative genes (in brackets) are linked to the respective nucleoside. Gray or black
residues depict nucleosides that are either unmodified or not linked to phenotypes. Abbreviations of
the nucleosides follow the nomenclature of Modomics (http://modomics.genesilico.pl/).
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position 37 in the anticodon of cytoplasmic tRNALys(UUU).37,38

Proinsulin processing is perturbed in CDKAL1 knockout mice,
leading to ER stress and reduced insulin secretion in b-cells.38,39

Reporter assays suggest that the insulin secretion defect is caused by
misreading of Lysine-codons in proinsulin.38 Human carriers of
TIID alleles show reduced levels of ms2t6A37, they fail to generate
and to secrete insulin, and they may respond differently to pharma-
cological treatment of TIID.40-44 Consistent with this, CDKAL1
alleles correlate strongly with an increased risk for coronary artery
diseases, most likely as a downstream effect of TIID.45 Further-
more, CDKAL1 was identified as a risk factor for Crohn’s disease
(CD) and for Psoriasis. However, the alleles associated with CD
and Psoriasis are not linked to TIID.46,47

TRDMT1 causes more subtle phenotypes than FTO or
CDKAL1. The protein was described as a DNA methylase but is
in fact required to form 5-methylcytidine (m5C) on tRNA and
mRNA.48-53 Knockouts in Drosophila, Arabidopsis and mice
were indistinguishable from wild type.48,49 However, TRDMT1
may influence cellular metabolism in unexpected ways. Studies

in humans link a variant in TRDMT1 to increased folate levels,
which may subsequently lower the risk of developing congenital
heart diseases or spina bifida during pregnancy.54,55 Further-
more, morpholino-mediated downregulation of TRDMT1 in
zebrafish led to malformed eyes, as well as brain and liver
defects.50 Whether the more severe phenotype is explained by
different requirements in zebrafish or by off-target effects needs
to be seen. However, m5C levels are important since the knock-
out of NOP2/Sun RNA methyltransferase family, member 2
(NSUN2) is characterized by a significant weight reduction.56

Furthermore, the double knockout of TRDMT1 and NSUN2 in
mice is synthetic lethal.53 The double mutants are smaller at birth
and die within the first days due to a feeding defect. They also
exhibit severe skeletal and brain defects, as well as perturbed fat
metabolism.53 Interestingly, mouse embryonic fibroblasts derived
from the double mutant accumulate tRNA fragments and show
signs of reduced protein translation.53 Similarly, TRDMT1
mutant flies contain stress induced tRNA fragments and consti-
tutively upregulate the innate immune system.57,58

Table 1. RNA modification genes associated with disease in humans

Genea OMIMa Modification Disease Testsb Ref.

ADAT3 113179 615302 t (I) ID — 123

ELP3 55140 612722 t (mcm5U, ncm5U) Amyotrophic lateral sclerosis (ALS) — 88

ELP4 26610 606985 t (mcm5U, ncm5U) Rolandic Epilepsy — 90

FTO 79068 610966 m (m6A=>A; hm6A, f6A) TIID, ID, obesity, developmental delay 4 9-12,31,32

FTSJ1 24140 300499 t (Gm, Um, Cm) Intellectual disabilities (ID) 13 98-104

IKBKAP 8518 603722 t (mcm5U, ncm5U) Familial dysautonomia 59 76-78

NSUN2 54888 610916 t, m, nc, r (m5C) ID, developmental delay, reduced fertility 5 106-109

TRDMT1 1787 602478 t, m, nc, r (m5C) Cancer (breast), metabolism — 154, Om
TRMT1 55621 611669 t (m2

2G) ID — 87

TRMT5 57570 611023 t (m1G) Cancer (colorectal, head and neck) — Om
TRMT10A 93587 – t (m1G) ID, TIID — 126

TRMT12 55039 611244 t (yW) Cancer (breast, leukemia, colorectal) 1 155,156, Om
TRMU 55687 610230 t (s2U)mito Mitochondriopathies 29 124,140

QTRT1 81890 609615 t (Q) Cancer (lymphoma, leukemia) 4 124,140,154, Om

t: tRNA; m: mRNA; nc: ncRNA; r: ribosome; ID: Intellectual disabilities; TIID: Type 2 diabetes; Om: Oncomine
a Source for Gene and OMIM-Identifiers: http://www.ncbi.nlm.nih.gov
bSource for Genetic Testing Registry: http://www.ncbi.nlm.nih.gov/gtr/

Table 2.Mouse models for RNA modification genes.

Gene Target Model Phenotype Ref.

IKAP (ikbkap) t (mcm5U; ncm5U) ki, ko, mut, ts Embryonic lethal; growth defect; neuronal phenotype 4,74,85,86

ALKBH8 t (mcm5U; mcm5Um) ko No phenotype 144

NSUN2 t, m, nc, r(m5C) ko Growth phenotype; stem cell defect; males sterile 110,114,157

Mterf4 r (m5C)mito ko, ts Embryonic lethal; Cardiomyopathy 71

NSUN4 r (m5C)mito ko, ts Embryonic lethal; Cardiomyopathy 70

TRDMT1 t, m, nc, r (m5C) ko No phenotype 49

TRDMT1/NSUN2 t, m, nc, r (m5C) Lethal; developmental defects; brain phenotype 53

FTO m (m6A=>A; hm6A, f6A) oe, ko, mut, ts Lethal; metabolic changes; weight defects; developmental defects 8,22-25

ALKBH5 m (m6A=>A) Male sterility 145

WTAP m, nc, r (m6A) ko Embryonic lethal 120,121

CDKAL1 ms2t6A ts Pancreatic islet hypertrophy 38

Ko: knockout; ts: tissue-specific knockout; oe: overexpression; ki: knock in; t: tRNA; r: rRNA, m: mRNA, nc: ncRNA.

www.tandfonline.com 1557RNA Biology

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/gtr/


Mitochondrial Phenotypes

Mitochondria utilize a minimal set of 22 tRNAs to decode all
60 sense codons.59 To achieve this, only 4 post-transcriptional
modifications are required at the wobble position of 10 mito-
chondrial tRNAs: 5-formylcytidine (f5C), 5-taurinomethyluri-
dine (tm5U), 5-taurinomethyl-2-thiouridine (tm5s2U), and
queuosine (Q).60 In such a fine-tuned system, incomplete wobble
base modification disrupts protein synthesis and causes errors
that can potentiate to mitochondrial dysfunction. Cells with
mitochondrial defects generally display significantly reduced oxy-
gen consumption and mitochondrial protein synthesis, as well as
reduced ATP production, decreased mitochondrial membrane
potential, and increased superoxide levels.61,62

A single heteroplasmic A to G replacement at nucleotide posi-
tion (np) 3243 in the gene encoding for mt tRNALeu(UAA) is
associated with diverse pathological phenotypes, including ocular
myopathy, diabetes with associated deafness, and the full mito-
chondrial encephalomyopathy with lactic acidosis and stroke-like epi-
sodes (MELAS) syndrome.61,63 Roughly 80% of all MELAS
patients carry this transition whereas in approx. Ten% of the
cases a T to C transition occurs at np 3271. Neither of the muta-
tions lies at the anticodon of the tRNA. However, both muta-
tions lead to tm5U hypomodification of mt tRNALeu(UAA) that
manifests in identical clinical symptoms.63,64 A to G transition at
np 8344 of the mt tRNALys(UUU) gene leads to loss of tm5s2U
modification at the wobble uridine. Patients with this deficiency
suffer from mitochondrial encephalomyopathies, myoclonus epilepsy
associated with ragged-red fibers (MERRF) syndrome, which con-
stitutes another subgroup of mitochondrial encephalomyopathia
that is clinically distinct from MELAS.60,65

The point mutations associated with MELAS and MERRF
function as negative determinants of tm5U biosynthesis by dis-
rupting the tertiary structure of the tRNA,64 thereby preventing
its proper recognition by a currently unknown taurine transfer-
ase. GTPBP3, the human homolog of Mto1p/Mss1p that syn-
thesizes 5-carboxymethyluridine (cmnm5U) in yeast, is a putative
candidate but conclusive evidence is lacking.66

Loss of the tm5U modification in MELAS patients prevents
the mt tRNALeu(UAA) from reading UUG codons, whereas no
apparent reduction in decoding capability is observed for UUA
codons.67 Decoding dysfunctions are exacerbated by the point

mutations in MERRF, where tm5s2U hypomodification
completely abrogates the ability of mt tRNALys(UUU) to read
the cognate codons AAA and AAG. This defect is attributed to
the complete loss of s2U modification, a critical factor for stabiliz-
ing the codon-anticodon interactions in the ribosome.60,67 A nat-
ural suppressor tRNA in MELAS cells can largely rescue the
decoding disorder. A second mutation from G to A at np 12300
changes the anticodon sequence of mt tRNALeu(UAG), allowing
it to read the same codons as mt tRNALeu(UAA).60,61,68,69 Sur-
prisingly, this mutant tRNA can be tm5U modified despite a
mere 42% sequence homology to mt tRNALeu(UAA).69 Acquisi-
tion of the wobble modification in another isoacceptor tRNA is
key to suppressing MELAS and highlights the importance of
translational control through nucleoside modifications.

NSUN4 performs m5C methylation of C911 in mitochondrial
12S rRNA.70 Both NSUN4 and its cofactor MTERF4 are essen-
tial and their deletion leads to early embryonic lethality in
mice.70,71 A heart specific knockout is viable but significantly
shortens the lifespan. Mitochondrial translation fails despite a
significant increase of transcript levels, giving rise to nonfunc-
tional mitochondria and the ultimately lethal phenotype.70,71

Neurodegenerative and Neurological Defects

Several neurological defects are linked to the absence of
homologues of the ELP complex, which is required for the for-
mation of mcm5U34 and ncm5U34 in 11 cytoplasmic tRNAs in
different organisms.72-74 The best understood case is familial dys-
autonomia (FD), also termed the Riley-Day syndrome.75 This
devastating autosomal recessive disorder severely affects neurons
of the autonomic nervous system, resulting in the absence of sen-
sory neurons. The lack of autonomic control ultimately leads to
premature death mainly through cardiovascular failure or respira-
tory defects.76 99.5% of the disease alleles affect a donor splice
site in the IKBKAP gene and lead to tissue specific skipping of
exon 20 and introduction of a premature stop codon, thereby
drastically reducing IKAP protein levels in neurons.77-79 How-
ever, in non-neuronal tissues the remaining wild-type transcripts
suffice to ensure cell survival.79 Importantly, reduced levels of
IKAP lead to reduced levels of xm5U in cells of FD patients.80

Since FD is caused by a tissue specific splicing defect, attempts to

Table 3. Drosophila and zebrafish models for RNA modification genes.

Gene Target Model Phenotype Ref.

ELP3 t (mcm5U, ncm5U) Dros mut Neuronal phenotypes 88

Zeb morph Motor neuron defect 88

FTO m (m6A=>A; hm6A, f6A) Zeb morph Developmental defects; brain phenotype 29

METTL3 m, nc, r (m6A) Zeb morph Tissue differentiation defects; brain phenotypes 118

TRDMT1 t, m, nc, r Dros mut No phenotype; Increased stress sensitivity 158

(m5C) Zeb morph Developmental defects; brain phenotype 50

U26, U44, U78 r (Nm) Zeb morph Multiple developmental defects; brain phenotype 122

WTAP m, nc, r Dros mut Lethal for females 159

(m6A) Zeb morph Tissue differentiation defects; brain phenotypes 118

Dros mut: Drosophila mutant; Zeb morph: Zebrafish morpholino knockdown; t: tRNA; r: rRNA, m: mRNA, nc: ncRNA.
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find compounds that may correct IKBKAP splicing and relieve
some of the symptoms have been undertaken.81-84 Several small
molecules have been identified, but only Kinetin has shown posi-
tive clinical effects.85 Thus, FD is the only RNA modification
disease for which treatment options may exist through restoration
of RNA modification levels.

However, why does FD affect only sensory neurons? Are they
particularly vulnerable to RNA modification defects, or are they
targeted by a tissue specific splicing defect? Answers to these ques-
tions may come from animal models. The full knockout of ikb-
kap leads to lethality around embryonic day 12.5.4 Developing
embryos are small and show defects in extraembryonic tissues as
well as neuronal and vascular development.4 When a deletion
allele of exon 20 is combined with a full knockout allele, the phe-
notypes are similar to the full knockout, suggesting that the
mutant protein is non-functional.86 A mouse model that recapit-
ulates FD symptoms combines the exon 20 deletion with a hypo-
morphic allele that reduces IKAP activity to 10%.87 These
mutants are significantly smaller at birth and frequently die there-
after due to a feeding defect, reminiscent of TRDMT1/NSUN2
mutant mice.53,87 Furthermore, the animals exhibit gastro-intes-
tinal defects and reduction of sympathetic ganglia and other phe-
notypes characteristic of FD.87 Interestingly, a tissue specific
knockout in testis triggers meiotic defects and subsequent apo-
ptosis of germ cells,74 showing that IKAP function is essential
also in non-neuronal tissues. In summary, FD is caused by
reduced IKAP function in a dose dependent manner. The enzy-
matic nature of the ELP complex and the long half-life of tRNAs
may generate sufficient levels of modified tRNA to allow for sur-
vival even at low expression levels. Thus, the reason why sensory
neurons are affected may be a combination of neurons being
more sensitive to perturbations together with a tissue specific
splicing defect that reduces IKAP levels more in neuronal tissues
than in other cells.

Not only IKAP, but almost every subunit of the ELP complex
has been linked to a disease. ELP2 is a risk gene for intellectual
disabilities (ID),88 while ELP3 is associated with non-familial
Amyotrophic lateral scelerosis (ALS).89 Similarly, Drosophila
mutants of ELP3 show neuronal defects and their motor neurons
branch abnormally.89 Axon length of motor neurons in zebrafish
is decreased in a dose dependent manner upon knockdown of
elp3,89 and elpc-1 and elpc-3 mutants exhibit learning defects in
Caenorhabditis elegans.90 In humans, Rolandic epilepsy, a gener-
ally mild form of childhood epilepsy, has been associated with
ELP4.91,92 However, it is unclear whether ELP4 is the causal
gene. Potentially, the neighboring PAX6 is controlled by regula-
tory elements in the introns of ELP4, as proposed for FTO and
IRX3.33,93 Poly, the Drosophila homolog of ELP6, is essential in
larval development and its absence causes major metabolic
changes and brain defects.94 While the ELP complex is linked to
multiple diseases, no pathologies have been associated with the
URM1 pathway, which is required for s2U formation on 3
mcm5-modified tRNA.95 However, in Arabidopsis, mutants of
this pathway affect root growth.96

FtsJ RNA methyltransferase homolog 1 (FTSJ1), a homolog
of Trm7, is required for the 2’-O-ribose methylation at G34,

U34, C34 and C32 of several tRNA.97,98 It was linked to non-
syndromic X-linked ID but also to general mental perfor-
mance.99-105 Most of the mutations described so far result in a
loss-of-function of the protein, either by impairing the critical
SAM-binding domain of the protein or by degradation of the
mutant mRNA.99,101 There are no morphological brain pheno-
types in patients.99 However, high expression levels in the fetal
brain may reflect the importance of the gene during brain devel-
opment.99 Interestingly, 2 studies report that duplications of a
genomic region that contains FTSJ1 lead to ID accompanied by
mild dysmorphic features.105,106 The fact that both duplication
and loss of function leads to similar phenotypes may suggest that
FTSJ1 levels need to be precisely controlled. To better under-
stand this seemingly paradoxical situation, a systematic manipu-
lation of FTSJ1 expression levels in animal models is of utmost
significance. However, these models are currently not available.

Mutations in NSUN2 are linked to ID and a Dubowitz-like
syndrome, characterized by mild microcephaly and congenital
heart defects.107-110 Similarly, perturbed NSUN2 function
results in deficits in short-term memory and behavioral assays in
mice and flies,107 as well as reduced fertility in flies, mice and
humans.107,109,111 Expression levels in the brain are high in mice
and flies, consistent with the phenotypes.107,109,112 NSUN2 cata-
lyzes the formation of m5C at the wobble position 34 of tRNA-
Leu(CAA), as well as positions 48-50 of several tRNA molecules.
However, m5C sites are also found in other ncRNA and mRNA,
where they are enriched in the UTR and overlap with Argonaute
binding sites.52,113 Thus, most models to explain the phenotypes
imply changes of RNA turnover in response to methylation of
mRNA or non-coding RNAs.113,114 A different mechanism
implies tRNA as mediators of phenotypes: Interestingly, 5’
tRNA-fragments accumulate in tissues and cells in NSUN2
knockout mice and both NSUN2 and the tRNA-fragments co-
localize with cellular stress markers.115 This model postulates
that angiogenin, a cellular ribonuclease, generates these fragments
in response to cellular stress, thereby downregulating translation
rates.115 However, it will be critical to dissect the contribution of
each of the proposed mechanisms to understand the phenotypes.

SNPs in TRMT10A, the mammalian homolog of Trm10,
which modifies 12 tRNA species by 1-methylguanosine (m1G) at
position 9 in yeast, were reported to cause ID, microcephaly and
perturbed glucose metabolism.115,116 Inactivation of TRMT10A
by siRNA in rat b-cells sensitizes the cells against free fatty acid
induced ER stress and induces apoptosis.117

Internal m6A methylation of mRNA in humans is achieved by
a methylase-complex, that consist of at least 3 subunits:
METTL3, a methyltransferase acts in concert with it homolog
METTL14 and Wilms’ tumor 1-associating protein
(WTAP).118-120 WTAP targets the other subunits to mRNA but
is enzymatically inactive.119 While METTL3 and METTL14
methylate their substrates independently in vitro, their activity is
strongly enhanced when acting cooperatively.118 Inactivation of
METTL3 or WTAP in zebrafish causes severe developmental
defects characterized by smaller heads and eyes and a curved
notochord accompanied by increased apoptosis.119 Interestingly,
stem cells loose their ability to maintain a pluripotent state, when
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METTL3 or METTL14 are downregu-
lated.120 Consistently, knockout mice
die during early embryonic develop-
ment,121,122 and cells of the inner cell
mass fail to differentiate into mesoderm
or endoderm.122

Malformations of the zebrafish brain
are also observed in morpholino-medi-
ated knockdowns of the 3 conserved
small nucleolar RNAs (snoRNA) U26,
U44 and U78, suggesting that transla-
tion defects consistently affect brain
development.123

Finally, 2 more genes are known to
cause ID: mutations in ADAT3, which
is required for the formation of inosine
(I34) at the anticodon of several tRNAs,
cause severe ID and strabismus,124 and
TRMT1, the homolog of Trm1p, is
required for the formation of N2,N2-
dimethylguanosine (m2

2G).88 However,
experiments to decipher these pheno-
types are still pending.

Cancer
Cancer is the collective term for a

broad group of complex diseases characterized by unregulated
cell growth resulting in malignant tumors. Defects in tRNA
modification have been directly tied to cell proliferation and
malignancy for a number of lymphomas,125 leukemias125,126 and
carcinomas, including skin, breast, bladder, and colorectal can-
cers.127-131 In the late 1960s Borek and co-workers isolated
tRNA from various tumor tissues and reported elevated levels of
methylated nucleosides, as well as an increased tRNA methylase
activity in the cells. This suggests that tRNA hypermodification
might have a specific functional role in tumor cells (reviewed in
132). However, several subsequent studies have shown that
tumor-specific tRNA species tend to be hypomodified rather
than hypermodified.133

Insufficient queuosine Q modification in tRNA from neoplastic
cells is a well-studied example of tRNA hypomodification.125,135

Queuine, a derivative of 7-aminomethyl-7-deazaguanine, is found
exclusively in the first position of the tRNA anticodon in the form
of Q, mannosyl-queuosine (manQ), and galactosyl-queuosine
(galQ).135,136 Eukaryotes are unable to synthesize queuine and rely
on a salvage system that acquires it as a nutrient factor. Q containing
tRNAs are fully modified under normal physiological conditions,
but are often hypomodified in undifferentiated rapidly growing
cells, embryonic tissues, and neoplastically-transformed cells. Q defi-
ciency is associated with lymphoma, leukemia and various kinds of
tumors.125,137,138 In fast growing tumor cells queuine is replaced by
guanine at the tRNA wobble position.134 This observation cannot
be fully explained by insufficient queuine uptake, since addition of
excess amounts of exogenous queuine only partially restoredQmod-
ification to tumor tRNA.139 Furthermore, slowly growing tumors
are also deficient in Q modification.133 This suggests that Q

hypomodification arises either due to functional impairment
of the tRNA-guanine transglycosylase (TGTase) enzyme and
subsequent lack of queuine incorporation into tRNA, or due
to a queuine salvage pathway deficiency, or a combination of
both.135,136

The physiological role of queuine remains ill defined.
More recently Q modification has been implicated in protect-
ing the cellular antioxidant defense system during malig-
nancy.140 It has also been suggested that replacement of
queuine with guanine in the anticodon has the potential to
alter mRNA codon recognition and, as a result, gene expres-
sion.126,141 Treatment of a human promyelocytic leukemia
(HL-60) cell line with 6-thioguanine, a guanine analog,
resulted in growth inhibition and cell differentiation.126 This
has been attributed to altered codon recognition by tRNAs
containing the guanine analogs, allowing read-through of
amber (UAG) stop codons in the presence of guanine in the
wobble position of tRNATyr.126,141

Although tRNA molecules possess a considerable number of
nucleoside modifications, only a handful of mammalian tRNA
methyltransferases have been described to date. These include the
6 putative families of m5C methyltransferases of which only
NSUN2 and TRDMT1 have been characterized, as well as other
tRNA methyltransferases including tRNA methyltransferase
homolog 12 (TRMT12),127 TRMT10A,131 and human AlkB
homolog 8 (ALKBH8).130 Aberrant function of these methyl-
transferases has been linked to tumor formation. In addition, sev-
eral other RNA modification enzymes have been associated with
cancers in humans (please refer to Figure 2 for a comprehensive
overview).

Figure 2. RNA modification genes associated with human malignancies. Schematic representation of
various cancers for which increase (red) or decrease (blue) of tRNA modification gene copy number,
or expression level, has been reported. (Source: Cosmic and Oncomine).
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NSUN2 is a direct target gene of c-Myc, a well-known
proto-oncogene that triggers proliferation and decrease cell
adhesion. Significant upregulation of NSUN2 expression was
detected both in primary tumors and metastases of breast car-
cinomas and in malignant squamous cell carcinomas, whereas
benign papillomas showed slightly lower expression levels.
Knockdown of NSUN2 expression by RNAi inhibits tumor
growth in squamous cell carcinoma xenografts in a dose-
dependent manner,142 making it a potential target for cancer
therapy. Interestingly, the cancer drug Azacytidine, which
inhibits DNA methylation, reduces m5C levels in RNA in tis-
sue culture cells, suggesting that RNA demethylation may
contribute to the efficacy of Azacytidine.143

Correct function of the human tRNA-(N1G37) methyltrans-
ferase (TRMT5), which catalyzes methyl transfer from S-adeno-
syl methionine (AdoMet) to guanine to synthesize m1G at
position 37 in many tRNAs, is a critical determinant in prevent-
ing ribosomal frameshifts.144 TRMT5 expression is significantly
downregulated in several colorectal cancers whereas overexpres-
sion occurs in head and neck cancers (Oncomine). Another mod-
ification occurring at position 37 of tRNAPhe is the formation of
wybutosine by TRMT12, whose expression is significantly upre-
gulated in several breast cancer cell lines127 and is also prevalent
in leukemia, but tends to be downregulated in colorectal cancers
(Oncomine).

Weak Phenotypes

Mice deleted for ALKBH8, which is required for the last step
of mcm5U synthesis in cytoplasmic tRNA, appear normal up to
20 months of age.145 However, tRNASec, which is required for
the recoding of UGA stop-codons to selenocysteine, lacks
mcm5U and 5-methoxycarbonylmethyl-2’-O-methyluridine
(mcm5Um),145 leading to reduced levels of the selenoprotein glu-
tathione peroxidase 1 (Gpx1), as well as glutathione peroxidase
activity.145 Nevertheless, this deficiency does not cause apparent
morphological phenotypes.

Like for ALKBH8, knockout mice of ALKBH5 - a sister
enzyme of FTO - overall seem anatomically normal.146 However,
males have small testes with perturbed morphology and a
reduced number of dysfunctional spermatozoa. It is unclear
whether the localization of ALKBH5 to nuclear speckles, and its
effects for the recruitment of certain RNA processing factors and
mRNA, contribute to this phenotype.146

Discussion

We observe diverse phenotypes when RNA modification
genes are perturbed in higher eukaryotes, but we are only
starting to grasp the complexity of these pathways. It appears
relatively straightforward to rationalize that mitochondrial
dysfunction severely affects different tissues. However, to
connect other deficiencies to the observed pathologies is
much more challenging. In yeast, certain modification defects

can be rescued by overexpressing their respective modifica-
tion target.3,98,147 However, similar experiments have not
been performed in metazoans. Hence, it needs to be shown
that these phenotypes are actually caused by RNA modifica-
tion defects.

Why do phenotypes differ between single cell and multicellu-
lar organisms? Yeasts and bacteria are generally grown under
favorable conditions in the lab and have been selected for rapid
growth under this regime for thousands of generations. Thus,
they can by no means be compared to the complexity of a devel-
oping organism that coordinates multiple differentiation events
in parallel. Despite a high degree of buffering and compensatory
mechanisms, seemingly subtle but systematic perturbations may
trigger processes that will ultimately affect cellular and organis-
mal function.

It will be interesting albeit challenging to understand phe-
notypes that were identified in GWAS. Even in the well-
defined case of IKAP, several attempts were necessary to gen-
erate a mouse model that recapitulates FD, suggesting that
the relevant phenotype is not a full knockout. Thus, the gen-
eration of hypomorphic mutants or introduction of relevant
SNPs into model organisms may be required to generate real-
istic disease models. Furthermore, the ratio of cognate versus
near-cognate tRNA genes can potentially affect the interfer-
ence by unmodified tRNAs.148 Finally, tissue specific RNA
expression or different genetic mouse backgrounds can affect
the outcome of a phenotype significantly (please refer also to
the checklist in Table 4).149,150 All these factors need to be
kept in mind, when modeling RNA modification pathologies,
and it is possible that certain defects in humans can be best
mimicked by studying inducible pluripotent stem cells
(iPSC) and differentiated cells derived from them.

What are the potential mechanisms by which RNA modi-
fications may affect multicellular species? First, perturbation
of RNA modification pathways may reroute certain metabo-
lites, thereby affecting other pathways and causing toxicity
(Fig. 3A). Second, translation is likely to be affected in many
modification defects of tRNA, rRNA or mRNA. However,
direct evidence in vivo is scarce. Codon specific translation
defects may lead to decreased production of individual pro-
teins that are required either in certain cell types or under
specific stress conditions (Fig. 3B). Third, codon specific
translation defects may give rise to protein aggregates and
subsequent failure of protein homeostasis (S.L unpublished

Table 4. Factors to consider:

1) Are aspects of the pathology tissue specific?
- expression of RNA targets
- expression of modification enzymes
- splicing
- turnover (RNA or protein)
- metabolite levels

2) Genome characteristics:
- tRNA abundance (gene copy number)
- Codon usage
- GC content
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results; Fig. 3C). Finally, the occurrence of tRNA fragments
in a number of defects is an interesting observation.53,115 In
this scenario, 5’ halves of tRNA reduce cellular translation
rates, which perturbs the cell (Fig. 3D). Similarly, accumula-
tion of tRNA fragments was also reported in patients suffer-
ing from neurodegeneration and microcephaly upon loss of
tRNA kinase CLP1 activity.151,152 However, this effect may
not be independent of protein aggregation and further analy-
sis of the causal relationship between these phenomena will

be imperative. At this point it is conceivable that tRNA frag-
ments are both a causal factor as well as a downstream
marker of cellular defects. Nevertheless, translational modula-
tion is a likely mechanism underlying many pathologies, since
a large number of mutations affect the tRNA anticodon and,
in particular, the wobble position (Fig. 1).

Finally, why do certain alleles occur at such high frequency in
the population? For example, certain FTO variants account for
adverse phenotypes, such as predisposition to obesity9-12 and

Figure 3. Models of how RNA modification defects cause phenotypes. Comparison of different scenarios in an unperturbed (left) and pathogenic (right)
situation. (A) A metabolic pathway is blocked, leading to the absence of modified RNA (indicated by an asterisk) and the build up of a different metabo-
lite (in this case Z). (B) Ribosomes (orange) translating an mRNA, which contains a region that is difficult to translate (red box). In the pathogenic situation
translation is perturbed, leading to a lower amount of protein. (C) As in (B). Perturbed translation prevents the folding of some proteins into their native
state resulting in perturbed protein homeostasis. (D) tRNA fragments cause a slowdown of translation.
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reduced brain volume,30 while the same allele protects against
depression153 and the risk for alcohol dependence.154 It is there-
fore difficult to decide whether a specific allele is problematic or
not. This Janus faced character of certain alleles may explain their
high prevalence in the population.

We live and perform research in exciting times. Unbiased
approaches identify new links between hitherto “boring” genes
and new phenotypes. At the same time the role of classical genes
like FTO is questioned. It will require an enormous effort to
combine new animal models and iPSC with state of the art bio-
chemistry and molecular biology. Only when we look systemati-
cally, we will be able to understand why certain mutants “modify
or die” and others don’t!
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