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ABSTRACT Gloeocapsopsis sp. strain AAB1 is an extremely desiccation-tolerant
cyanobacterium isolated from translucent quartz stones from the Atacama Desert
(Chile). Here, we report its draft genome sequence, which consists of 137 contigs
with an �5.4-Mb genome size. The annotation revealed 5,641 coding DNA se-
quences, 38 tRNA genes, and 5 rRNA genes.

Members of the Cyanobacteria are among the most ecophysiologically resilient
microorganisms, and they have been extensively studied in order to understand

the limits of life on Earth (1). Gloeocapsopsis sp. strain AAB1 is a cyanobacterium
isolated from a hypolithic community found under translucent quartz stones dispersed
on the Coastal Range of the Atacama Desert, the driest and oldest desert on Earth.
Although rain events in the Atacama are rare, cyanobacterium-dominated biofilms are able
to colonize the underside of quartz stones, using fog as the main source of water (2).
The recent physiological, morphological, and molecular characterization of isolate
AAB1 revealed that it is extremely tolerant to desiccation (3) and represents a good
model for understanding tolerance to low water availability.

Although Gloeocapsopsis cells were regularly grown using liquid BG-11 media, for
the purpose of sequencing, DNA was extracted from 5 mg of dried cells. We used dried
cells because, although we were confident of having a single cyanobacterial isolate (3),
we detected 3 or 4 additional heterotrophic bacteria that we could not eliminate
despite attempting different cleaning protocols. Thus, cells were immediately dried,
with the expectation that the desiccation process would favor the preferential preser-
vation of cyanobacterial DNA. DNA was extracted using the Qiagen DNeasy PowerSoil
kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s instructions, except
that at the cell lysis step only a single 120-s pulse was performed, using a FastPrep24
5G homogenizer (MP Biomedicals, Santa Ana, CA). The sequencing library was prepared
using a NEBNext Ultra II DNA library prep kit for Illumina (New England Biolabs, Ipswich,
MA), following the manufacturer’s instructions, and sequenced in a 2 � 300 pair-end
sequencing run on a MiSeq sequencer (Illumina, San Diego, CA).

Raw reads were quality trimmed with Prinseq Lite v0.20.4 (4). The resulting 5,830,860
pairs were processed with the SqueezeM pipeline (J. Tamames, unpublished data).
Briefly, they were assembled using MEGAHIT v1.1.2 (5), and open reading frames (ORFs)
and rRNA coding sequences were predicted with Prodigal v2.6.2 (6) and barrnap
v0.9-dev (https://github.com/tseemann/barrnap), respectively. ORFs were aligned against
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (7) and Clusters of Orthologous
Groups of proteins (COG) (8) databases using DIAMOND (9), functionally annotated
based on their best hits, and taxonomically annotated based on a last-common-
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ancestor algorithm over all hits within 20% of the bit score of the first hit. Furthermore,
whole contigs were assigned a consensus taxonomy based on the annotation of their
constituent ORFs. A total of 137 high-coverage contigs, encompassing a total of
5,443,570 bases, were identified as having a clear cyanobacterial origin and selected for
further analyses. Among these contigs, the N50 value was 73,596 bases, the average
coverage was 509�, and the GC content was 42.42%. CheckM v1.0.7 (10) reported a
genome completeness of 100% and genome contamination of 1.36%, after being run
on the cyanobacterial contigs. Finally, gene prediction and annotation of the Gloeo-
capsopsis sp. AAB1 contigs were carried out using the Rapid Annotations using Sub-
systems Technology (RAST) pipeline (11) as provided by the Pathosystems Resource
Integration Center (PATRIC) server (12). A total of 5,641 coding DNA sequences (CDSs),
38 tRNA genes, and 5 rRNA genes were identified.

Accession number(s). The nucleotide sequence and annotation data for the Gloeo-

capsopsis sp. strain AAB1 draft genome have been deposited at DDBJ/ENA/GenBank
under the accession number PTJN00000000. The version described in this paper is
version PTJN01000000.
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