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ABSTRACT: We report on the synthesis and self-assembly of 2,15- and
4,13-disubstituted carbo[6]helicenes 1 and 2 bearing 3,4,5-tridodecylox-
ybenzamide groups. The self-assembly of these [6]helicenes is strongly
influenced by the substitution pattern in the helicene core that affects the
mutual orientation of the monomeric units in the aggregated form. Thus,
the 2,15-substituted derivative 1 undergoes an isodesmic supramolecular
polymerization forming globular nanoparticles that maintain circularly
polarized light (CPL) with glum values as high as 2 × 10−2. Unlike
carbo[6]helicene 1, the 4,13-substituted derivative 2 follows a cooperative
mechanism generating helical one-dimensional fibers. As a result of this
helical organization, [6]helicene 2 exhibits a unique modification in its ECD
spectral pattern showing sign inversion at low energy, accompanied by a
sign change of the CPL with glum values of 1.2 × 10−3, thus unveiling an
example of CPL inversion upon supramolecular polymerization. These
helical supramolecular structures with high chiroptical activity, when deposited on conductive surfaces, revealed highly efficient
electron-spin filtering abilities, with electron spin polarizations up to 80% for 1 and 60% for 2, as measured by magnetic conducting
atomic force microscopy.

■ INTRODUCTION

The development of new and enhanced technological
applications in data storage, biological sensing, spintronic
devices, and next-generation displays may benefit from the
incorporation of efficient circularly polarized light (CPL)
emitters1−5 and from excellent electron spin filtering due to the
chirality-induced spin selectivity properties.6 Metal com-
plexes,2 small organic molecules (pyrenes, binaphthyls,
bodipys, etc.),7 and nanographene-based polycyclic aromatic
hydrocarbons,8 decorated with stereogenic elements and
efficient emissive features, are at the forefront of the research
related to the development of new CPL emitters. In this
regard, helicenesortho-fused aromatic compounds adopting
helical chirality9have recently emerged as appealing building
blocks with efficient CPL activity10 and spin filtering
capabilities11 that make them candidates for various spintronic
applications. Beyond small molecules, the decoration or the
coassembly of covalent polymers with CPL-emitting moieties
has recently opened new avenues for the achievement of
functional CPL emitters with a long range order.12 A crucial
aspect for such achievement requires the organized arrange-
ment of the chiral molecules into well-defined supramolecular
aggregates. In this context, supramolecular polymers (SPs)13

constitute an excellent benchmark to investigate the formation

of chiral supramolecular entities.14 Thus, the introduction of
chirality in SPs usually results in the adoption of a
macromolecular secondary helical structure.14,15 This property
yielded new classes of innovative materials with stimuli-
responsive nature.16 Since SPs are very often composed of
achiral flat aromatic coressuch as BTAs,17 PBIs,18 π-
conjugated oligomers,19 or porphyrins20researchers have
developed different strategies to achieve efficient transfer of
asymmetry into the corresponding SP: (i) introducing point
chirality in the side chains of the monomeric units,17−20 (ii)
copolymerizing with nonracemic (Majority Rules, MR)19,21 or
chiral/achiral monomeric mixtures (Sergeants and Soldiers
effect, SaS),17,21 (iii) using chiral additives,22 or (iv) irradiating
with CPL.23 Notably, a challenging strategy to obtain chiral
SPs is based on the polymerization of nonplanar three-
dimensional units and especially those involving axial or helical
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chirality that allows one to distinguish between homo- and
heterochiral aggregation.24,25 Those chiral molecules present a
highly distorted and rather rigid 3D-structure that precludes a
straightforward self-assembly as denoted by the limited
number of reports in the literature dealing with the controlled
self-assembly of these systems in solution. In fact, very few
examples of supramolecular polymers based on helicenes and
stable in solution have been reported to date, among which is
the formation of CPL-active helicene-based aggregates26a,b or
the unique configurational stabilization of a [5]helicene system
thanks to the formation of a chiral SP.26c Very interestingly,
chiral supramolecular polymers have recently proven to display
highly efficient spin filtering16b,27 and were advantageously
utilized for optimizing fundamental processes such as water
splitting.27a It is thus important to examine whether supra-
molecular polymers obtained from helicene building blocks
display efficient spin selectivity and see how they compare with
the reported self-assembled helicene systems.11 Furthermore,
the combination of a helicene based on a supramolecular
system that features both high CPL and high spin filtering
properties was not demonstrated so far and is thus highly
appealing in the context of spin-LED developments.
Herein, we report on the self-assembling features of

configurationally stable 2,15- (compound 1, Figure 1a) and
4,13-bis-ethynyl-carbo[6]helicene (compound 2, Figure 1a)
both in their racemic and enantiopure forms. Compounds 1
and 2 bear two peripheral N-(2-(4-ethynylbenzamido)ethyl)-
3,4,5-tridodecyloxybenzamides to efficiently favor the supra-
molecular interaction of the reported [6]helicenes by the
operation of a fourfold H-bonding array between the amides.
We unveil dissimilar self-assembling and CPL emissive features
for the enantioenriched forms of 1 and 2. Thus, while
[6]helicene 1 forms supramolecular aggregates in a head-to-tail
fashion with no efficient overlap of the helicene backbones
(Figure 1b), [6]helicene 2, displaying a more favorable
situation for the π-stacking interaction between the contorted
helicene cores, forms head-to-head helical, supramolecular
polymers in a cooperative manner (Figure 1c). Bis-ethynyl-
[6]helicenes 1 and 2 exhibit CPL activity generated at the
molecular level and with luminescence dissymmetry factors
depending on the substitution pattern. Notably, the supra-
molecular polymerization of 2 allows one to bias the CPL sign;
it becomes opposite in the aggregated state compared to the
monomeric one (Figure 1c).28 In addition, we demonstrate
very efficient spin filtering for the electrons transmitted
through the supramolecular layer. Hence, these results
represent an example of structure−function control in
supramolecular polymers and pave the way to the development
of stimuli-responsive CPL and spintronic materials.

■ RESULTS AND DISCUSSION

Synthesis and Self-Assembly in Solution: Biasing the
Supramolecular Polymerization Mechanism by the
Substitution Pattern. The target chiral molecules 1 and 2
(Figure 1a) were readily prepared by following a double cross-
coupling Sonogashira reaction between the racemic 2,15- and
4,13-bis-ethynyl-carbo[6]helicene building blocks29 and the
iodo-bis(benzamide) derivative (see the Supporting Informa-
tion (SI)).30 The enantioenriched (P) and (M) enantiomers of
1 and 2 were isolated by the high-performance liquid
chromatography enantiomeric resolution process (see the
Supporting Information for details). Standard spectroscopic
techniques (proton nuclear magnetic resonance (1H NMR),
13C NMR, and Fourier transform infrared (FTIR) spectrosco-
py and high-resolution mass spectrometry−electrospray
ionization mass spectrometry) have been used to corroborate
the chemical structure of the newly described helicenes 1 and 2
(see the Supporting Information).
To unravel the self-assembly ability of [6]helicenes 1 and 2

and the formation of homochiral (conglomerates) or
heterochiral (racemates) aggregates from the racemic mixture
of the (M) and (P) enantiomers, we registered UV−vis spectra
in CHCl3, a good solvent that favors the solvation of the
monomeric species, and in methylcyclohexane (MCH), a bad
solvent that usually provokes the efficient self-assembly of
aromatic scaffolds. In the former solvent, both the racemic
mixture of enantiomers of [6]helicene 1 (1rac) and the
corresponding enantiomers (M)-1 and (P)-1, at total
concentration cT = 10 μM, exhibit an identical absorption
pattern with maxima at λ = 270 and 304 nm (Figure 2a). FTIR
spectra in CHCl3 solution confirm that both 1rac and (P)-1 are
in a molecularly dissolved state, since the stretching N−H and
amide I bands appear at 3454 and 1651 cm−1, characteristic
wavenumber values of free amides (Figure 2b).31 In addition,
another stretching N−H band is observed at 3348 cm−1 that is
ascribed to the formation of an intramolecular, 7-membered H-
bonded pseudocycle (Figures 1a and 2b).31,32

The UV−vis spectra of 1rac and (P)-1 in MCH exhibit an
identical absorption pattern, with maxima at λ = 270 and 299
nm (Figure 2a). These UV−vis spectra display a clear
hypochromic effect but a very weak hypso- or bathochromic
effect in comparison to those UV−vis spectra registered in
CHCl3, thus suggesting a weak π-stacking of the contorted
[6]helicene moiety (Figure 2a). In fact, concentration-
dependent 1H NMR spectra recorded for both 1rac and (M)-
1 in CDCl3 show no appreciable shift of the aromatic
resonances but a clear deshielding of the resonances ascribable
to the amide protons (Figure S3). However, the formation of
intermolecular H-bonding arrays between the amide functional
groups in MCH has been corroborated by using FTIR

Figure 1. (a) Chemical structures of helicene derivatives 1 and 2. Schematic illustration of the (b) head-to-tail self-assembly of 1 and the (c) head-
to-head self-assembly of 2. All the enantioenriched species, both in their monomeric or aggregated states, act as CPL emitters. The sign of the CPL
emission of the aggregated species of helicene 2 is opposite to that registered for the monomeric species.
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spectroscopy in this solvent. Thus, the stretching N−H and
amide I bands appear at 3298 and 1632 cm−1, typical values of
intermolecularly H-bonded amides (Figure 2b).31

The above-mentioned UV−vis spectra, in good agreement
with that previously reported by Würthner and co-workers,25

suggest that 1rac could be arranged as a conglomerate,
constituted by an equal amount of homochiral, self-assembled

(M) and (P) enantiomers. The formation of heterochiral
aggregates (racemates) would afford different UV−vis spectra
for both racemic 1rac and the enantioenriched samples [(M)-1
or (P)-1] due to the different electronic coupling between the
chromophores.25

Identical findings have been obtained for [6]helicene 2.
Thus, the UV−vis spectra of the racemic mixture of
enantiomers of 2 (2rac) and the (M) enantiomer (M)-2 in
CHCl3 show the same absorption pattern with maxima at λ =
280, 325, and 420 nm (Figure 2c). The stretching N−H and
amide I bands, observed at 3453 and 1650 cm−1, confirm that
2rac and (M)-2 in CHCl3 are in the molecularly dissolved state
(Figure 2d). In good analogy to compounds 1, the stretching
band observed at 3347 cm−1, together with the slight upfield
shifts experienced by the amide protons upon heating a diluted
solution of the helicenes in CDCl3 (Figure S7), is diagnostic of
the formation of the metastable, intramolecularly H-bonded
pseudocycle (Figures 2d and 1a).31 The UV−vis spectra of 2rac
and (M)-2 in MCH present an identical absorption pattern
diagnostic of the arrangement as conglomerates of the
enantiomers in the racemic mixture of 2.
The UV−vis spectra of 2rac and (M)-2 in MCH present a

clear hypsochromic effect in comparison to those spectra
recorded in CHCl3, and in addition, a weak but noticeable
bathochromic shift is also detected (Figure 2c). This weak shift
suggests the supramolecular interaction of the π-conjugated
backbone of helicenes 2rac and (M)-2. The π-stacking of the
helicene cores and the operation of H-bonding interactions
between the amide functional groups have also been
corroborated by concentration-dependent 1H NMR experi-
ments. These experiments show that the aromatic resonances

Figure 2. (a,c) UV−vis and (b,d) FTIR spectra of 1rac, (P)-1, 2rac,
and (M)-2 in CHCl3 and MCH (experimental conditions for UV−vis
spectra: 298 K, cT = 10 μM).

Figure 3. ROESY NMR spectra (CDCl3, 300 MHz, cT = 20 mM; 293 K) of (a) (P)-1 and (b) (M)-2. The dotted rectangles depict the
intermolecular through-space coupling signals. The upper part of the panel depicts a schematic illustration of the binding mode experienced by the
reported [6]helicenes upon self-assembly.
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for both 2rac and (M)-2 shift upfield, but the amide protons
deshield upon increasing the concentration (Figure S8).
The spectroscopic studies carried out for 1 and 2 suggest

very dissimilar self-assembling features of these two [6]-
helicenes due to the different substitution pattern. In the case
of 1, ROESY experiments, carried out in concentrated CDCl3
solutions of (P)-1 (cT = 20 mM), show the intermolecular
contacts between the peripheral alkyl chains and most of the
aromatic resonances that can only be justified by considering
an alternate arrangement of the [6]helicene units interacting
by the fourfold H-bonding array between the amide groups
(Figures 1b and 3a).33

Unlike 1, the ROESY experiments carried out on (M)-2 (cT
= 20 mM) highlight the absence of any intermolecular
interaction between the aromatic and aliphatic protons; this
implies the stacking of the [6]helicene units, without an
appreciable rotation angle between these stacked units, and
with the four amides forming the fourfold H-bonding array
(Figures 1c and 3b). Therefore, all the spectroscopic data
(UV−vis, FTIR and 1H NMR) demonstrate that (i) although
bulky, the [6]helicene can efficiently self-assemble, and (ii) the
substitution pattern plays a crucial role in the self-assembling
features. Indeed, while the 2,15-substitution pattern precludes
the efficient interaction of the aromatic moieties but does not
prevent the formation of intermolecular H-bonding inter-
action, the presence of the substituents at the 4 and 13
positions of the [6]helicene backbone favors both the π-
stacking and the H-bonding between the amides. This
substitution pattern plays a crucial role in both the supra-

molecular polymerization mechanism and has also a strong
impact on the final chiroptical properties (vide infra).

Supramolecular Polymerization Mechanism and
Chiroptical and Emissive Properties. To unravel the
supramolecular polymerization mechanism governing the
self-assembly of [6]helicene 1, we have initially performed
variable-temperature (VT) UV−vis experiments by using
MCH as the solvent. Heating up a diluted solution of 1rac in
MCH (cT = 10 μM) results in an absorption pattern
comparable to that observed in CHCl3 (Figures 2a and S4a).
However, plotting the variation of the absorbance versus
temperature yields an incomplete cooling curve that cannot be
fitted to the one-component equilibrium model.34 Therefore, it
is not possible to elucidate whether or not the supramolecular
polymerization of this [6]helicene follows an isodesmic or a
cooperative mechanism (Figure S4b).13 Identical findings have
been achieved by registering VT-UV−vis spectra of enan-
tioenriched (M)-1 (Figure S4c and S4d).
We have investigated the chiroptical properties of both

enantiomers of [6]helicene 1 in CHCl3. (P)-1 and (M)-1
display mirror-image electronic circular dichroism (ECD)
spectra and a pattern with maxima at 420, 375, 315, and 275
nm with zero crossing points at 340, 286, and 263 nm (Figure
4a). The findings obtained in the VT-UV−vis experiments and
the changes observed in the ECD spectra, even if weak, are
sufficient to utilize the solvent denaturation (SD) protocol,
described by Meijer and co-workers,35 allowing one to derive a
complete set of thermodynamic parameters associated with the
supramolecular polymerization of (P)-1. This model recog-

Figure 4. (a) ECD/UV−vis spectra of (P)-1 and (M)-1 in monomeric and aggregated states (CHCl3 and MCH, respectively). (b) CD spectra and
(c) denaturation curve of (P)-1 in MCH/CHCl3 mixtures. The red line in panel (c) depicts the fit to the SD model. (d) AFM image and (e) height
profile of the globular supramolecular aggregates formed from (P)-1 (experimental conditions: HOPG as the surface; cT = 10 μM, and MCH as the
solvent). (f) CPL/PL spectra of (P)-1 and (M)-1 in monomeric and aggregated states (CHCl3 and MCH, respectively) (experimental conditions
for UV−vis, ECD, CPL, and PL spectra: cT = 10 μM and λexc = 365 nm).
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nizes the supramolecular polymerization as a balance between
the effect of mixing a good and a bad solvent that favors the
solvation or the aggregation of the monomeric species,
respectively. To perform this study, solutions of (P)-1 in
MCH, as the bad solvent, and in CHCl3, as the good solvent,
are mixed together keeping constant cT = 10 μM. In this
model, the Gibbs free energy increases upon monomer
addition in a mixture of solvents (ΔG0′), and the Gibbs free
energy in a pure solvent (ΔG0) is linearly correlated with the
volume fraction of good solvent f and the m parameter as
depicted in (eq 1).

Δ ′=Δ +G G mf (1)

Plotting the variation of the degree of aggregation (α) versus
the molar fraction of the good solvent affords a sigmoidal
curve, characteristic of an isodesmic mechanism, that can be
fitted to the SD model to derive the corresponding
thermodynamic parameters (Figure 4b,c and Table 1). As

expected, the degree of cooperativity σ (defined as the quotient
between the elongation, Ke, and the nucleation constants, Kn)
is 1, diagnostic of an isodesmic mechanism and a high Gibbs
energy release comparable to some other self-assembling
systems.24b,26c,35,36 The morphology of the aggregates formed
upon the supramolecular polymerization of (P)-1 and (M)-1
was visualized by atomic force microscopy (AFM) imaging
employing highly oriented pyrolytic graphite (HOPG) as the
surface. The AFM images recorded for the samples deposited
by spin-coating onto HOPG show the formation of isolated
globular aggregates with heights of ∼4 nm (Figures S11, 4d
and 4e).
Taking into account the changes observed in the UV−vis

spectra of 2, we have also investigated the chiroptical features
of the (P) and (M) enantiomers of this [6]helicene. In CHCl3,
the ECD spectral pattern mainly displays three Cotton effects
at 368, 322, and 278 nm and zero crossing points at 349 and
295 nm (Figures 5a and S9). Remarkably, a strong
modification in the ECD pattern is observed in MCH as the
solvent. Indeed, the ECD spectra of both (P)-2 and (M)-2
show (i) the low-energy negative vibronic structure band at
368 nm inverts its sign becoming more intense and vibronically
structured, (ii) the positive middle-energy band at 322 nm
remains with the same sign, and (iii) the monosignate negative
band at 278 nm splits into a bisignate band centered at 289
and 250 nm, with a zero-crossing point at 278 nm (Figures 5a
and S9). Note that the two very weak low-energy ECD bands
at 396 and 416 nm also undergo change in their signs (Figure

Table 1. Thermodynamic Parameters for the
Supramolecular Polymerization of (P)-1 and (M)-2

comp ΔG′a m σ Ke
b Kn

b

(P)-1 −36.1 ± 0.8 49.4 1 2.1 × 106 2.1 × 106

(M)-2 −36.0 ± 0.5 29.5 1.1 × 10−5 2.0 × 106 20.4
aIn kJ/mol. bIn M−1.

Figure 5. (a) ECD/UV−vis spectra of (P)-2 and (M)-2 in monomeric and aggregated states (CHCl3 and MCH, respectively). (b) CD spectra and
(c) denaturation curve of (M)-2 in MCH/CHCl3 mixtures. The red line in panel (c) depicts the fit to the SD model. (d,e) AFM images of the
helical fibers formed upon the supramolecular polymerization of (M)-2 (experimental conditions: HOPG as the surface; cT = 10 μM, and MCH as
the solvent). (f) CPL/PL spectra of (P)-2 and (M)-2 in monomeric and aggregated states (CHCl3 and MCH, respectively) (experimental
conditions for UV−vis, ECD, CPL, and PL spectra: cT = 10 μM and λexc = 365 nm; the dashed arrows in (f) depict the changes in the PL and CPL
spectra).
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5a). The modifications observed in the ECD spectra of (P)-2
and (M)-2 in MCH in comparison to those detected in CHCl3
could be indicative of an excitonic coupling of the aromatic
units due to the efficient supramolecular polymerization and
allows also the utilization of the SD model to unravel the
supramolecular polymerization mechanism of this 4,13-
substituted helicene. In the case of enantioenriched (M)-2,
plotting the variation of the degree of polymerization α versus
the molar fraction of the good solvent yields a clear
nonsigmoidal curve that implies a cooperative supramolecular
polymerization mechanism (Figure 5b,c). This mechanism
contrasts with the isodesmic mechanism shown by (P)-1.
Fitting the nonsigmoidal curve obtained in the denaturation
experiment performed with (M)-2 yields the thermodynamic
parameters collected in Table 1. (M)-2 presents a similar
Gibbs energy release to (P)-1, but the degree of cooperativity
is higher than that derived for [5]helicenes,26c atropisomers,25

or planar self-assembling units.35,36

To visualize the morphology of the aggregates formed upon
the supramolecular polymerization of the racemic mixture of
(M)-2 and (P)-2, we have registered AFM images of a spin-
coated solution of this mixture onto HOPG. Unlike [6]-
helicenes 1, which form globular nanoparticles (Figure 4d), the
AFM images of [6]helicenes 2 show the presence of well-
defined fibrillar aggregates with helical character (Figure S12).
This helical character is also visualized in the AFM images of
the enantioenriched samples of (M)-2 and (P)-2. The AFM
images of these enantioenriched samples present one-dimen-
sional fibrillar aggregates of several micrometers length and a
typical height of around 2.5 nm (Figures 5d,e and S13 and
S14). Delightfully, a closer inspection of the AFM images of

(M)-2 shows the helical morphology of these fibrillar
aggregates that bundle into thicker fibers. Similar findings
have been visualized for the enantioenriched (P)-2 (Figure
S15).
The emission properties of both enantiomers of the 2,15-

and 4,13-substituted [6]helicenes 1 and 2 were also recorded.
Fluorescence spectra of (P)-1 and (M)-1 in CHCl3 show
classical vibronic structured photoluminescence (PL) pre-
viously reported for [6]helicenes9a,37 with three consecutive
maxima at 430, 455, and 486 nm (λexc = 365 nm, ϕ = 0.35, and
τ = 8.5 ns) that also appear in the corresponding CPL spectra
with a remarkable dissymmetry factordefined as glum = 2(IL
− IR)/(IL + IR), IL and IR being the left- and right-handed
luminescence emissions, respectivelywith maximum glum
values of +2.3/−2.6 × 10−2 (λexc = 365 nm) for (P)-1 and
(M)-1, respectively (Figure 4f). In agreement with the minute
changes observed in the corresponding UV−vis and ECD
spectra (Figures 2a and 4a) of (P)-1 and (M)-1 in MCH and
CHCl3, the PL spectra of these enantioenriched 2,15-
substituted [6]helicenes in MCH show a slight red shift
compared with the CHCl3 solution, with maxima at 436, 462,
and 493 (λexc = 365 nm, ϕ = 0.59, and τ =12.2 ns) also present
in the CPL spectra with maximum glum values of +2.0/−2.3 ×
10−2 (λexc = 365 nm), respectively. For comparison, maximum
absorption dissymmetry factors gabs of 1.6 × 10−2 and 1.1 ×
10−2 in CHCl3 and MCH are observed respectively for (P)-1
at 422 and 427 nm, respectively (see Figure S10a). Overall, the
nonpolarized and polarized absorption and emission character-
istics of 2,15-substituted (P)-1 and (M)-1 in the aggregated
and nonaggregated states are of similar shapes and magnitude,

Figure 6. Spin-dependent transport properties measured with mc-AFM. (a) mc-AFM setup in which the molecules are deposited on a
ferromagnetic substrate and the conduction between the substrate and the AFM tip, through the molecules, is measured for the substrate
magnetized with its north pole up or down relative to the molecular layer. (b) AFM image of the substrate on which the (P)-2 molecules were
deposited. Panels (c) and (d) present the averaged current versus voltage (I−V) curves recorded for (M)-1 and (P)-1 samples, respectively, with
the magnet north pole pointing down (black) or up (red). Panels (e) and (f) presents the averaged I−V curves recorded for (M)-2 and (P)-2
samples.
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with notably strong dissymmetry factors conserved within the
supramolecular assemblies.
Regarding (P)-2 and (M)-2, their fluorescence spectra in

CHCl3 display the classical vibronic structured luminescence
(λexc = 365 nm, ϕ = 0.52, and τ = 7.3 ns) of [6]helicenes37

with three consecutive maxima at 424, 446, and 478 nm
(Figure 5f). In MCH, the fluorescence spectra of (P)-2 and
(M)-2 show a slight red shift, with maxima at 433, 458, and
490 nm (λexc = 365 nm, ϕ = 0.36, and τ = 2.25 ns) (Figure 5f).
Satisfactorily, the CPL response of (P)-2 exhibits a sign
inversion from negative to positive upon aggregation, in full
agreement with the sign inversion of the low-energy ECD-
active bands. The corresponding CPL spectra display max glum
values of −1.1/+1.3 × 10−3 (Figure 5f) in CHCl3, while they
show a small increase and inversion in MCH, i.e., of +1.4/−1.2
× 10−3, for the (P) and (M) enantiomers, respectively. For
comparison, maximum absorption dissymmetry factors gabs of
3.2 × 10−3 and 4 × 10−3 in CHCl3 and MCH were obtained
for (P)-2 at 318 and 324 nm, respectively (see Figure S10b).
To our knowledge, this is the first observation of CPL sign
inversion upon assembly in helicenes.26a,28,38 The sign of these
low-energy ECD active bands in helicene derivatives is known
to be highly substituent-sensitive39 and we now demonstrate
that it is also impacted by the self-assembly, while the inherent
chirality of the helical core is not changed.
In summary, our synthetic strategy appeared efficient to

obtain robust chiral supramolecular assemblies from mono-
mers consisting of a central helical core and strongly
aggregating achiral bisamide substituents. The obtained
supramolecular aggregates appear highly stable both in
solution and on surfaces, with strong and processable
chiroptical activity. Based on these characteristics and
according to the literature on helicenes and on helical
supramolecular assemblies displaying strong spin selectivi-
ty,11,16b,27b it appeared appealing to examine how effective
these helicene-based helical SPs were as spin filters.
Spin Selectivity of Helicene-Based Supramolecular

Assemblies. Another appealing feature of organized helical
molecules is their ability to generate electron spin polarization,
a behavior that is intensively targeted for spintronic
applications.6 Magnetic conducting atomic force micro-
scopy11a,40 (mc-AFM) measurements were thus performed to
investigate the spin selectivity of the electron transport through
a layer of the helicene-based polymer. For this purpose, the
helicene samples were deposited on a gold-coated nickel
substrate (Ni 100 nm and Au 8 nm), which can be magnetized
with the north magnetic pole pointing toward the layer (up) or
away from the layer (down) (Figure 6a), using an external
magnetic field. The nonmagnetic AFM tip was grounded, while
the potential on the Au/Ni surface was varied. Prior to the
current versus voltage (I−V) studies, the morphology of the
samples was analyzed using AFM topography images. Figure
6b presents an image of the surface on which the (P)-2
molecules were deposited. The images for surfaces covered
with the (P)-1 and (M)-1 molecules are shown in the
Supplementary Information (Figure S16). Similar to the case
of HOPG surfaces (vide supra), the figures clearly indicate that
the (P)-1 and (M)-1 samples form globular aggregates, while
the (P)-2 and (M)-2 samples form helical nanofibers.
Figure 6c,d shows the average I−V curves of the (M)-1 and

(P)-1 samples, while Figure 6e,f presents the averaged I−V
curves of the (M)-2 and (P)-2 samples, respectively. The
molecules were deposited on the substrate by drop casting. All

samples show clear dependence of the current on the direction
of the magnetization of the substrate. Each curve is an average
over at least 50 individual measurements (see Figures S17 and
S18 in the Supporting Information). The applied magnetic
field controls the spin selectivity in the case of the M
enantiomers in an opposite manner to that of the P
enantiomer, which advocates the role of chirality in spin-
dependent transport properties. These results are in excellent
agreement with previous reports11a,40 in which the spin
selectivity reverses when the chirality changes. Moreover, a
nonlinear dependence of the current on the voltage curves was
observed and the currents corresponding to each of the spins
start at a different voltage, suggesting the presence of a
different barrier to the injection of the individual spins.
Furthermore, the percentage of spin polarization (SP%) is

calculated11a,40 when SP% =
−
+

I I

I I

( )

( )
up dn

up dn
× 100, where Iup and Idn

represent the current when the north pole of the magnetic field
is directed upward or downward direction, respectively. The
dependences of the spin polarization on the applied voltage are
shown in Figure 7a,b and are 80% ± 5 and 60% ± 5% for (P)-

1 and (M)-1 and (P)-2 and (M)-2 enantiomers, respectively.
The observed values of SP% are high, while the molecules that
form globular aggregates, (P)-1 and (M)-1, show somewhat
higher values than those forming helical wires (P)-2 and (M)-
2. Overall, these values for supramolecular assemblies of
helicenes are found to be much higher than those of self-
assembled monolayers (SP ∼ 6−40%).11 The difference may
result from the higher polarizability of the supramolecular
structures.41,42 Indeed, it is now known that there is correlation
between chiroptical activity and spin polarization.16b,42 Thus,
the stronger chiroptical activity of system 1 over 2 (i.e.,
stronger ECD responses at low energy) may account for its
higher spin filtering effects. Indeed, ECD spectra of helicene
films over the quartz substrate show stronger low-energy
response for (P)-1 and (M)-1 than for (P)-2 and (M)-2 (see
Figure S19a and b). It is important to appreciate that 80 and
60% spin polarization (Figure 7) means ratios of 10:1 and 5:1
between the current with the preferred spin to that of the
unpreferred spin. In other words, when the magnetic field is
up, the M enantiomers selectively let the electron spin pass
through the chiral layer, and vice versa, thus relating the
absolute configuration of the helicene to the spin polarization.
Clearly, the results indicate that the supramolecular structure

Figure 7. Spin polarization percentage (SP%) as a function of applied
bias for (a) (P)-1 and (M)-1 and (b) (P)-2 and (M)-2 samples,

respectively. SP% =
−
+

I I

I I

( )

( )
up dn

up dn
× 100.
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affects the spin polarization and it does not depend solely on
the structure of the monomer.
For establishing the properties of the molecules as spintronic

elements, magnetoresistance measurements were also per-
formed (Figure 8). A crossbar configuration was used for the

magnetoresistance (MR) device that was produced as
described in ref 11a (Figure 8a). Molecules were spin coated
on the top of the bottom electrode. On the top of the polymer
film, an insulating buffer layer of 1.5 nm magnesium oxide
(MgO) was grown by e-beam evaporation followed by Ni and
Au having thicknesses of 40 and 20 nm, respectively, using a
shadow mask with a line width of ∼20 μm (see the
experimental details about the set-up in the Supporting
Information).
The current through the chiral molecules was studied when

the magnetic field was varied. Figure 8b,c shows the MR of
(M)-1 and (M)-2, while the MR values of (P)-1 and (P)-2 are
presented in Figure 8d,e, respectively, measured at different
temperatures with a constant input current of 0.1 mA. The MR

(%) is defined as MR (%) = −R B R
R

( ) (0)
(0)

× 100, where R(B) and

R(0) are the resistances measured at the magnetic field up to 1
T and zero-magnetic field, respectively. Note that here we find
a small value of MR (%) due to the large number of pinholes.
Furthermore, due to this issue, no efficient devices were
obtained for (M)-1−2 and (P)-1−2. However, the signal-to-
noise ratio is excellent and it is evident that the MR curves are
asymmetric with respect to the magnetic field and that the
asymmetry depends on the handedness of the molecules.
These results are consistent with the mc-AFM data (Figure 6).
The value of MR (%) increases with the temperature, which
confirms the increase of spin polarization with the temperature,

probably due to the role of phonon-enhanced spin−orbit
coupling.41,42

■ CONCLUSIONS

In conclusion, we have demonstrated the efficient formation of
supramolecular polymers based on a carbo[6]helicene scaffold,
whose racemic mixture self-assembles as a conglomerate, and
the deep influence of the substituent location in the helical
backbone on the polymerization mechanisms and chiroptical
properties. On the one hand, the 2,15-substituted derivative 1
experiences an isodesmic supramolecular polymerization
mechanism, generating globular nanoparticles that maintain
CPL with glum values as high as 2 × 10−2. On the other hand,
the 4,13-substituted derivative 2 follows a cooperative
supramolecular polymerization mechanism generating helical
one-dimensional fibers. Remarkably, [6]helicenes 2 exhibit a
unique modification in their ECD spectral pattern showing
sign inversion of low-energy bands. In parallel, the CPL
response shows a sign inversion with glum values of 1.2 × 10−3,
representing the first example of a CPL switch upon
supramolecular polymerization. Both molecules, when as-
sembled on a surface, are excellent electron spin filters at
room temperature. This directly results from two main
features: (i) strong ability of these helicene derivatives to
self-assemble onto a (conductive) surface and (ii) strong
chiroptical activity. The spin filtering indicates that the current
of electrons with the preferred spin is more than four times
larger than the current of the electrons with unpreferred spin.
This work highlights the potential of helicenes as appealing
building blocks in the field of CPL-active supramolecular
polymers and spintronics, paving the way to new chiral
materials with enhanced properties and applications, efforts in
that direction being currently ongoing in our laboratories.
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