
ARTICLE

Patchwork of contrasting medication cultures
across the USA
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Health in the United States is markedly heterogeneous, with large disparities in disease

incidence, treatment choices and health spending. Drug prescription is one major component

of health care—reflecting the accuracy of diagnosis, the adherence to evidence-based

guidelines, susceptibility to drug marketing and regulatory factors. Using medical claims data

covering nearly half of the USA population, we have developed and validated a framework to

compare prescription rates of 600 popular drugs in 2334 counties. Our approach uncovers

geographically separated sub-Americas, where patients receive treatment for different dis-

eases, and where physicians choose different drugs for the same disease. The geographical

variation suggests influences of racial composition, state-level health care laws and wealth.

Some regions consistently prefer more expensive drugs, even when they have not been

proven more efficacious than cheaper alternatives. Our study underlines the benefit of

aggregating massive information on medical practice into a summarized and actionable form.
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United States (US) society is famously and proudly multi-
cultural and inhomogeneous. It can be viewed as a col-
lection of almost disjoint communities that read distinct

books and newspapers, watch different news channels, purchase
distinct food items, and, when buying the same food ingredient,
cook it in different ways. Thus, this patchwork pattern might be
expected to extend to health care, specifically to prescription
medications. Geographical disparities in health metrics across US
regions are an active area of research1,2. Studies by the Institute
for Health Metrics and Evaluation3,4 show that inequalities in life
expectancy across US counties are growing, and they are strongly
influenced by county variation in socioeconomic, behavioral and
health care factors. Using national survey and census data, they
also find significant geographic variation in physical fitness5 and
disease burden6. Chetty7 showed that the relationship between
income and life expectancy was correlated with regional differ-
ences in population makeup and government spending. Murray8

used geography and demographics to divide the country into
eight Americas, and studied variation in health care, life expec-
tancy and causes of death among the groupings.

Clinical information is increasingly captured in both electronic
health care systems and in administrative claims databases. The
coming wealth of observational health care data worldwide
has motivated efforts to aggregate this data and use it to infer
factors influencing health9–12. Here, we utilize observational
data from over 150 million individuals in over 2000 counties
across the United States to develop a nation-wide model to pre-
dict drug prescription. By analyzing how use of each drug departs
from predicted values in each county, we obtain a measure of
drug prescription comparable across all counties and drugs. We
identify meaningful variation in use of drugs, which we show is
associated with demographic and geographic differences between
counties. These contrasts delineate sub-Americas characterized by
different disease collections, and, for patients with the same dis-
ease, distinct medications. Previous studies have mainly used
national surveys information to infer health disparities: this is the
first study to repurpose coded health care data to uncover geo-
graphical variation in medical care. Despite using only prescrip-
tions, and not geographic or socioeconomic information, we
recover known regional variation. But the comprehensive, data-
driven nature of our design reveals previously unreported simi-
larities and differences between regions of the country and
highlights major sources of variation in prescribing preferences.

Results
A model for drug prescription, and deviation from the model.
In this study, we chose to focus on predicting which medications
are prescribed to a particular patient, rather than prescription
duration or dosage of medications. We refer in the following to
first-time drug prescription, meaning a unique first incidence of
prescription in a person’s record. First-time drug prescription
rates are related to both burden of disease and to the clinical
choices of care providers. Although total prescription rates of a
drug may also be of interest, these are heavily influenced by the
amount of care a patient receives.

We examine prescription of drugs in a subset of the Truven
MarketScan claims data, containing millions of individuals each
followed for up to 10 years (from 2003 to 2013). The present
analysis focuses on prescriptions for female patients who have
county codes and multiple years of drug prescribing information.
Prescription records include drugs dispensed, prescription week
and age at prescription. From this data, we formulate a base
model quantifying the probability that a patient will have a first-
time prescription for a given drug, accounting for age, calendar
year and amount of medical attention (Fig. 1a). We fit the base

model separately for each drug, using data from all counties,
containing a total of around 36 million patient-years. Using a
held-out set of patients, we confirm that this model can generate
unbiased predictions of drug use (Supplementary Figure 11).

Using the nation-wide base model, we calculate the expected
incident prescription for the 598 most highly prescribed drugs in
2334 populous counties. We compare the expected number of
prescriptions against the number observed for each drug in each
county, quantifying the difference in a value we call the drug-
county deviance. A high positive deviance for a given drug in a
given county indicates more prescription than expected, given the
nation-wide data on use of that drug, and the distribution of
medical records in that county. For example, if a drug were only
used in one county, that county would have a high positive
deviance for that drug, and every other county would have a
negative deviance for the drug. The drug-county deviance
represents un-modeled sources of variation between the counties.

Drug-county deviance is consistent with known variation. To
assess whether the deviance measure represents meaningful sig-
nal, we compare drug-county deviance with other sources of
information. We show that drug use is significantly more similar
for pairs of counties located closer together (Spearman’s ρ= 0.30,
p < 10−30, p-value of Spearman coefficient is calculated as
described in Methods), and pairs of counties with similar
demographics (Spearman’s ρ= 0.31, p < 10−30, demographic data
described in Methods). State-level influences such as insurance
networks and state legislation would be expected to impact drug
use, and we also are able to detect this effect (p < 10−18, regression
coefficient F-test, described in Methods). Next, we create state
drug deviance values, which measure the disparity between
observed and expected prescriptions for each drug in a state.
Clustering states by the similarity of their profiles of drug use
recovers known similarities between states (Fig. 1b). We also find
some unexpected groupings—for example, northern New Eng-
land (Massachusetts, New Hampshire, Vermont, and Maine) is
most similar to Minnesota and Wisconsin. The correlations
suggest that drug use particularly differs between northern and
southern states, and between urban and rural states.

Much as similar counties have similar drug preferences, we
find that drugs from the same Red Book therapeutic class have
more similar use across counties (p < 10−3, described in Methods,
Supplementary Figure 1a). For some drug classes, such as thyroid
hormone replacement, drugs have extremely similar deviance
across counties (Supplementary Fig. 1b).

Other classes contain drugs with differing characteristics, and
we detect curious diversity in drug use. The class of opioid
analgesics includes some Drug Enforcement Agency schedule II
compounds, with highest potential for abuse among legal drugs.
Among these, oxycodone deviance ranges widely across regions,
as has been reported13 (Supplementary Figure 2). Curtis et al.
showed that variation in schedule II opioid prescription, in the
mid-2000s, was related to state prescription drug monitoring
programs, intended to deter abuse14. Our results are consistent
with these effects (rank-sum test p < 0.008, described in Methods,
Supplementary Fig. 2). Other contemporary studies15–17 sug-
gested that schedule II monitoring programs resulted, undesir-
ably, in increased utilization of schedule III drugs. Consistent
with these reports, we find negative correlation of schedule II
drug deviances with schedule III hydrocodone and propoxyphene
opioids.

We also compare disease-associated drug use with disease-
associated death rates18. Use of drugs is consistent with the
varying burden of these diseases across regions (Supplementary
Fig. 3b, Supplementary Table 1). For example, the counties with
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the highest use of antidiabetics have the highest diabetes death
rate.

Both the analyses of opioids and of death rates reveal
meaningful covariation of drug deviance that is consistent with
other regional differences. The analysis of state similarities
(Fig. 1b) shows that areas with similar populations have similar
profiles of drug use, suggesting that the United States contains
multiple subcultures of drug prescription. Thus, in the next
section we aim to identify the chief types of variation in drug use
across counties.

Covariation in drug use across counties. Correlations between
use of medications arise due to their complex relationships with

diseases and treatment choices. For example, obesity rates vary
between counties, and obesity leads to multiple secondary health
problems indicating use of certain drugs. An intuitive approach to
untangle the signal in this data is to find the axes of strongest
covariation underlying these correlations. These represent con-
tinuous latent variables, and we would expect them to relate to
factors such as obesity that explain the most variation in drug use.
We perform principal component analysis (PCA) of the matrix of
drug-county deviances. PCA finds as its first component a pro-
jection (a linear combination) of the county drug data that cap-
tures the most variance among counties. The second component
is another linear combination of the drug values that maximizes
the variance, with the constraint that it is uncorrelated with the
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Fig. 1 Quantifying variation in drug use, and comparing states by departure from expected drug use. a The probability that a person who could be
prescribed oxycodone hydrochloride will have a record for this prescription, is shown as a function of year, age and number of prescriptions in that person-
year. This probability increases over years. b We generate drug deviance vectors for each state, which represent how much more or less of each drug is
used in the state as compared with the nation-wide model. Clustering states by their Spearman correlation in these vectors (see color scale) recovers
known similarities between states. We create non-overlapping clusters (legend for each state appears on diagonal) and color the map of the country by
drug cluster
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first, and so on. We project each county onto the most significant
components recovered; these represent a few orthogonal rank-
ings, or scores, of counties. We confirm that PCA results are
robust by assessing the effect of removing subsets of the data
(Supplementary Fig. 4).

Using these projections as proxies for independent latent
variables influencing drug use, we examine the implications of the
strongest four PCA components, which jointly explain 77% of the
variance. We give each projection a nickname summarizing
the positively and negatively correlated county characteristics.
The first component (35% of variance), nicknamed North/West-
Southeast, varies most between counties located in Southeastern
states as opposed to Northern and Western states; the second
component represents the Urban–Rural axis (20% of variance);
the third, South/West-Northeast, divides out mainly northeastern

counties with high white population, high obesity, high fraction
of population insured and high health costs (12% of variance); the
fourth, White/Wealth-nonWhite/Poverty particularly captures
drug use associated with income, and fraction of non-Hispanic
African American, versus non-Hispanic White population (10%
of variance). Thus, the top four components reflect multiple
factors that vary across counties, and that independently
influence prescription.

We visualize the variation captured by each PCA axis in two
ways. First, we display how the projected value of each county on
this component varies with the county’s geographical location,
using a colored map of the country (Figs. 2a, 3a, Supplementary
Figs. 6, 7). Second, we compare the projection to demographic
information on each county (described in Methods, Supplemen-
tary Fig. 5). Figure 2a–c show the association of Urban–Rural
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e Directly compares the demographic characteristic from c with the drug class from d
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with population density. We also compare Urban–Rural projec-
tion against the county’s averaged deviance value for drugs in
various therapeutic classes. Figure 2d shows that as Urbanity
grows, counties have fewer prescriptions for potassium repletion
supplements, corresponding to lower use of potassium-depleting
diuretics prescribed for hypertension. Urban counties use more

dermatologic agents, such therapeutic class Anti-inflammatory
Skin/Mucous Membrane (Antiinf S/MM), as well as fertility
medications.

Another latent variable, North/West-Southeast, reflects a
pattern of covariation among counties that appears geographi-
cally distinct from that of Urban–Rural (Fig. 3a). In order to
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summarize this component, we compare positively and negatively
correlated demographic characteristics and drug therapeutic
classes, arranged by correlation with North/West-Southeast
(Fig. 3b, c). Counties in the Southeast extreme have poorer
health and higher non-Hispanic African-American populations,
as compared with North/West counties. All seven drugs
belonging to the therapeutic class of antipsychotics are prescribed
more in North/West counties (mean ρ= 0.46, Fig. 3d). Anti-
psychotic prescription is correlated with county life expectancy
(ρ= 0.31) and excessive drinking (ρ= 0.34), among other
demographic characteristics that are also associated with North/
West counties. It is unsurprising that more wealthy and healthy
counties could have increased diagnosis and thus treatment of
psychotic disorders, as compared with poorer parts of the country
with other health problems. In contrast, allergy and cold
medicines (Fig. 3e) are highly used in most Southeast counties.
This is consistent with a pattern of less prescription of preventive
care drugs. People in these counties likely have a greater
proportion visits for acute problems. Southeast counties are also
distinguished by demographic characteristics including obesity
and diabetes, explaining their greater use of drugs for obesity-
related illnesses including hyperlipidemia, hypertension and
diabetes.

Figure 3b, c show that the demographic characteristics most
positively correlated with the North/West-Southeast axis, and the
drug classes most positively correlated with this component, are
also positively correlated with each other. This indicates that the
differences between counties in terms of drug use are consistent
with demographic differences. This is notable because no
demographic data were used in the PCA. The consistency
between drug-county deviance and demographic indicators is
supported by a canonical correlation analysis, which finds a
number of significant canonical correlates between the drug-
county deviance matrix and the county demographics matrix
(described in Methods, Supplementary Table 2).

Like the first two components, the next two also have a strong
geographical association. For South/West-Northeast (mapped in
Supplementary Fig. 6a), the fraction of population insured is
higher in the Northeast than South/West. Some preventive care
therapeutic drug classes are prescribed more in the Northeast,
and these are generally prescribed more in counties with higher
insurance rates. This includes fertility medications, fluoride
treatments and smoking cessation drugs such as varenicline
(Supplementary Fig. 6b, c). This axis of variation captures some
state-level covariation in drug use. In Supplementary Figure 6a
and d, counties in Massachusetts, Vermont and Minnesota have a
higher projected value for South/West-Northeast, compared
with counties across the state line in neighboring states. Notably,
only these three states had current laws mandating public
disclosure of payments from pharmaceutical companies to
prescribers, which could have some shared influence on
prescribing patterns19–21.

For the fourth dimension, White/Wealth-nonWhite/Poverty,
the map of projections reveals that counties on the nonWhite/

Poverty extreme are particularly located in the poor rural South,
in a strip from the Carolinas west through Mississippi
(Supplementary Fig. 7). At the White/Wealth end, counties are
located in the middle of United States, and they tend to spend
more on health care. They have particularly high prescription of
antidiabetic and antihypertensive drugs, consistent with high
rates of obesity and diabetes in the nonWhite/Poverty counties
(Supplementary Fig. 7e). Another characteristic is a lower rate of
prescription for the three thyroid hormones. Deviance values for
thyroid hormones and diabetes drugs are negatively correlated
(Spearman’s ρ=−0.19, p= 6.3×10−21). Hypothyroidism can
also co-occur with, and exacerbate, obesity and diabetes22–25,
making under-diagnosis of hypothyroidism a possible concern.

To illustrate the geographical associations, we assign each
county to at most one of the top four components, if that county
has an extremely high or low projected value on that component
(Fig. 4). This visualization is somewhat cartoonish, as counties
often have extreme projections on more than one component—
for example, Marin County, California scores high on North/
West, Urban and South/West. Bronx County, New York, projects
as Urban, Northeast and nonWhite/Poverty.

Geographical variation in use of expensive branded drugs.
Because there are wide regional differences in drug spending in
the United States26, we investigate variation in drug use asso-
ciated with generic versus brand-only availability. From Medi-
caid’s database, we obtained drug generic status and approximate
price (National Average Drug Acquisition Cost (NADAC))27. In
Fig. 5a, we show variation in use of anti-infective and anti-
inflammatory eye drops. From left to right, the drugs are more
positively correlated with Urban–Rural, and are more expensive:
the correlation between Urban–Rural association and brand-only
availability is 0.89. The most expensive anti-inflammatory eye
drop is around double the price of the second-most expensive.
We contrast the most urban against the most rural counties
(selected counties shown in Fig. 5c), to visualize their use of
generic versus branded drugs in different therapeutic classes
(Fig. 5d).

Of course, other factors besides price drive drug selection. But,
across drug classes ranging from antihypertensives to skin care,
Urban counties prescribe more brand-only drugs (Figs. 5b, c,
Spearman’s ρ= 0.48, p= 8.7 × 10−37, described in Methods). We
summarize correlations between price preference and each of the
top four variables, for the largest drug therapeutic classes.
Figure 5b shows that Urban–Rural, North/West-Southeast and
White/Wealth-nonWhite/Poverty have consistent price prefer-
ences, though the trend is apparent in different drug classes for
each axis. Northeast counties also somewhat prefer brand drugs,
but less consistently across all drug classes.

Like Urban counties, Southeast counties tend to prefer
expensive drugs (Spearman’s ρ=−0.095, p= 0.019), even
accounting for drug class (Fig. 5b). In addition to their overall
lower use of antidepressants and antipsychotics, Southeast
counties particularly prescribe less of cheaper psychiatric drugs

Fig. 3 Visualization of North/West-Southeast. a Map of county projected values. b This plot continues the idea of the visualization in Fig. 2 by showing the
correlations of county values for the projected dimension, with demographic indicators, and the drug class deviances. On the left side, the correlations
between North/West-Southeast and demographic factors are shown. Correlated demographic variables that co-cluster in Supplementary Fig. 5 have the
same color. On the right side, drug therapeutic classes that correlate positively or negatively are shown. These are colored by related therapeutic uses (see
c). Cyan lines connect demographic characteristics that are positively correlated with drug characteristics, with a correlation cutoff of > 0.2. c This plots the
same bipartite graph as in part b, but in circular format to allow each demographic or drug class to be labeled. Thus, the closer a node is to the top or
bottom pole, the stronger the positive or negative correlation with North/West-Southeast. Edges are colored according to the drug class they connect to.
d Use of antipsychotics, showing lower deviance values in the southeastern counties. e Antipsychotics are negatively correlated with allergy and cold
medicine
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(Fig. 5e). The preference for more expensive drugs is surprising,
as Southeastern counties are generally poorer than the national
average. But of these, the poorest counties have a low projection
on White/Wealth-nonWhite/Poverty. Opposed to the general
trend for Southeast counties, nonWhite/Poverty projection is
correlated with preference for generic drugs (Spearman’s ρ=
−0.23, p= 1.4 × 10−8).

Variation in price preferences versus evidence of effectiveness.
Prilosec was a blockbuster drug for heartburn that went off-
patent in 2001. That year, Prilosec’s maker introduced Nexium, a
much more expensive brand-only drug. Nexium has a different
form of the same active ingredient, and any superiority to Prilosec
remains controversial28. As would be expected of competing
drugs for the same condition, use of Prilosec, and its generics, is
negatively correlated with use of Nexium across counties
(Spearman’s ρ=−0.22, p= 9.9 × 10−28). In Fig. 5f, we contrast
use of these two drugs across counties ranked by the three
components most correlated with price.

As another example, we examine variation in prescriptions for
hypertension drugs, which comprise 10% of the drugs in our
analysis. These represent a wide range of treatment choices. Near
the beginning of our study period, revised guidelines recom-
mended cheaper older drugs, thiazide diuretics, as more beneficial
than expensive new hypertension treatments29–31. However, later
studies showed that physicians resisted re-adoption of older
thiazide diuretics, possibly due to marketing of newer drugs32.
One estimate33 suggests this resulted in $1.2 billion per year of

unsupported excess prescription spending. We find that cheaper
drugs within classes (Supplementary Fig. 8), and cheaper classes
of antihypertensive agents (Supplementary Fig. 9), are prescribed
more in regions preferring generic drugs. Notably, Urban
counties use more angiotensin II receptor blockers, the most
expensive antihypertensive class. In contrast, nonWhite/Poverty
counties have high hypertension drug use across many classes,
but they particularly use cheaper drugs, such as non-combination
thiazide diuretics.

Modeling regional price preferences. As a different approach to
examining brand preferences in each county, we model drug
deviance as a function of drug generic status and therapeutic class.
This model estimates preference for generic or brand drugs in
each county (Fig. 6a), and state (Fig. 6b). The result is consistent
with our previous findings: urban areas, particularly the corridor
from New York to Washington, DC prefer more expensive drugs,
as do parts of the southeast. Northern New England, some Mid-
western and western states prefer cheaper drugs. Using the
demographic information on each county to predict preference for
expensive drugs, we find income, health care costs and access to
exercise opportunities are most predictive of expensive drug pre-
ference (Fig. 6c). However, this model only explains a quarter of
the observed variance in brand preference across counties (R2=
0.24). Other factors, such as state-level laws, insurance networks or
cultural preferences, likely explain the rest. The latent variables
uncovered via PCA point to possible influences.

Southeast

North/West

Rural

Urban

Northeast

South/West

NonWhite/Poverty

White/Wealth

North/West-Southeast Urban-Rural South/West-Northeast White/Wealth-nonWhite/Poverty

Skin cell stimulants
Antidepressants

Thyroid hormones
Antidiabetic insulins
Antihyperlipidemics

Allergy/cold

–1 0 1 –1 0 1 –1 0 1 –1 0 1
Drug deviance distributions across counties

Fig. 4 Summary of the first four components. Each county is assigned to one of the components if it falls into the top or bottom tenth percentile of a
component. The map on top shows these assignments, with one hue per component, and lighter color indicating counties with extreme negative
projections, darker for extreme positive. The maps in the middle show the same extreme counties, separated into each component. The bottom panel
shows the distribution of deviances for some chosen therapeutic drug classes. The overlapping violin plots depict the use of the drugs in the class for
counties in the high (red), and low (blue), extremes of each component
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Discussion
We have developed and supported a systematic approach to
compare use of all popular prescription medications across most
counties. Our approach enables emergent detection of multiple
types of variation between counties, reflected in the components
of the PCA. Particularly intriguing is evidence that some regions

appear to prefer more expensive branded drugs. Health costs in
the United States account for >17% of the nation’s economy, and
drugs are the fastest-growing category of health care spending34.
Open questions include whether preference for generics reflects
more efficient, but equally effective, use of health care dollars, and
if pharmaceutical marketing is swaying treatment choices.

D
ex

am
et

ha
so

ne
_n

D
ex

am
et

ha
so

ne
_t

5

0

–9 9 –9 9 –9 9 –9 9

Cor=–0.11 Cor=0.22 Cor=0.21 Cor=0.40

P
re

dn
is

ol
on

e_
ac

2

0

4

2

0

–2

4

2

0

–2Lo
te

pr
ed

no
l_

et
a

Urban-rural projection
0.4
0.3
0.2
0.1
0.0

–0.1U
rb

an
 c

or
re

la
tio

n 1.0

0.8

0.6

0.4

0.2 Fr
ac

tio
n 

br
an

d

Dexamethasone_neomycin_sulfate_polymyxin_b_s

Prednisolone_acetate_sulfacetamide_sodium

Dexamethasone_tobramycin

Loteprednol_etabonate_tobramycin

Antiinf S/MM,antifungal & comb
Stimulant, amphetamine type

Multivit prep, multivit plain
Antibiot, cephalosporin & rel.

Diabetes mell/diab supply
Antichol/antimuscarin/antispas

Analg/antipyr, sallcylates
Antivirals

Antitussives/cold comb
Analg/antipyr, opiate agonists

Antiemetics
Antibiot, penicillins

Immunosuppressants
Contraceptive, oral comb

Antineoplastic agents
Estrogens & comb

Sympathomimetic agents
Eye/ear/nose/throat misc
Misc therapeutic agents

Dental agents
Anticonvulsants, misc

Psychother, antidepressants
Antidiabetic agents, misc

Analg/antipyr,nonstr/antiinflm
Adrenals & comb

ASH, benzodiazepines
Anxiolytic/sedative/hypnot

Antiinf S/MM, antiinf loc misc
Psychother, tranq/antipsychotic

Antiinfect, antiinflam EENT
Antihyperlipidemic drugs

Antiinfect, antibiotics EENT
Gastrointestinal drug misc

CNS agents, misc.
Vascular 5HT1 agonist

Antidiabetic agents, insulins
Muscle relax, skeletal central

Thiazide & comb
Calcium channel blockers

Angiotensin rec blocker
ACE inhibitor
Beta blocker

Hypotensive agents

N
or

th
/w

es
t-

S
ou

th
ea

st

U
rb

an
-r

ur
al

S
ou

th
/w

es
t-

N
or

th
ea

st

W
hi

te
/w

ea
lth

-

N
on

W
hi

te
/p

ov
er

ty

1.0
0.5
0.0
–0.5
–1.0

A
ntihypertensives

Antiinfect.. EENT Gastrointestinal.. Antihyperlipidemic..

1

0

–1

D
ev

ia
nc

e

D
ev

ia
nc

e

0.0 0.5 1.0

0

–2

0.0 0.5 1.0
Fraction brand

Fraction brand

1

0

–1

0.0 0.5 1.0

Antidepressant.. Antipsychotic..2

1

0

–1

1

0

–1

0.0 0.5 1.0 0.0 0.5 1.0

Prilosec $0.17
Nexium $7.30

D
ru

g 
us

e

1

0

–1

–10 0 10

1

0

–1

–10 0 10

1

0

–1

–10 0
Southeast North/

west
Rural Urban NonWhite/

poverty
White/
wealth

a c

b
d

e

f

Fig. 5 Correlation of drug price with regional drug preferences. a In the top panel, anti-inflammatory eye drops (part of class Antiinfect, Antiinflam EENT
(ears, eyes, nose throat)), are arranged from left to right by fraction generic. Each scatter plot compares county Urban–Rural projection against deviance in
the given drug. The correlation (abbreviated, cor) increases with fraction generic: shown for the same drugs in the bottom panel. b The correlation between
price and drug preference, for the largest therapeutic classes. The example from part (a) is highlighted with a white X. c Urban and rural counties, also
highlighted in the rightmost plot in (a). The two extreme county groups are contrasted in part (d). d In each panel, the points are drugs in a therapeutic
class. The drugs are arranged by increasing fraction brand-only (x axis). Fraction brand is compared with drug deviance values in the Urban (red) and Rural
(blue) counties (see c). Filled regions highlight the 25–75 quartiles for use of each drug across each set of counties. The left plot shows the class from
(a). e Analogous to c/d but for North/West-Southeast, and different drug classes. f Each panel compares use of Prilosec and Nexium across counties
projected onto one component. Counties are binned by the component projection. The x axis denotes the component projection, and the y axis shows use
of the drugs in those counties. The filled regions show 25–75 percentile of the deviance values across counties in the bins

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06205-1

8 NATURE COMMUNICATIONS |  (2018) 9:4022 | DOI: 10.1038/s41467-018-06205-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Our data do not uniformly sample across different areas of the
country, and it do not uniformly represent sociodemographic
strata within each county. Truven’s MarketScan data have been
previously used to investigate incidence of disease35,36, and geo-
graphical variation in diagnosis37–39. The data have also been
used to survey prescription practices40,41. Comparison of pre-
scription rates from Marketscan data against health records data
have shown that the two data sources are comparable11. Although
missing prescriptions in claims data have been documented42,
these are greater in elderly populations, and they are often
associated with patient records that are entirely missing (rather
than missing single prescriptions)43. Our work carefully condi-
tions all results on the total number of drugs prescribed to each
patient. We pose our question therefore in the following way:
given private insurance, and given a level of utilization of this
insurance, how does drug use vary? This yields a generalizable
model applicable to other health care data. The axes of variation
described in this work are similar when the analysis is repeated on
males (Supplementary Fig. 13) and they are largely stable over
multiple years (Supplementary Figure 14), despite changes in
health care options, and drug availability, over this time span.

The canonical correlation analysis indicates a number of sig-
nificant canonical variables beyond those we explored here (visua-
lized at drugmap.uchicago.edu, preview available in Supplementary
Fig. 15) inviting future work. Another way to build on our fra-
mework would incorporate diagnosis data to compare treatments in
patients with a given medical condition across the country. We
could also use drug-county deviances in slices of time to examine
how medical practices spread through regions. As data grow,
temporal changes, as well as age-related changes, in diagnosis and
drug use will become increasingly informative. In addition to large-
scale trends, our results (tables at https://figshare.com/projects/
Patchwork_of_contrasting_medication_cultures_across_the_USA/
36311 and code at https://github.com/RDMelamed/county-drug-
variation) enable investigation of geographic variation in prescrip-
tion of hundreds of specific drugs—we have chosen only a few for
purposes of illustration. Researchers could use these estimates to
find areas underserved with regard to a drug of interest, either to
understand the causes of these disparities or to target regions for
intervention. The impacts of some state-level policies can also be
investigated, as in our analysis of opioids. Related work44 has used
IMS health prescription sales data to propose drug use as a proxy
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for disease rates, enabling more geographically uniform surveillance
of health needs, such as in rural areas. Quantifying the hetero-
geneity in health factors is essential for researchers who wish to
estimate the effects of health interventions. To this purpose, the
patchwork of counties we identify could provide a starting point for
subdividing the diverse USA population into subgroups with rela-
tively homogeneous risks of disease and medical care.

Methods
Predicting rate of drug use from claims data. The Truven Health Analytics
MarketScan data (recently acquired by IBM Watson) contains patient identifiers
linked to time-stamped National Drug Codes (NDC), as well as information about
patient age and zip code. The study was reviewed by Institutional Review Board of
the University of Chicago and found exempt because it deals with existing de-
identified data. Counts of total observations and observations per group of drugs
are shown in Supplementary Table 3. We match NDC codes to drug generic names
using the MarketScan RED BOOK™ Supplement (includes variables related to drug
prescription). For each drug generic name, we separately model the probability of a
new prescription (incident prescription) over the course of a person-year. We
require that a person must have >2 years of data, where the first 2 years are used
only for comparison to ensure that we are measuring incident drug use. Our
sample unit is the person-year, where we assume that each observed person-year
has a homogeneous probability of drug use that depends on four factors: age
(divided into 5-year bins), calendar year, the number of new prescriptions for that
person in that year and the number of years observed with any new prescription.
Although number of prescriptions in a calendar year might indicate the current
level of medical attention, number of years with any new prescription reflects the
consistency of care over time. An example of the influence of this variable is shown
in Supplementary Figure 10a.

Referring to one setting of these four variables as a bin denoted b= {age= a,
year= y, number of new medications= r, number of new medication years=m},
we obtain all person-years falling into a given bin. We can then model the
probability of use of drug d for a given bin b with the following assumption:

p take drug dwhile in bin bð Þ ¼ yd;b : individuals observed taking d in b

nd;b : individuals observed in b
#: ð1Þ

This is equivalent to a discrete-time survival analysis45, which is simply a
logistic regression that models over multiple time points the probability that a
person will have an event, given that a person is in the risk set (to use the survival
analysis term) for the event. Here, the event is new prescription of d, and the risk
set is comprised of subjects observed in bin b. A person is observed in the risk set in
bin b for drug d (and thus counts toward the denominator nd,b) if the following two
conditions are met: (1) the person is observed in the year y, of age a, etc, and has r
> 0 new prescriptions during that year; and (2) that person has never been observed
taking drug d before. As each bin is one combinatorial setting of these four
variables, there are over 30,000 observed bins. Some bins involving patients with
many prescriptions per year can be very sparsely observed; thus, we collapse bins
for highly observed patients (Supplementary Fig. 10).

We fit this model using the four bin variables as categorical (dummy)
covariates, and we allow all pairwise interactions between the variables. We use the
sklearn toolkit to fit the model, with a regularization parameter tuned for best fit by
cross validation. We call this model the USA model. In order to assess the bias of
this model, we use a set of holdout samples and we compare predicted drug use in
each sample against the actual number of each drug prescribed. We conclude that
our model is unbiased for prediction of drug use in a population (Supplementary
Fig. 11 shows some examples).

Calculation of drug deviance value per county. Next, we compare the model to
the data from each county to determine if each county has more or less drug
prescribed than would be expected in the USA model. Let nd,b,c be the number of
people observed in county c, who could have taken drug d in bin b. Of these people,
we observe yd,b,c who actually took that drug. The model already accounts for
variation in age and amount of medical care, but in order to ensure that different
population distributions in different counties do not influence the results, we also
standardize all populations to the nation-wide population, as follows. We calculate
a weight value for each bin, representing the fraction of the national population
that falls in that bin: wd;b ¼ nd;bP

b′
nd;b′

. Then, for each drug, and for each county, we

obtain the following weighted values for the observed number of people total, and
taking the drug, respectively: nd;c ¼

P
b wd;b � nd;b;c and yd;c ¼

P
b wd;b � yd;b;c. We

compare this with the number of prescriptions expected under our model. For one
bin, before weighting, we would predict nd;c;b �dpd;b new prescriptions, where dpd;b is
the predicted probability from the logistic regression model for drug d, in the
bin b (age, calendar year, etc). Thus, for county c, the corresponding
population-standardized expected value of drugs taken under the USA model is
ŷd;c ¼

P
b wd;b � nd;c;b � P̂d;b .

Now, we compare the observed and expected county values: ŷd;c and yd,c.
Although the ratio of these values provides a decent estimate of the relative use of

the drugs, the ratio is very sensitive to sampling variability for less common drugs.
Therefore, we instead measure the departure of observed drug use in a county from
the expected drug prescription using the deviance residual of the county value from
the binomial model of nation-wide drug use 46. This measure quantifies how well
the USA model fits the county data by evaluating the likelihood of the county data
under the USA model. Then, drug-county deviance for drug d in county c is:

Gd;c ¼ sign yd;c � ŷd;c

� �
� yd;c � log

yd;c
ŷd;c

þ nd;c � yd;c

� �
� log nd;c � yd;c

nd;c � ŷd;c

& ’1
2

#: ð2Þ

Compared with the log-ratio, the deviance residual has much less extreme
values for less common drugs (Supplementary Fig. 12).

Aggregating other county characteristics. In order to compare drug deviance
values with other measures that vary across counties, we compile data on health
and demographic characteristics of counties from the County Health Rankings
report47. These demographic county-level indicators include racial composition,
medical care availability, income, health status and behavioral measures. To this,
we add population and density data, longitude, and latitude from the US Cen-
sus48,49, life expectancy estimates from the Institute on Health Metrics and Eva-
luation3,5, and death rate data from the CDC18. We download both the age-
adjusted total death rate per county and the age-adjusted death rate per county
attributed to each of the top causes of death. We divide these to obtain each
county’s fraction of deaths due to a cause. The full list of demographic char-
acteristics and sources is shown in Supplementary Table 4. We remove a number of
characteristics with >10 missing values, but we keep the 69 demographic variables
with fewer than 10 missing values across the 2334 most populous counties. For
these, we impute the demographic value by a regression using other counties as
observations, and all other demographic variables as predictors.

Drug characteristics. In addition to mapping NDC to generic name, Red Book
also contains other information for each drug. This includes therapeutic class, an
indicator of whether this is an over the counter product versus prescription-only, if
the primary use is acute or chronic, the Drug Enforcement Agency classification,
and indicator of whether NDC corresponds to a generic or a brand medication. We
collapse each generic name drug into a summary of these characteristics. We also
obtain from Medicaid the NADAC27. Finally, we download drug information from
the Food and Drug Administration50, with each drug’s release date and pharma-
cological class. Generic status, release date and NADAC are, as expected, very
correlated with each other.

Comparison of drug-county deviance with known variation in counties. As a
first point of positive control, we compare counties with each other in terms of our
estimate of their drug use. We define a drug deviance vector for each county,
containing a profile of the positive or negative deviance from the expected value of
each drug for that county. We calculate the Euclidean distance between each pair of
counties in terms of standardized drug deviances. To show that this distance
reflects known differences between counties, we compare pairwise distances with
the other county covariates. First, we compare the pairwise drug distances with the
geographical distance between the county pairs, calculated using the Euclidean
distance between their latitude and longitude. We also compare the drug distance
scores with distance between their normalized vectors of demographic information,
described above. We assess whether the drug distance is correlated to these inde-
pendent measures of distance between counties using Spearman correlation. For
each correlation, we also report in the Results the p-value from the t-
transformation of the correlation, as implemented in scipy51.

To assess whether we capture the effect of state-level factors, we examine pairs
of neighboring counties, where at least one of the counties falls on a state border.
First we identify neighboring counties, using USA county shape data (http://bokeh.
pydata.org/en/latest/_modules/bokeh/sampledata.html), which contains the
counties as polygons. We identify bordering county pairs as those for which the
line segments intersect. We match counties to their state, and to Census and
demographic information, using county Federal Information Processing Standards
(FIPS) codes.

We model the pairwise distance between the two drug deviance vectors as a
linear function of the county pair’s demographic distance and a binary indicator of
whether the pair of counties fall in the same state. This data fit well to a model with
statistically significant coefficients for both variables, in the expected directions.
That is, a pair of bordering counties with less similar demographics (greater
distance between their demographics vectors) have greater distance between their
drug deviance vectors (demographic distance coefficient= 0.16, standard error=
−0.06, p= 0.01). If the two counties are in the same state, they have a smaller
distance between their drug use vectors (same-state indicator coefficient=−1.95,
standard error= 0.22, p < 10−18). These results point to a meaningful
correspondence between drug deviance characteristics of a county and other
known characteristics of counties.
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Comparing county deviance vectors for similar drugs. Next, we evaluate whe-
ther a drug’s vector of deviances across counties captures meaningful information
about that drug. Using the same matrix of drug-county deviance, we obtain a
county deviance vector for each drug. We compare classification of drugs by Red
Book therapeutic class against an unsupervised hierarchical clustering of the drug
deviance vectors across counties, using the Adjusted Rand index52. The Rand index
compares a known classification (in this case, the therapeutic classes) to a learned
classification (in this case, the clusters based on county deviance). The score
evaluates how well a clustering retains in the same cluster each pair of items
belonging to the same class. We use the Adjusted Rand index, implemented in
sklearn adjusted_rand_score, which corrects for the number of co-clustered items
expected by chance. There are 153 therapeutic classes, and some of these are highly
overlapping: that is, many drugs fall into both classes. We collapse these 153 classes
into 75 classes with minimal overlap. Only 46 of our 598 drugs are in more than
one collapsed class. Rand index is not quite ideal for our purpose for two reasons: it
is designed to evaluate recovery of non-overlapping classes, and it is not tradi-
tionally used for such a large number of classes.

To adapt the Adjusted Rand index, we create 100 versions of the therapeutic
class assignments, where we randomly assign each of these drugs to only one of the
therapeutic classes it belongs to. We evaluate the distribution of Adjusted Rand
index values across these versions of the known class assignments (Supplementary
Fig. 1). Traditionally, an Adjusted Rand index of 1 indicates good recovery of true
classes, but this is not realistic with so many classes, and in addition our purpose is
not to classify drugs but to evaluate the signal in our drug deviance vectors. In
order to evaluate whether the resulting Adjusted Rand index values represent a
significant co-clustering of drugs in the same class, we compare the scores with
randomly permuted class assignments, over 1000 permutations. We find a strong
separation between the Rand index between the true and random class assignments
(Supplementary Fig. 1). This shows that drugs that have the most similar
prescription trends across counties in fact have similar therapeutic purpose.

Analysis of variation in opioids prescription. We compare the state-level drug
deviance for opioids with the findings of Curtis et al.: they found that AK, AZ, DE,
MD, MA, NH, SC and TN had the highest rates of schedule II oxycodone uses, and
CA, TX, IL, MI and NY had lower use of these drugs. We performed a rank-sum
test for each group of states to assess whether our results agree with theirs. We find
that the low-use states show significantly lower deviance values (rank-sum test, p=
0.002) and the high-prescription states have higher deviance values (p= 0.008)
(Supplementary Fig. 2d).

Regularized regression analyses. To predict the thyroid drugs, using all other
drugs, we fit an elastic net regression model using the python sklearn package53.
We use Z-scored values of all other drugs as predictors so we can directly compare
the regression coefficients. The regularization shrinks most of the regression
coefficients to zero, and for each of the three regressions, the remaining thyroid
drugs are the most predictive drugs.

We take a similar approach to examine the consistency between drug
prescription and fraction of deaths in a county due to each cause of death. We
again use elastic net regression, with cause of death per county as the outcome, and
all drug-county deviance values as candidate predictors. Again, we obtain resulting
regression coefficients that can be compared across drugs. Next, we assess whether
drugs that treat a cause of death are particularly predictive of that cause. We curate
sets of drugs for chronic care that are obviously related to causes of death
(Supplementary Table 1). For example, although there are drugs to treat flu and
pneumonia, this set of drugs is not generally for chronic care and is not as specific
to these conditions as, for example, antihypertensive or antidiabetic drugs. Again,
most regression coefficients are shrunk to a narrow distribution around zero. For
each drug set, we assess if the coefficients in the set are significantly high or low
using a two-tailed rank-sum test (Supplementary Table 1, Supplementary Fig. 3).
For each cause of death with an obviously related set of drugs, we find that the
related drug set has the most positive set of coefficients.

To predict use of thyroid drugs as a function of demographic indicators per
county, we use sklearn’s MultiTaskElasticNet with thyroid hormone deviance as
the outcome. We standardize the demographic variables, and we report the
variables that depart from zero in Supplementary Figure 7.

Dimensionality reduction. We perform the PCA using singular value decom-
position with sklearn53, after normalizing the data (centering and variance stan-
dardizing the drugs). We use the resulting eigenvectors to transform the county
drug deviance data into the projected space. Additionally, we perform canonical
correlation analysis on the drug-county deviance data and the county demographic
data. This approach treats each county as an observation on these two sets of
variables. The canonical correlation analysis identifies linear combinations of the
variables in the two data sets (drug data and demographic data) that maximize the
cross-covariance between the two sets. As canonical correlation analysis is only
recommended when the sample size is many times larger than the number of
variables, we restrict this to the 197 drugs with more than half a million users across
the country, and we use only the fully observed demographic features, filtering
highly collinear features. Using the R package CCA54, we obtain the canonical

correlates, and we test significance using another R package, CCP55. The results
(Supplementary Table 2) suggest more than a dozen significant canonical correlates.

To assess the stability of the PCA components, we select subsets of the data. We
compare the eigenvectors found when using the full matrix of all drugs with the
vectors for the submatrix with a therapeutic class of drugs removed. Comparing
each of the top dimensions by the dot product of the eigenvectors, we observe how
often the dot product is near 1 (Supplementary Figure 4). For the first two
dimensions, the dot product ranges between 0.99 and 1 for all of the 153 classes
removed. For second two, 147 of 153 drug classes have eigenvector dot products
>0.95. The class of drugs with the highest influence are the analgesic opioids.

Code availability. All code to make the figures and perform statistics cited in the
text is available at https://github.com/RDMelamed/county-drug-variation. Figures
containing maps of the United States were drawn using the python package
basemap and shape files from the United States Census Bureau, http://www2.
census.gov/geo/tiger/GENZ2010/gz_2010_us_050_00_5m.zip.

Data availability
The summarized data sets derived from the MarketScan data and used to make the
figures in this article are available at https://figshare.com/projects/
Patchwork_of_contrasting_medication_cultures_across_the_USA/36311. In particular,
this contains the matrix of drug-county deviance values that were used to perform the
main analyses.
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