Research Article

The Effect of Exercise on the Older Adult's Blood Pressure Suffering Hypertension: Systematic Review and Meta-Analysis on Clinical Trial Studies

Mohsen Kazeminia,¹ Alireza Daneshkhah,² Rostam Jalali,¹ Aliakbar Vaisi-Raygani,¹ Nader Salari,³ and Masoud Mohammadi ¹

¹Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran ²School of Computing, Electronics and Maths, Coventry University, London, UK ³Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran

Correspondence should be addressed to Masoud Mohammadi; masoud.mohammadi1989@yahoo.com

Received 7 May 2020; Accepted 28 August 2020; Published 15 September 2020

Academic Editor: Tomohiro Katsuya

Copyright © 2020 Mohsen Kazeminia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Senescence refers to spontaneous and progressive irreversible degenerative changes in which both the physical and psychological power diminish significantly. Hypertension is the most common cardiovascular disease in the elderly. Several studies have been conducted regarding the effect of exercise on reducing the blood pressure of the elderly, which have found contradictory results. One of the uses of meta-analysis study is responding to these assumptions and resolving the discrepancies. Accordingly, the aim of the present study is to determine the impact of exercise on the blood pressure of older adults. *Method*. In this research, in order to find electronic published papers from 1992 to 2019, the papers published in both domestic and foreign databases including SID, MagIran, IranMedex, IranDox, Gogole Scholar, Cohrane, Embase, Science Direct, Scopus, PubMed, and Web of Science (ISI) were used. Heterogeneity index between the studies was determined based on Cochran test Q(c) and I^2 . Considering existence of heterogeneity, random effects model was employed to estimate the standardized subtraction of the mean exercise test score for reduction of blood pressure in the older adults across the intervention group before and after the test. Results. In this meta-analysis and systematic review, eventually 69 papers met the inclusion criteria. The total number of participants was 2272 in the pre- and postintervention groups when examining the systolic changes and 2252 subjects in the preand postintervention groups when inspecting the diastolic changes. The standardized mean difference in examining the systolic changes before the intervention was 137.1 ± 8.09 and 132.98 ± 0.96 after the intervention; when exploring the diastolic changes, the pre- and postintervention values were 80.3 ± 0.85 and 76.0 ± 6.56 , respectively, where these differences were statistically significant (P < 0.01). Conclusion. The results of this study indicated that exercise leads to significant reduction in both systolic and diastolic blood pressure. Accordingly, regular exercise can be part of the treatment plan for hypertensive elderly.

1. Background

Senescence is a natural course of development in which special physical, psychological, and social changes occur [1]. In other words, senescence refers to spontaneous and irreversible progressive degenerative changes in which both psychological and physical power significantly decline [2]. In the elderly, all organs of the body undergo some degree of degeneration in all of their tasks; for this reason, various chronic diseases occur in the older adults including cardiovascular disease such as hypertension, coronary artery disease, and skeletal diseases such as arthritis, osteoporosis, and cancer [3].

Hypertension is the most common cardiovascular disease in the older adults [4], claiming high healthcare costs [4]. Since pharmacotherapy among the older adults necessitates adhering to various issues, today researchers tend to recommend nonpharmacological methods instead of pharmacotherapy considering the pathological mechanism of hypertension. Nonpharmacological methods include modifying the lifestyle through low sodium diet, low fat diet, increasing potassium as well as calcium intake, weight reduction in obese individuals, daily exercise, and reducing anxiety and fear [5]. Regular exercise at a moderate level for three days per week 30 min/day results in increased longevity, reduced mortality, and reduced development of cardiovascular disease, heart attack, hypertension, arthritis, osteoporosis, depression, and different types of cancer [6]. Regular aerobic exercise leads to reduction of both systolic and diastolic blood pressure by 11 and 8 mmHg. A regular physical activity program should start gradually and sustain for 30–45 min in most days of the week. This level of activity can control hypertension without pharmacotherapy [7].

The impact of aerobic exercises on hypertension has mostly been tested in long-term exercise programs (at least three months) with high intensity and high number of sessions per week (5 days/week). Increase in the number of exercise sessions per week and high intensity of exercise in individuals who are not able to do high intensity activities may be an obstacle to participating in such exercise programs [8]. There are different and sometimes contradictory responses to the numerous questions about the effect of different exercises and their varying intensities on the elderly's blood pressure. Various research studies have reported different results about the impact of exercise on blood pressure considering the type of exercise, its conditions, duration, and frequency within a specific period, and its relationship with blood pressure reduction [9].

In the research by Moraes et al., after three days of aerobic exercise per week for three months in the intervention group, the mean systolic and diastolic blood pressure diminished by 3.2 and 1.2 mmHg, respectively, but no significant change was observed in the mean blood pressure of the control group [10]. In the research by Ferrier et al., the arterial compliance showed resistance against a short aerobic exercise program, and no reduction was found in the blood pressure of patients [11]. The study by Tabara et al. with the aim of comparing aerobic short-term and long-term exercise programs with mild and moderate intensities on cardiovascular indicators of the older adults indicated that the short-term program had no impact on reducing systolic blood pressure, but it decreased the diastolic blood pressure. Long-term program resulted in diminished mean systolic and diastolic blood pressure from 136 to 129 and from 87 to 83, respectively. Also, both the mild and moderate intensity programs were influential for blood pressure reduction [12]. In the research by Westhoff et al., the impact of moderate intensity long-term exercise program was tested on patients with hypertension. The results showed blood pressure decline in the samples, though it was not statistically significant [13].

With regard to the impact of exercise on the blood pressure of the older adults with hypertension, some preliminary studies have been conducted across Asia, Europe, and America, which have found contradictory results. One of the uses of meta-analysis study is to address these assumptions and resolve the contradictions. Although Herrod et al. [14] conducted a meta-analysis study investigating the impact of exercise and other nonpharmacological measures on the blood pressure of the elderly, and this study has not tested the influence of exercise on the blood pressure of the older adults across different continents. Thus, the aim of this study is to determine the impact of exercise on the blood pressure of the older adults with hypertension across metaanalysis.

2. Methods

2.1. The Methods for Searching Papers. In this investigation, the search was performed on Persian databases including SID, MagIran, IranMedex, and IranDoc along with the international databases of Google Scholar, Cochrane, Embase, Science Direct, Scopus, PubMed, and Web of Science (ISI) with the aim of finding relevant papers without any time constraint (from 1992 to 2019). The list of the references utilized in all papers and the relevant reports found in the previously mentioned electronic search was assessed manually so that other possible references could also be found. The keywords used for searching the references were chosen from The Medical Subject Headings (MeSH) thesaurus. The keywords searched were exercise, resistance training, circuit-based exercise, plyometric exercise, exercise therapy, exercise training, physical activity, and hypertension (both in English and Persian).

(((((((((((Exercise[Title/Abstract]) OR Physical Activity [Title/Abstract]) OR Exercise Training[Title/Abstract]) AND Resistance Training[Title/Abstract]) OR Strength Training[Title/Abstract]) OR Weight-Bearing Exercise Program[Title/Abstract]) AND Circuit-Based Exercise[Title/Abstract]) OR Circuit Training[Title/Abstract]) AND Plyometric Exercise[Title/Abstract]) OR Plyometric Drill [Title/Abstract]) OR Plyometric Training[Title/Abstract]) OR Stretch-Shortening Cycle Exercise [Title/ Abstract]))))))))

2.2. The Criteria of Selection of Papers. The papers with the following characteristics were chosen for the meta-analysis: (1) original research papers, (2) clinical trials studies, and (3) availability of full text of papers. For the objectives of this investigation, physical exercise is any bodily activity that enhances or maintains physical fitness and overall health and wellness. It is performed for various reasons including strengthening muscles and the cardiovascular system, honing athletic skills, and weight loss or maintenance, as well as for the purpose of enjoyment [15]. The older adults were defined as individuals above 60 years of age, while hypertensive patients was defined as the patients with a medical diagnosis of hypertension for more than six months (it includes patients with a definite diagnosis of hypertension).

2.3. Exclusion Criteria. The selected studies were investigated more accurately. Those conducted as review or those whose sample had not been chosen from the older adults with hypertension or the studies repeated with previous data were removed from the meta-analysis. Eventually, 76 studies entered the third stage, qualitative assessment. Each article was separately reviewed by two reviewers. If the article was rejected by them, they expressed the reason, and if there was any controversy between the reviewers, the article was reviewed by a third referee whose opinion was considered as the final decision. Duplicate publication and multiple publications from the same population were removed using citation management software EndNote (version X7, for Windows, Thomson Reuters).

2.4. Qualitative Assessment of the Studies. The quality of the papers was evaluated based on the selected and relevant items of CONSORT checklist, which could be assessed in this study and already mentioned in previous studies (design of study, background and review of literature, place and time of the study, consequence, inclusion criteria, sample size, and statistical analysis). The papers mentioning six to seven criteria were considered of high quality, while those citing two or less of the seven mentioned items were considered as moderate and low quality papers in terms of their methodology [16]. In the present study, 69 papers were included in this systematic review and meta-analysis as being of high and moderate quality, while seven papers which were of low quality were excluded.

2.5. Data Extraction. All of the final papers introduced into the meta-analysis process were prepared for extraction by a premade checklist. The checklist included title of paper, name of the first author, year of publication, place of study, sample size of the intervention group, mean systolic and diastolic blood pressure before the intervention, mean systolic and diastolic blood pressure after the intervention, and standard deviation of systolic and diastolic blood pressure both before and after the intervention.

2.6. Statistical Analysis. Since the studied index was the impact of exercise on the blood pressure of the elderly, in order to combine the results of different studies, frequency and percentage were used along with standardized mean difference index in every study. In order to investigate homogeneity across studies, I^2 index was used; considering the heterogeneity in the studies, random effects model was used to combine the studies and conduct the meta-analysis. Note that $I^2 < 25\%$, 25–75%, and greater than 75% represent low, medium [16], and high heterogeneity, respectively. P < 0.05 was considered as statistically significant. Also, to investigate publication bias, funnel plot and Egger test were used.

3. Results

In this study, all studies conducted over the impact of exercise on the blood pressure of older adults were examined systematically without any time constraint and based on the PRISMA instructions. In the preliminary search, 1386 papers were identified; eventually, 69 studies published from 1992 to March 2019 were included in the final analysis (Figure 1).

The total number of participants was 2272 in the preand postintervention groups for investigating systolic changes, and 2252, for investigating diastolic changes. The characteristics of the studies included in this systematic review are shown in Table 1.

Based on the available data, for final estimation of the effects of studies, standardized mean difference indices were used in the papers. In the studies that had reported standard deviation \pm mean, standardized mean difference index was used in the meta-analysis. The results obtained from meta-analysis showed that across the studies, heterogeneity in investigating systolic changes pre- and postintervention was obtained as $I^2 = 98.8$ and 98.6, while it was 99.2 and 98.6, respectively, for diastolic changes. Thus, for combination of studies and the final results, random method was used.

In order to investigate publication bias in the studies, Egger test was used. According to the results of this test, publication bias did not exist in investigating systolic changes pre- (P = 0.057) and postintervention (P = 0.713) and investigation of diastolic changes before (P = 0.943) and after the intervention (P = 0.522) (Figures 2–5).

Based on the results obtained from the meta-analysis, the standardized mean difference in examining the systolic changes pre- and postintervention was obtained as 137.8 ± 1.09 and 132.08 ± 0.96 , while, for diastolic changes, they were 80.3 ± 0.85 and 76.6 ± 0.56 , respectively. All of these suggest that exercise leads to diminished hypertension during advanced ages. In the cumulative figures, the standardized mean difference index, confidence interval of 95% in each study, and the final result of the index obtained from combining the studies have been shown. In this diagram, the weight of each study has been shown in the final combined value, where the size of each square is in proportion with the weight that the study has had in the meta-analysis. The horizontal line of each square represents the confidence interval of 95% (Figures 6–9).

According to Table 2 reporting the mean and standard deviation of pre-/postintervention in systolic and diastolic blood pressure changes in terms of different continents (Asia, Europe, Africa, and America), 21, 15, 1, and 32 papers were analyzed in the meta-analysis from Asia, Europe, Africa, and America, respectively. In all of the investigations in terms of the studies carried out in the mentioned continents, exercise led to reduced age-induced hypertension (Figures 10 and 11).

3.1. Standard Difference in Mean. In the study of the mean difference between systolic and diastolic blood pressure changes pre- and postintervention, it was reported that the difference between the systolic blood pressure changes pre- and postintervention was 0.65 ± 0.09 , which showed a decrease in the systolic blood pressure after exercise (Figure 12), and the difference between the diastolic blood pressure changes pre- and postintervention was 0.64 ± 0.3609 , which showed a decrease in the diastolic blood pressure after exercise (Figure 13).

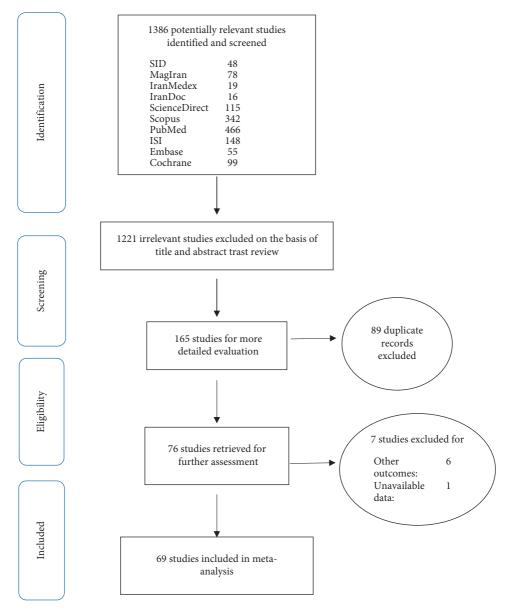


FIGURE 1: Flow diagram of study selection.

3.2. Subgroup Analysis Based on the Type of Exercise. Subgroup analysis based on the standard difference in mean before and after the intervention according to the type of exercise shows that resistance exercises reduces systolic (0.69 ± 0.1) and diastolic blood pressure (0.73 ± 0.16) more than aerobic exercise (Table 3).

4. Discussion

Hypertension is one of the most common diseases in industrial countries [82] and one of the important causes of atherosclerosis, which can cause different problems. In case the treatment is not received, 50% of patients with hypertension die because of coronary artery diseases and congestive heart failure, 33%, because of stroke, and 10–15%, due to renal complications. Further, other organs including the eyes and larger vessels can also be affected [83]. Thus, the aim of the present study is to determine the impact of exercise on the blood pressure of the older adults with hypertension across Asia, Europe, Africa, and America through meta-analysis.

Based on the results obtained from the meta-analysis here, the standardized mean difference in investigating the systolic changes before and after the intervention was 137.8 and 132.08, respectively, and, for diastolic changes, 80.3 and 76.6, respectively. All these suggest that exercise causes a significant decline in age-induced hypertension.

Chronic hypertension adversely affects the myocardial structure and function, inducing a concentric hypertrophy [84]. It seems that the hypertrophic cardiac response to the overpressure is an attempt for normalizing the ventricular walls, thus helping preserve the heart function when undergoing an increased hemodynamic load. This process of hypertrophy is called compensatory hypertrophy [85].

Author, year, and reference	Place of study	Sample	Mean ± SD of before SBP	Mean ± SD of after SBP	Mean ± SD of before DBP	Mean±SD of after DBP	Quality
	1						TT: -l-
Haidari, 2014, [17]	Iran	46	149.8 ± 4.63	144.9 ± 5.21	94.03 ± 3.66	85.9 ± 6.38	High
Amooali, 2015, [18]	Iran	20	132.8 ± 13.66	121.9 ± 9.17	77.6 ± 7.89	74.9 ± 3.66	High
Hosseiny, 2007, [8]	Iran	36	150.04 ± 12	149.5 ± 11	88.6±6	84.6±5	High
Tabara, 2007, [12]	Japan	40	136 ± 19	129 ± 17	75 ± 11	70 ± 10	High
Noroalahi, 2019,	Iran	18	140.33 ± 18.1	125.33 ± 15.1	83.94 ± 13.26	75.94 ± 11.33	High
[19]	IIuli	10	110.55 ± 10.1	125.55 ± 15.1	05.71±15.20	/5./1±11.55	111511
Faramarzi, 2012, [20]	Iran	20	131.13 ± 18.5	123.63 ± 11.1	86.48 ± 3.5	81.61 ± 1.8	High
Behjati Ardakani, 2018, [21]	Iran	24	131.1 ± 18	123.5 ± 11.1	86.4 ± 3.45	81.6 ± 1.8	High
Ghasemian, 2013, [22]	Iran	20	131.3 ± 10.5	121.63 ± 11	86.88 ± 3.5	80.1 ± 0.8	High
Kawasaki, 2011, [23]	Japan	35	136.6 ± 3.2	127 ± 2.7	81 ± 1.6	77.5 ± 1.3	Medium
Yin, 1998, [24]	Japan	25	137.0 ± 10	135 ± 14	80 ± 7	78 ± 8	Medium
Wong, 2019, [25]	Korea	52	146 ± 8.1	135 ± 1	88 ± 1	79 ± 1	High
Ruangthai, 2019, [26]	Thailand	13	141 ± 15.9	128.3 ± 15.4	84.1 ± 10	76.6 ± 7.5	High
Hamdorf, 1999, [27]	Australia	_	144.6 ± 4.9	139.8 ± 4.2	72.6 ± 2.2	74 ± 1.8	Medium
Lee, 2007, [28]	Taiwan	102	152 ± 10.5	139.0 ± 1.2 136.2 ± 16.7	83.5 ± 11.2	76.7 ± 12.3	High
Lim, 2015, [29]	Korea	102	129.4 ± 12.7	124.5 ± 9.2	80.8 ± 6.7	78.1 ± 6.7	High
Miura, 2015, [30]	Japan	45	129.4 ± 12.7 150 ± 9.1	124.5 ± 9.2 145 ± 8.9	83.5 ± 5.9	80.2 ± 6.2	High
Ohkubo, 2001, [31]	-	121	130 ± 9.1 134.2 ± 2.4	145 ± 0.9 127.6 ± 2.3	79.1 ± 1.3	76.9 ± 1.3	High
	Japan						0
Okumiya, 1996, [32]	Japan	21	136.4 ± 22.6	140.9 ± 22.8	78.1 ± 11.8	73.6 ± 11.2	High
Patil, 2015, [33]	India	30	146.87 ± 5.72	154.83 ± 6.33	74.2 ± 4.6	75.57 ± 5.68	High
Sunami, 1999, [34]	Japan	20	142 ± 22	140 ± 19	83 ± 11	81 ± 11	Medium
Thomas, 2005, [35]	Hong Kong	64	142 ± 17	142 ± 23	72 ± 13	72 ± 14	Medium
Pitsavos, 2011, [36]	Greece	52	131.5 ± 13.48	119.45 ± 6.87	83 ± 4.97	76.55 ± 4.88	High
Deiseroth, 2019, [37]	Switzerland	25	132 ± 15	128 ± 16	88 ± 10	78 ± 8	High
del Pozo-Cruz, 2012, [38]	España	21	140.55 ± 12.9	133.3 ± 20.26	86.1 ± 8.16	77.65 ± 6.64	High
Di Mauro, 1998, [39]	Italy	35	156.1 ± 15.3	154.4 ± 13.6	97 ± 7.7	94.7 ± 6.5	Medium
Leibovitz, 2005, [40]	Israel	25	131 ± 3	130 ± 2	73 ± 1	74 ± 1	High
Broman, 2006, [41]	Sweden	15	138 ± 9	138 ± 14	79 ± 8	75 ± 7	High
Chomiuk, 2013, [42]	Poland	44	134.61 ± 13.1	129.67 ± 11.7	75.67 ± 8.46	73.22 ± 8.04	High
Dimeo, 2012, [43]	Germany	24	138.4 ± 14.1	132.5 ± 10.8	78.3 ± 10.2	75 ± 9.8	High
	New						-
Faulkner, 2013, [44] Finucane, 2010, [45]	Zealand UK	36 50	141 ± 16 138.8 ± 15	136 ± 16 135.8 ± 12.5	82 ± 9 76.8 ± 8.6	80 ± 9 75.2 ± 9.1	Medium High
Kallinen, 2002, [46]	Finland	12	174 ± 15	155.0 ± 12.5 164 ± 16	83 ± 3	80 ± 2	Medium
Niederseer, 2011,	Austria	22	174 ± 13 123.1 ± 11.9	104 ± 10 122.6 ± 13.4	83 ± 3 82.4 ± 11.2	78.1 ± 9.5	High
[47]							-
Puggaard, 2000, [48]	Denmark	22	153 ± 37	161 ± 31	77 ± 16	84 ± 22	High
Sousa, 2013, [49]	Portugal	16	149.4 ± 25.1	148.5 ± 15.1	80.4 ± 7.6	82.8 ± 9.6	High
Westhoff, 2008, [13]	Germany	12	134 ± 20	127 ± 16.4	73 ± 21.6	67.1 ± 8.2	High
Peters, 2006, [50]	USA	10	146 ± 11	133 ± 14	90 ± 7	88 ± 11	High
Ditor, 2005, [51]	Canada	8	117 ± 20.3	114.8 ± 15	73.3 ± 10.6	71.8 ± 9.4	High
Cunha, 2011, [52]	Brazil	30	134.41 ± 17.5	126.81 ± 16.1	81.65 ± 10.57	76.35 ± 10.28	High
Cunha, 2012, [53]	Brazil	16	135.46 ± 7.42	126.93 ± 11.5	76.09 ± 6.49	72.84 ± 5.08	High
de Freitas Brito, 2014, [54]	Brazil	10	147 ± 4	146 ± 3	93 ± 4	91 ± 3	Medium
Júnior, 2019, [55]	Brazil	10	162.5 ± 11.2	160 ± 9.1	90 ± 5.9	80 ± 7.6	High
Lowenthal, 2004, [56]	USA	25	128 ± 3	126 ± 4	86 ± 4	78 ± 3	High
Moreira, 2016, [57]	Brazil	23	125.2 ± 9.3	114.7 ± 5.3	72 ± 6.8	71 ± 5.7	High
Mota, 2013, [58]	Brazil	32	134.5 ± 14.6	122.4 ± 13.8	80.9 ± 11.1	73.2 ± 9.5	High
Santana, 2011, [59]	Brazil	10	129 ± 17	122.1 ± 15.0 125 ± 14	77.0 ± 8	77 ± 7	High
Scher, 2010, [60]	Brazil	16	129 ± 17 130 ± 15	123 ± 11 128 ± 10	80 ± 8	76 ± 8	High
Toth, 2006, [5]	USA	50	130 ± 13 148.3 ± 22.8	120 ± 10 140.5 ± 27.2			Medium
1000, [0]	0.011		1 10.0 ± 22.0	1 10.0 - 27.2			meanni

Author, year, and reference	Place of study	Sample size	Mean±SD of before SBP	Mean±SD of after SBP	Mean±SD of before DBP	Mean±SD of after DBP	Quality
Chan, 2018, [61]	USA	82	142.39 ± 17.3	138.15 ± 17.3	81.83 ± 11.65	79.74 ± 10.51	High
Costa, 2019, [62]	Brazil	23	121.5 ± 11.2	119.2 ± 6.9	71.1 ± 8.4	70 ± 7.8	High
Nascimento, 2019, [63]	Brazil	27	126.04 ± 11.04	118.08 ± 9.09	72.95 ± 6.47	69.02 ± 6.54	High
Kling, 2019, [64]	USA	10	137.1 ± 22.3	124.7 ± 19.4	76.3 ± 12.2	76 ± 9.5	High
Leandro, 2019, [65]	Brazil	24	142.96 ± 20.91	124.12 ± 9.95	79.48 ± 19.48	61.68 ± 11.07	High
Braith, 1994, [66]	USA	19	120 ± 9	112 ± 11	75 ± 7	68 ± 6	Medium
Applegate, 1992, [67]	USA	56	145 ± 10	143 ± 12	88 ± 4	87 ± 2	Medium
Barone, 2009, [68]	USA	51	140 ± 8	134.7 ± 10.1	77 ± 7	73.4 ± 4.8	High
Bouchonville, 2014, [69]	USA	26	131.2 ± 11.7	130 ± 15.5	70.9 ± 8.3	68.8 ± 6.1	High
Dusek, 2008, [70]	USA	61	146.3 ± 5.5	145.3 ± 4.7	77.3 ± 7.1	77.6 ± 7.8	High
Gerage, 2013, [71]	Brazil	15	125 ± 8	120 ± 7	81 ± 6	80 ± 6	Medium
Goncalves, 2014, [72]	Brazil	17	126 ± 5.2	122.9 ± 4.4	80.9 ± 3.3	81.9 ± 4.4	High
Jessup, 1998, [73]	USA	11	134.7 ± 11.9	129.4 ± 11.5	76.9 ± 5.1	72.1 ± 7.4	High
Li, 2005, [74]	USA	54	135.02 ± 13.51	125.98 ± 13.1	78.59 ± 11.06	72.83 ± 10.63	Medium
Madden, 2010, [75]	Canada	20	143 ± 3	139 ± 4	85 ± 2	86 ± 2	High
Millar, 2008, [76]	Canada	25	122 ± 2.8	117 ± 2.8	70 ± 1.3	68 ± 1.6	High
Simons, 2006, [77]	USA	64	133 ± 12	128 ± 9	68 ± 6	70 ± 4	Medium
Wang, 2011, [78]	USA	180	131.9 ± 17.6	128.2 ± 17.8	68.7 ± 10.7	67.5 ± 9.4	High
Wood, 2001, [79]	USA	11	153.3 ± 10.8	146.6 ± 15.6	81.3 ± 7.2	70.9 ± 8.2	High
Yassine, 2009, [80]	USA	24	135.6 ± 11.2	121.1 ± 11.2	81.6 ± 11.2	71.6 ± 9.6	High
Mortimer, 2011, [81]	South Africa	15	130.6 ± 6.4	123 ± 9.1	83.88 ± 4.1	78 ± 5.1	High

TABLE 1: Continued.

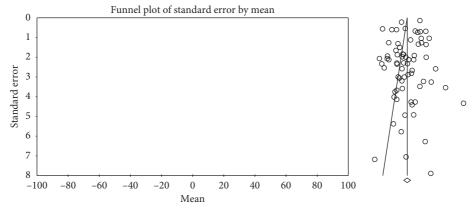


FIGURE 2: Funnel plot obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for systolic changes preintervention.

Physical exercise leads to proper adaptation in the cardiovascular system, thereby reducing heart rate, resting heart rate, and increased left ventricle filling, venous return, and stroke volume [86]. In a research by Hinderliter et al., they concluded that after a six-month aerobic exercise program, the left ventricle hypertrophy of patients with hypertension diminished significantly. This reduction of hypertrophy was associated with reduced blood pressure and weight loss of patients. These researchers also found that weight loss is an important factor in mitigating the left ventricle hypertrophy [87]. In addition, Kokkinos et al. observed that aerobic exercise can lead to diminished hypertrophy in hypertensive individuals [88]. Notwithstanding, following aerobic exercise, eccentric contractions occur, whereby the ventricle volume grows; hypertrophy in the ventricle is also possible to occur though to a little extent (in healthy subjects). However, when the subjects are hypertensive, since they have pathologic hypertrophy in the ventricle wall, the mechanism is different. This means that, upon physiological increase in the ventricle dimensions (resulting from aerobic activity) and according to Frank-Starling law, the stroke volume increases and thus pathologic hypertrophy of the ventricular wall diminishes [89].

The present study indicates the results of mean and standard deviation before and after the intervention in

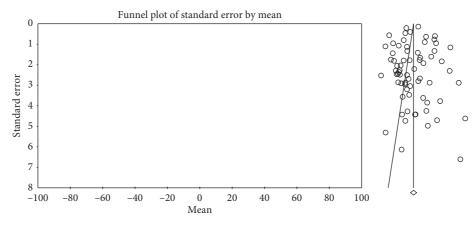


FIGURE 3: Funnel plot obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for systolic changes postintervention.

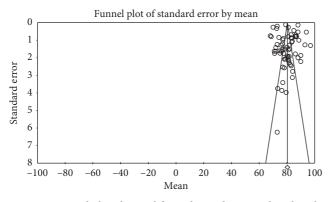


FIGURE 4: Funnel plot obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for diastolic changes preintervention.

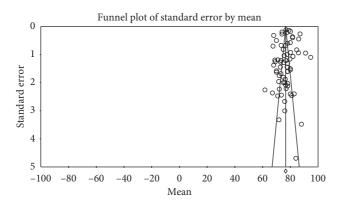


FIGURE 5: Funnel plot obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for diastolic changes postintervention.

changes of systolic and diastolic blood pressure for different continents. These changes have been reported for Asia, Europe, Africa, and America. In all of the investigations conducted across different continents, it was reported that exercise leads to significant reduction of age-induced hypertension. The real mechanism of postactivity hypotension is unknown, and most probably the mechanism is multifactorial. Studies suggest that acute hypotension is mostly associated with diminished peripheral resistance of vessels rather than cardiac output [90]. According to animal and human studies, diminished sympathetic activity occurs after physical exercise [91–93]. Changes in reactivity of vessels are associated with reduced sympathetic conduction for vessel resistance and release of local vasodilator substances (e.g., nitric oxide) in response to muscle contraction and increased blood flow to the muscles. After a heavy physical exercise, reactivity of vessels to alpha-adrenergic stimulation diminishes [94]. The local release of nitric oxide, prostaglandins, and adenosine increases during physical activity, thus facilitating peripheral postactivity vasodilation [95].

Postexercise hypertension is a result of physical activity, and daily changes of blood pressure do not affect its reduction. The density and volume of physical exercise play an important role in hemodynamic and thermal regulation as well as regulation of neurological reactions of the body during activity [96]. Also, Syme et al. reported that the intensity of physical activity influences the duration of hypotension and has a direct relationship with it [97]. Studies show that possibly factors such as diminished plasma volume, increased vasodilation substances, changes in the hormones affecting blood pressure including vasopressin, angiotensin 2 and renin, and peripheral vasodilation resulting from elevated central temperature are effective in inducing hypotension [98].

Use of physical exercise in the long run functions as a no pharmacological method for blood pressure reduction at rest or during daily physical activities [99]. In the elderly, exercise may be a more suitable method for controlling blood pressure because of low cost and not interfering with other treatments. Through exercise and physical activity, the adverse physiological effects that occur with the aging can be mitigated and the quality of life can be improved [100]. One session of mild or moderate intensity exercise can lead to blood pressure fall after exercise in hypertensive individuals, which is called postexercise hypotension [101].

In the human, postexercise hypotension is observed in response to several types of exercise in which large muscles

Study name			Statist	ics for eac	h study			Mean and 95% CI
		Standard		Lower	Upper	7 1	D 1	
	Mean	error	Variance	limit	limit	Z value	P value	
Haidari	149.800	0.683	0.466	148.462	151.138	219.437	0.000	
Amooali Hosseiny	132.800 150.040	3.054 2.000	9.330 4.000	126.813 146.120	138.787 153.960	43.477 75.020	0.000 0.000	
Tabara	136.000	3.004	9.025	130.112	141.888	45.271	0.000	
Noroalahi	140.330	4.269	18.221	131.964	148.696	32.875	0.000	
Faramarzi	131.130	4.137	17.113	123.022	139.238	31.699	0.000	
Behjati Ardakani	131.100	3.674	13.500	123.899	138.301	35.681	0.000	
Ghasemian Kawasaki	131.300 136.600	2.348 0.541	5.513 0.293	126.698 135.540	135.902	55.923 252.543	0.000 0.000	
Yin	130.000	2.000	4.000	133.080	137.660 140.920	68.500	0.000	
Wong	146.000	0.139	0.019	145.728	146.272	1052.821	0.000	
Ruangthai	141.000	4.410	19.447	132.357	149.643	31.974	0.000	
Hamdorf	144.600	0.739	0.546	143.152	146.048	195.749	0.000	
Lee	152.000	1.040	1.081	149.962	154.038	146.202	0.000	
Lim	129.400 150.000	4.016	16.129 1.840	121.529	137.271	32.220	0.000	
Miura Ohkubo	130.000	1.357 0.218	0.048	147.341 133.772	152.659 134.628	110.575 615.083	0.000 0.000	
Okumiya	136.400	4.932	24.322	126.734	146.066	27.658	0.000	
Patil	146.870	1.044	1.091	144.823	148.917	140.636	0.000	
Sunami	142.000	4.919	24.200	132.358	151.642	28.866	0.000	
Thomas	142.000	2.125	4.516	137.835	146.165	66.824	0.000	
Pitsavos	131.500	1.869	3.494	127.836	135.164	70.346	0.000	
Deiseroth del Pozo-Cruz	132.000 140.550	3.000 2.815	9.000 7.924	126.120 135.033	137.880 146.067	44.000 49.929	0.000 0.000	
Di Mauro	156.100	2.586	6.688	151.031	161.169	60.359	0.000	
Leibovitz	131.000	0.600	0.360	129.824	132.176	218.333	0.000	
Broman	138.000	2.324	5.400	133.445	142.555	59.386	0.000	
Chomiuk	134.610	1.976	3.906	130.736	138.484	68.108	0.000	
Dimeo	138.400	2.878	8.284	132.759	144.041	48.086	0.000	
Faulkner Finucane	141.000 138.800	2.667 2.121	7.111 4.500	135.773 134.642	146.227 142.958	52.875 65.431	0.000 0.000	
Kallinen	174.000	4.330	18.750	165.513	142.938	40.184	0.000	
Niederseer	123.100	2.537	6.437	118.127	128.073	48.520	0.000	
Puggaard	153.000	7.888	62.227	137.539	168.461	19.396	0.000	
Sousa	149.400	6.275	39.376	137.101	161.699	23.809	0.000	
Westhoff	134.000	5.774	33.333	122.684	145.316	23.209	0.000	
Peters Ditor	146.000 117.000	3.479 7.177	12.100 51.511	139.182 102.933	152.818 131.067	41.972 16.302	0.000 0.000	
Cunha	134.410	3.195	10.208	128.148	140.672	42.068	0.000	
Cunha1	135.460	1.855	3.441	131.824	139.096	73.024	0.000	
de Freitas Brito	147.000	1.265	1.600	144.521	149.479	116.214	0.000	
Juior	162.500	3.542	12.544	155.558	169.442	45.881	0.000	
Lowenthal	128.000	0.600	0.360	126.824	129.176	213.333	0.000	
Moreira Mota	125.200 134.500	1.939 2.581	3.760 6.661	121.399 129.441	129.001 139.559	64.563 52.113	0.000 0.000	
Santana	129.000	5.376	28.900	118.463	139.537	23.996	0.000	
Scher	130.000	3.750	14.063	122.650	137.350	34.667	0.000	
Toth	148.300	3.224	10.397	141.980	154.620	45.993	0.000	
Chan	142.390	1.912	3.654	138.643	146.137	74.489	0.000	
Costa	121.500	2.335	5.454	116.923	126.077	52.026	0.000	
Nascimento Kling	126.040 137.100	2.125 7.052	4.514 49.729	121.876 123.279	130.204 150.921	59.323 19.442	0.000 0.000	
Leandro	137.100	4.268	49.729 18.218	125.279	150.921	19.442 33.494	0.000	
Braith	120.000	2.065	4.263	115.953	124.047	58.119	0.000	
Applegate	145.000	1.336	1.786	142.381	147.619	108.508	0.000	
Barone	140.000	1.120	1.255	137.804	142.196	124.975	0.000	
Bouchonville	131.200	2.295	5.265	126.703	135.697	57.179	0.000	
Dusek	146.300 125.000	0.704	0.496	144.920	147.680	207.753	0.000	
Gerage Goncalves	125.000 126.000	2.066 1.261	4.267 1.591	120.952 123.528	129.048 128.472	60.515 99.906	0.000 0.000	
Jessup	134.700	3.588	12.874	127.668	141.732	37.542	0.000	
Li	135.020	1.838	3.380	131.417	138.623	73.441	0.000	
Madden	143.000	0.671	0.450	141.685	144.315	213.172	0.000	
Millar	122.000	0.560	0.314	120.902	123.098	217.857	0.000	
Simons	133.000	1.500	2.250	130.060	135.940	88.667	0.000	
Wang Wood	131.900 153.300	1.312 3.256	1.721 10.604	129.329 146.918	134.471 159.682	100.547 47.078	0.000 0.000	
Yassine	135.600	2.286	5.227	146.918	139.082	47.078 59.313	0.000	
Mortimer	130.600	1.652	2.731	127.361	133.839	79.033	0.000	
	137.834	1.095	1.199	135.688	139.980	125.901	0.000	
								-210.50 -105.25 0.00 105.25 210.50 Favours A Favours B

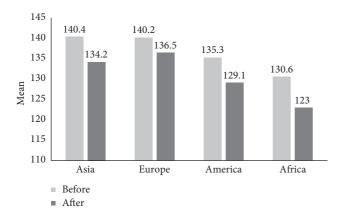
FIGURE 6: Cumulative diagram obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for systolic changes preintervention.

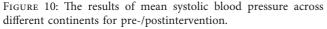
		Standard		T.	TT			
	Mean	error	Variance	Lower limit	Upper limit	Z value	P value	
Haidari	144.900	0.768	0.590	143.394	146.406	188.629	0.000	
Amooali	121.900	2.050	4.204	117.881	125.919	59.450	0.000	
Iosseiny	149.500	1.833	3.361	145.907	153.093	81.545	0.000	
abara	129.000	2.688	7.225	123.732	134.268	47.992	0.000	
loroalahi	125.330	3.564	12.701	118.345	132.315	35.167	0.000	
aramarzi	123.630	2.484	6.172	118.761	128.499	49.765	0.000	
ehjati Ardakani	123.500	2.266	5.134	119.059	127.941 126.451	54.507	0.000	
hasemian lawasaki	121.630 127.000	2.460 0.456	6.050 0.208	116.809 126.106	126.451 127.894	49.450 278.275	0.000 0.000	
in	135.000	2.800	7.840	129.512	140.488	48.214	0.000	
Vong	135.000	0.139	0.019	134.728	135.272	973.499	0.000	
uangthai	128.300	4.271	18.243	119.929	136.671	30.038	0.000	
amdorf	139.800	0.633	0.401	138.559	141.041	220.792	0.000	
ee	136.200	1.654	2.734	132.959	139.441	82.368	0.000	
im	124.500	2.909	8.464	118.798	130.202	42.794	0.000	
liura	145.000	1.327	1.760	142.400	147.600	109.291	0.000	
hkubo	127.600	0.209	0.044	127.190	128.010	610.261	0.000	
kumiya	140.900	4.975	24.754	131.148	150.652	28.320	0.000	
atil	154.830	1.156	1.336	152.565	157.095	133.971	0.000	
ınami	140.000	4.249	18.050	131.673	148.327	32.953	0.000	
iomas	142.000	2.875	8.266	136.365	147.635	49.391	0.000	
itsavos	119.450	0.953	0.908	117.583	121.317	125.381	0.000	
eiseroth	128.000	3.200	10.240	121.728	134.272	40.000	0.000	
el Pozo-Cruz	133.300	4.421	19.546	124.635	141.965	30.151	0.000	
i Mauro	154.400 130.000	2.299	5.285	149.894 129.216	158.906 130.784	67.165	0.000 0.000	
eibovitz roman	130.000	0.400 3.615	0.160 13.067	129.216	130.784 145.085	325.000 38.177	0.000	
homiuk	129.670	1.777	3.159	126.186	133.154	72.954	0.000	
imeo	132.500	2.205	4.860	128.179	136.821	60.103	0.000	
ulkner	136.000	2.667	7.111	130.773	141.227	51.000	0.000	
inucane	135.800	1.768	3.125	132.335	139.265	76.820	0.000	
allinen	164.000	4.619	21.333	154.947	173.053	35.507	0.000	
iederseer	122.600	2.857	8.162	117.001	128.199	42.914	0.000	
uggaard	161.000	6.609	43.682	148.046	173.954	24.360	0.000	
ousa	148.500	3.775	14.251	141.101	155.899	39.338	0.000	
/esthoff	127.000	4.734	22.413	117.721	136.279	26.826	0.000	
eters	133.000	4.427	19.600	124.323	141.677	30.042	0.000	
itor	114.800	5.303	28.125	104.406	125.194	21.647	0.000	
unha	126.810	2.950	8.705	121.027	132.593	42.981	0.000	
unhal	126.930	2.878	8.280	121.290	132.570	44.111	0.000	
e Freitas Brito	146.000	0.949	0.900	144.141	147.859	153.898	0.000	
inior	160.000	2.878	8.281	154.360	165.640	55.600	0.000	
owenthal Ioreira	126.000	0.800	0.640	124.432	127.568	157.500	0.000	
	114.700 122.400	1.105	1.221	112.534 117.619	116.866	103.789	0.000 0.000	
lota intana	122.400	2.440 4.427	5.951 19.600	116.323	127.181 133.677	50.174 28.235	0.000	
:her	123.000	2.500	6.250	123.100	132.900	51.200	0.000	
oth	140.500	3.847	0.230 14.797	132.961	132.900 148.039	36.525	0.000	
han	138.150	1.920	3.688	134.386	140.055	71.938	0.000	
osta	119.200	1.439	2.070	116.380	122.020	82.850	0.000	
ascimento	118.080	1.749	3.060	114.651	121.509	67.499	0.000	
ling	124.700	6.135	37.636	112.676	136.724	20.327	0.000	
andro	124.120	2.031	4.125	120.139	128.101	61.112	0.000	
aith	112.000	2.524	6.368	107.054	116.946	44.382	0.000	
pplegate	143.000	1.604	2.571	139.857	146.143	89.176	0.000	
arone	134.700	1.414	2.000	131.928	137.472	95.243	0.000	
ouchonville	130.000	3.040	9.240	124.042	135.958	42.766	0.000	
usek	145.300	0.602	0.362	144.121	146.479	241.453	0.000	
erage	120.000	1.807	3.267	116.458	123.542	66.394	0.000	
oncalves	122.900	1.067	1.139	120.808	124.992	115.166	0.000	
ssup	129.400	3.467	12.023	122.604	136.196	37.319	0.000	
. 1.1	125.980	1.792	3.212	122.467	129.493	70.293	0.000	
adden	139.000	0.894	0.800	137.247	140.753	155.407	0.000	
illar	117.000	0.560	0.314	115.902	118.098	208.929	0.000	
mons	128.000	1.125	1.266	125.795	130.205	113.778	0.000	
'ang 'ood	128.200	1.327	1.760	125.600	130.800	96.628 31.168	0.000	
/ood	146.600	4.704	22.124	137.381	155.819	31.168	0.000	
assine	121.100 123.000	2.286	5.227	116.619	125.581	52.970	0.000 0.000	
lortimer	123.000	2.350 0.969	5.521 0.939	118.395 130.190	127.605 133.989	52.349 136.278	0.000	
	152.009	0.707	0.737	150.170	155.707	130.270	0.000	

FIGURE 7: Cumulative diagram obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for systolic changes postintervention.

Study name			Statistic	s for each	study			Mean and 95% CI
		Standard		Lower	Upper			
	Mean	error	Variance	limit	limit	Z value	P value	
Haidari	94.030	0.540	0.291	92.972	95.088	174.247	0.000	
Amooali	77.600	1.764	3.113	74.142	81.058	43.985	0.000	
Hosseiny	88.600	1.000	1.000	86.640	90.560	88.600	0.000	
Tabara	75.000	1.739	3.025	71.591	78.409	43.122	0.000	
Noroalahi	83.940	3.125	9.768	77.814	90.066	26.857	0.000	
Faramarzi	86.480	0.783	0.613	84.946	88.014	110.500	0.000	
Behjati Ardakani	86.400	0.704	0.496	85.020	87.780	122.687	0.000	
Ghasemian	86.880	0.783	0.613	85.346	88.414	111.011	0.000	
Kawasaki Vin	81.000	0.270	0.073	80.470	81.530	299.502	0.000	
Yin Wong	80.000 88.000	1.400 0.139	1.960 0.019	77.256 87.728	82.744 88.272	57.143 634.577	0.000 0.000	
Ruangthai	84.100	2.774	7.692	78.664	89.536	30.323	0.000	
Hamdorf	72.600	0.332	0.110	71.950	73.250	218.897	0.000	
Lee	83.500	1.109	1.230	81.326	85.674	75.295	0.000	
Lim	80.800	2.119	4.489	76.647	84.953	38.136	0.000	
Miura	83.500	0.880	0.774	81.776	85.224	94.938	0.000	
Ohkubo	79.100	0.118	0.014	78.868	79.332	669.308	0.000	
Okumiya	78.100	2.575	6.630	73.053	83.147	30.330	0.000	
Patil	74.200	0.840	0.705	72.554	75.846	88.350	0.000	
Sunami	83.000	2.460	6.050	78.179	87.821	33.744	0.000	
Thomas	72.000	1.625	2.641	68.815	75.185	44.308	0.000	
Pitsavos	83.000	0.689	0.475	81.649	84.351	120.427	0.000	
Deiseroth	88.000	2.000	4.000	84.080	91.920	44.000	0.000	
del Pozo-Cruz	86.100	1.781	3.171	82.610	89.590	48.353	0.000	
Di Mauro	97.000	1.302	1.694	94.449	99.551	74.527	0.000	
Leibovitz Broman	73.000	0.200	0.040	72.608 74.952	73.392	365.000	0.000	/ / / ∎7 /
Chomiuk	79.000 75.670	2.066 1.275	4.267 1.627	73.170	83.048 78.170	38.246 59.331	0.000 0.000	
Dimeo	78.300	2.082	4.335	74.219	82.381	37.607	0.000	
Faulkner	82.000	1.500	2.250	79.060	84.940	54.667	0.000	
Finucane	76.800	1.216	1.479	74.416	79.184	63.146	0.000	
Kallinen	83.000	0.866	0.750	81.303	84.697	95.840	0.000	
Niederseer	82.400	2.388	5.702	77.720	87.080	34.508	0.000	
Puggaard	77.000	3.411	11.636	70.314	83.686	22.573	0.000	
Sousa	80.400	1.900	3.610	76.676	84.124	42.316	0.000	
Westhoff	73.000	6.235	38.880	60.779	85.221	11.707	0.000	
Peters	90.000	2.214	4.900	85.661	94.339	40.658	0.000	
Ditor	73.300	3.748	14.045	65.955	80.645	19.559	0.000	
Cunha	81.650	1.930	3.724	77.868	85.432	42.310	0.000	
Cunhal	76.090	1.623	2.633	72.910	79.270	46.897	0.000	
de Freitas Brito	93.000	1.265	1.600	90.521	95.479	73.523	0.000	
Junior Lowenthal	90.000 86.000	1.866 0.800	3.481 0.640	86.343 84.432	93.657 87.568	48.238 107.500	0.000 0.000	
Moreira	72.000	1.418	2.010	69.221	74.779	50.779	0.000	
Mota	80.900	1.962	3.850	77.054	84.746	41.229	0.000	
Santana	77.000	2.530	6.400	72.042	81.958	30.437	0.000	
Scher	80.000	2.000	4.000	76.080	83.920	40.000	0.000	
Chan	81.830	1.287	1.655	79.308	84.352	63.605	0.000	
Costa	71.100	1.752	3.068	67.667	74.533	40.593	0.000	
Nascimento	72.950	1.245	1.550	70.510	75.390	58.587	0.000	
Kling	76.300	3.858	14.884	68.739	83.861	19.777	0.000	
Leandro	79.480	3.976	15.811	71.687	87.273	19.988	0.000	
Braith	75.000	1.606	2.579	71.852	78.148	46.702	0.000	
Applegate	88.000	0.535	0.286	86.952	89.048	164.633	0.000	
Barone	77.000	0.980	0.961	75.079	78.921	78.556	0.000	
Bouchonville	70.900	1.628	2.650	67.710	74.090	43.557	0.000	
Dusek	77.300	0.909	0.826	75.518	79.082	85.033	0.000	
Gerage	81.000	1.549	2.400	77.964	84.036	52.285	0.000	
Goncalves	80.900	0.800	0.641	79.331	82.469	101.079	0.000	
Jessup Li	76.900 78.590	1.538	2.365	73.886 75.640	79.914 81.540	50.009	0.000	
		1.505	2.265	75.640 84.123	81.540 85.877	52.217 190.066	0.000	
Madden Millar	85.000 70.000	0.447 0.260	0.200 0.068	84.123 69.490	85.877 70.510	190.066 269.231	0.000 0.000	
Simons	68.000		0.068	69.490 66.530	70.510 69.470	269.231 90.667	0.000	
Wang	68.700	0.750 0.798	0.636	67.137	70.263	90.887 86.141	0.000	
Wood	81.300	2.171	4.713	77.045	85.555	37.450	0.000	
Yassine	81.600	2.171	5.227	77.119	86.081	35.693	0.000	
Mortimer	83.880	1.059	1.121	81.805	85.955	79.236	0.000	
	80.361	0.852	0.726	78.691	82.032	94.309	0.000	
	22.001						2.000	
								-210.50 -105.25 0.00 105.25 210.50

FIGURE 8: Cumulative diagram obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for diastolic changes preintervention.


Study name			Statisti	cs for each	study			Mean and 95% CI
	Mean	Standard error	Variance	Lower limit	Upper limit	Z value	P value	
Haidari	85.900	0.941	0.885	84.056	87.744	91.317	0.000	
Amooali	74.900	0.818	0.670	73.296	76.504	91.520	0.000	
Hosseiny	84.600	0.833	0.694	82.967	86.233	101.520	0.000	
Tabara	70.000	1.581	2.500	66.901	73.099	44.272	0.000	
Noroalahi	75.940	2.671	7.132	70.706	81.174	28.437	0.000	
Faramarzi	81.610	0.402	0.162	80.821	82.399	202.762	0.000	
Behjati Ardakani	81.600	0.367	0.135	80.880	82.320	222.087	0.000	
Ghasemian	80.100	0.179	0.032	79.749	80.451	447.773	0.000	
Kawasaki	77.500	0.220	0.048	77.069	77.931	352.689	0.000	
ľin	78.000	1.600	2.560	74.864	81.136	48.750	0.000	
Wong	79.000	0.139	0.019	78.728	79.272	569.677	0.000	
Ruangthai	76.600	2.080	4.327	72.523	80.677	36.825	0.000	
Hamdorf	74.000	0.271	0.074	73.468	74.532	272.700	0.000	
.ee	76.700	1.218	1.483	74.313	79.087	62.978	0.000	
Lim	78.100	2.119	4.489	73.947	82.253	36.862	0.000	
Miura	80.200	0.924	0.854	78.389	82.011	86.774	0.000	
Dhkubo	76.900	0.118	0.014	76.668	77.132	650.692	0.000	
Okumiya	73.600	2.444	5.973	68.810	78.390	30.114	0.000	
Patil	75.570	1.037	1.075	73.537	77.603	72.872	0.000	
Sunami	81.000	2.460	6.050	76.179	85.821	32.931	0.000	
Thomas	72.000	1.750	3.063	68.570	75.430	41.143	0.000	
Pitsavos	76.550	0.677	0.458	75.224	77.876	113.117	0.000	
Deiseroth	78.000	1.600	2.560	74.864	81.136	48.750	0.000	
lel Pozo-Cruz	77.650	1.449	2.100	74.810	80.490	53.590	0.000	
Di Mauro	94.700	1.099	1.207	92.547	96.853	86.193	0.000	
leibovitz	74.000	0.200	0.040	73.608	74.392	370.000	0.000	
Broman	75.000	1.807	3.267	71.458	78.542	41.496	0.000	
Chomiuk	73.220	1.212	1.469	70.844	75.596	60.409	0.000	
Dimeo	75.000	2.000	4.002	71.079	78.921	37.492	0.000	
Faulkner	80.000	1.500	2.250	77.060	82.940	53.333	0.000	
inucane	75.200	1.287	1.656	72.678	77.722	58.433	0.000	
Kallinen	80.000	0.577	0.333	78.868	81.132	138.564	0.000	
Niederseer	78.100	2.025	4.102	74.130	82.070	38.560	0.000	
Puggaard	84.000	4.690	22.000	74.807	93.193	17.909	0.000	
Sousa	82.800	2.400	5.760	78.096	87.504	34.500	0.000	
Westhoff	67.100	2.367	5.603	62.460	71.740	28.346	0.000	
Peters	88.000	3.479	12.100	81.182	94.818	25.298	0.000	
Ditor	71.800	3.323	11.045	65.286	78.314	21.604	0.000	
Cunha	76.350	1.877	3.523	72.671	80.029	40.680	0.000	
Cunha1	72.840	1.270	1.613	70.351	75.329	57.354	0.000	
le Freitas Brito	91.000	0.949	0.900	89.141	92.859	95.922	0.000	
unior	80.000	2.403	5.776	75.290	84.710	33.287	0.000	
.owenthal	78.000	0.600	0.360	76.824	79.176	130.000	0.000	
Aoreira	71.000	1.189	1.413	68.671	73.329	59.738	0.000	
vlota	73.200	1.679	2.820	69.908	76.492	43.588	0.000	
antana	77.000	2.214	4.900	72.661	81.339	34.785	0.000	
cher	76.000	2.000	4.000	72.080	79.920	38.000	0.000	
Chan	79.740	1.161	1.347	77.465	82.015	68.704	0.000	
Costa	70.000	1.626	2.645	66.812	73.188	43.040	0.000	
Vascimento	69.020	1.259	1.584	66.553	71.487	54.838	0.000	
Cling	76.000	3.004	9.025	70.112	81.888	25.298	0.000	
.eandro	61.680	2.260	5.106	57.251	66.109	27.296	0.000	
Braith	68.000	1.376	1.895	65.302	70.698	49.401	0.000	
Applegate	87.000	0.267	0.071	86.476	87.524	325.524	0.000	■_
Barone	73.400	0.672	0.452	72.083	74.717	109.204	0.000	
Bouchonville	68.800	1.196	1.431	66.455	71.145	57.510	0.000	
Dusek	77.600	0.999	0.997	75.643	79.557	77.702	0.000	
Gerage	80.000	1.549	2.400	76.964	83.036	51.640	0.000	
Goncalves	81.900	1.067	1.139	79.808	83.992	76.746	0.000	
essup	72.100	2.231	4.978	67.727	76.473	32.315	0.000	
i	72.830	1.447	2.093	69.995	75.665	50.347	0.000	
Madden	86.000	0.447	0.200	85.123	86.877	192.302	0.000	
Millar	68.000	0.320	0.102	67.373	68.627	212.500	0.000	
Simons	70.000	0.500	0.250	69.020	70.980	140.000	0.000	
Wang	67.500	0.701	0.491	66.127	68.873	96.341	0.000	
Nood	70.900	2.472	6.113	66.054	75.746	28.677	0.000	
lassine	71.600	1.960	3.840	67.759	75.441	36.538	0.000	
Mortimer	78.000	1.317	1.734	75.419	80.581	59.234	0.000	
	76.650	0.563	0.317	75.546	77.755	136.036	0.000	
	, 0.050	5.505	0.01/	, 5.540		100.000	0.000	
								-210.50 -105.25 0.00 105.25


FIGURE 9: Cumulative diagram obtained from the studies introduced in the meta-analysis based on the standardized mean difference index for diastolic changes postintervention.

12

Blood pressure changes	Continents	Number of articles	I^2	Sample size	Egger test	Mean ± SD
	Asia	21	99.2	806	0.706	140.4 ± 1.7
Swatala (hafana intervention)	Europe	15	94.1	411	0.051	140.2 ± 2.4
Systole (before intervention)	America	32	98	1040	0.503	135.3 ± 1.8
	Africa	1	0	15	—	130.6 ± 1.6
	Asia	21	99	806	0.627	134.2 ± 1.8
Swatala (after intermention)	Europe	15	96.1	411	0.119	136.5 ± 2.4
Systole (after intervention)	America	32	98.6	1040	0.793	129.1 ± 2.1
	Africa	1	0	15	—	123 ± 2.3
	Asia	21	99.5	806	0.990	81.8 ± 1.3
Directolo (hofono intermention)	Europe	15	98	411	0.051	81.2 ± 2.01
Diastole (before intervention)	America	31	98.6	990	0.138	78.7 ± 1.5
	Africa	1	0	15	—	83.8 ± 1.05
	Asia	21	97.7	806	0.797	78.1 ± 0.56
Directolo (often intervention)	Europe	15	97	411	0.111	77.9 ± 1.4
Diastole (after intervention)	America	31	99.1	990	0.207	75.06 ± 1.6
	Africa	1	0	15	—	78 ± 1.3

TABLE 2: The mean and standard deviation of pre-/postintervention in systolic and diastolic blood pressure changes across different continents.

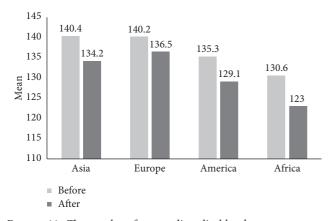


FIGURE 11: The results of mean diastolic blood pressure across different continents for pre-/postintervention.

are active including jogging, cycling, running, and swimming [102].

Through exercise, the oxidation capacity of muscles increases, whereby the aerobic biochemical system is

stimulated to create adaptation. All these result in enhanced oxygen uptake in the body. Some diseases cause inhibition of oxygen in any of the above stages and reduce the functional capacity. However, aerobic exercises are able to create physiological adaptation in the efficiency of the aerobic energy system. They also enhance the functional ability of the person and improve the functional capacity even under progression conditions of the disease. Other advantages of regular exercise in this group of patients include increased power, improved body posture, diminished fatigue, improved mood, increased self-confidence, and sense of well-being. Doing physical exercise increases the persons' independence thereby leading to improved quality of life [103, 104].

Since these methods are easy to learn and possible to perform for almost all patients and there is no need to special equipment or cost, and even the patient can perform them in a lying position, patients can learn these methods easily and do them at home. By benefiting from the impacts of exercise methods such as greater blood perfusion to the muscles and reduction of stress and anxiety, their hypertension would diminish and their performance would be boosted. Also, through training patients on these methods and supervision on the way they should be practiced, the disturbing symptoms of this disease can be mitigated. Thus, by educating this method to both the healthcare team and patients, effective steps can be taken to alleviate this disorder.

It is recommended that relevant specialists benefit from regular aerobic exercise as a complementary treatment alongside pharmacotherapy to help patients with hypertension.

One of the limitations of the present research was completing the sheet of doing the exercise at home by the patients in the papers introduced to this meta-analysis, which may have been affected by the psychological status or inadequate care of the samples. Nevertheless, in some papers, checking whether exercise was done was followed up through a weekly in-person meeting with the patients.

laidari mooali losseiny abara loroalahi aramarzi ehjati Ardakani ihasemian awasaki in Vong	Std diff in means 0.994 0.937 0.047 0.388	Standard error 0.221	Variance	Lower	Upper			
mooali osseiny ubara oroalahi rramarzi ehjati Ardakani hasemian awasaki n yong	0.937 0.047	0.221		limit	limit	Z value	P value	
seiny ara oalahi ımarzi jati Ardakani ısemian vasaki ng	0.047		0.049	0.561	1.427	4.498	0.000	
yara roalahi amarzi njati Ardakani asemian wasaki u ng		0.333	0.111	0.284	1.590	2.813	0.005	
roalahi ramarzi hjati Ardakani asemian wasaki 1 ng	0.388	0.236	0.056	-0.415	0.509	0.199	0.842	
amarzi njati Ardakani asemian wasaki 1 ng		0.226	0.051	-0.054	0.831	1.720	0.085	
hjati Ardakani lasemian wasaki 1 ong	0.899	0.350	0.122	0.214	1.585	2.571	0.010	
asemian wasaki ng	0.492	0.321	0.103	-0.138	1.121	1.531	0.126	
vasaki ng	0.508	0.293	0.086	-0.067	1.083	1.733	0.083	
ng	0.899	0.332	0.110	0.249	1.550	2.710	0.007	
ng	3.243	0.364	0.132	2.530	3.955	8.917	0.000	
0	0.164	0.283	0.080	-0.391	0.720	0.580	0.562	
	11.000	0.788	0.620	9.456	12.544	13.968	0.000	- I Ŧ I
angthai	0.811	0.408	0.167	0.012	1.611	1.988	0.047	
ndorf	1.052	0.227	0.052	0.606	1.498	4.624	0.000	
	1.133	0.151	0.023	0.837	1.428	7.509	0.000	
n	0.442	0.453	0.205	-0.445	1.329	0.976	0.329	
ura	0.556	0.215	0.046	0.134	0.977	2.586	0.010	
kubo	2.808	0.181	0.033	2.453	3.163	15.500	0.000	
umiya	-0.198	0.309	0.096	-0.805	0.408	-0.641	0.522	
il	-1.319	0.285	0.081	-1.878	-0.761	-4.631	0.000	
ami	0.097	0.316	0.100	-0.523	0.717	0.308	0.758	
omas	0.000	0.177	0.031	-0.346	0.346	0.000	1.000	1 7 1
avos	1.126	0.211	0.045	0.713	1.540	5.336	0.000	
seroth	0.258	0.284	0.081	-0.299	0.815	0.908	0.364	
Pozo-Cruz	0.427	0.312	0.097	-0.185	1.039	1.368	0.171	
Mauro	0.117	0.239	0.057	-0.351	0.586	0.491	0.624	
bovitz	0.392	0.286	0.082	-0.167	0.952	1.374	0.170	
oman	0.000	0.365	0.133	-0.716	0.716	0.000	1.000	_
omiuk	0.396	0.215	0.046	-0.026	0.818	1.841	0.066	
neo	0.470	0.293	0.086	-0.104	1.043	1.605	0.108	
ılkner	0.313	0.237	0.056	-0.152	0.777	1.318	0.188	
ucane	0.217	0.201	0.040	-0.176	0.610	1.083	0.279	
linen	0.645	0.419	0.175	-0.176	1.466	1.540	0.124	
derseer	0.039	0.302	0.091	-0.552	0.630	0.131	0.896	- I - F - I
gaard	-0.234	0.303	0.092	-0.827	0.359	-0.775	0.439	
isa	0.043	0.354	0.125	-0.650	0.736	0.123	0.902	
sthoff	0.383	0.412	0.170	-0.425	1.190	0.929	0.353	
ers	1.033	0.476	0.227	0.099	1.966	2.169	0.030	
or	0.123	0.500	0.250	-0.858	1.104	0.246	0.805	
nhal	0.451	0.261	0.068	-0.061	0.964	1.726	0.084	
nha	0.881	0.370	0.137	0.155	1.607	2.379	0.017	
Freitas Brito	0.283	0.449	0.202	-0.598	1.164	0.629	0.529	
ior	0.245	0.449	0.202	-0.635	1.125	0.546	0.585	
renthal	0.566	0.288	0.083	0.000	1.131	1.961	0.050	
reira	1.387	0.328	0.108	0.744	2.031	4.224	0.000	
a	0.852	0.261	0.068	0.340	1.364	3.262	0.001	
ana	0.257	0.449	0.202	-0.623	1.137	0.572	0.567	
er 1	0.157	0.354	0.125	-0.537	0.851	0.443	0.658	- <u>-</u>
	0.311	0.201	0.040	-0.084	0.705	1.545	0.122	
n	0.244	0.157	0.025	-0.063	0.552	1.559	0.119	
a ima anta	0.247	0.296	0.088	-0.333	0.827	0.835	0.404	
cimento	0.787	0.283	0.080	0.233	1.341	2.786	0.005	
g	0.593	0.457	0.209	-0.302	1.489	1.298	0.194	
idro	1.151	0.312	0.097	0.540	1.761	3.692	0.000	
th Iorrata	0.796	0.337	0.114	0.135	1.457	2.362	0.018	
legate	0.181	0.189	0.036	-0.190	0.552	0.956	0.339	
one	0.582	0.202	0.041	0.185	0.978	2.877	0.004	
chonville	0.087	0.277	0.077	-0.456	0.631	0.315	0.753	- 1 4 - 1
ek	0.195	0.182	0.033	-0.160	0.551	1.077	0.281	
age	0.665	0.375	0.141	-0.070	1.400	1.773	0.076	
calves	0.644	0.352	0.124	-0.046	1.333	1.830	0.067	
цр	0.453	0.432	0.186	-0.393	1.299	1.049	0.294	
	0.678	0.198	0.039	0.290	1.065	3.424	0.001	
lden	1.131	0.341	0.116	0.464	1.799	3.322	0.001	
lar	1.786	0.334	0.112	1.130	2.441	5.339	0.000	
ions	0.471	0.179	0.032	0.120	0.823	2.630	0.009	
ng	0.209	0.106	0.011	0.002	0.416	1.978	0.048	
od	0.499	0.433	0.187	-0.349	1.348	1.153	0.249	
sine	1.295	0.317	0.101	0.672	1.917	4.078	0.000	
ortimer	0.966	0.386	0.149	0.210	1.722	2.504	0.012	
	0.650	0.094	0.009	0.465	0.835	6.887	0.000	
							I	I I I
							-8.0	-4.00 0.00 4.00 Favours A Favours B

FIGURE 12: Standard difference in mean between systolic blood pressure changes pre- and postintervention.

			Statistic	cs for each	study			Std diff in means and 95% CI
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z value	P value	
Iaidari	1.563	0.238	0.057	1.096	2.030	6.561	0.000	
mooali	0.439	0.320	0.102	-0.188	1.066	1.372	0.170	
osseiny	0.724	0.243	0.059	0.247	1.201	2.977	0.003	
abara	0.476	0.227	0.051	0.031	0.920	2.098	0.036	
oroalahi	0.649	0.342	0.117	-0.022	1.319	1.897	0.058	
ıramarzi	1.750	0.372	0.138	1.021	2.479	4.706	0.000	
ehjati Ardakani	1.744	0.339	0.115	1.080	2.409	5.143	0.000	
hasemian	2.671	0.435	0.189	1.818	3.523	6.141	0.000	
awasaki	2.401	0.314	0.098	1.786	3.016	7.657	0.000	
n	0.266	0.284	0.081	-0.291	0.823	0.937	0.349	
ong	9.000	0.654	0.428	7.718	10.282	13.759	0.000	
ıangthai amdorf	0.849	0.410	0.168 0.048	0.046	1.651	2.072	0.038	
e	-0.697 0.578	0.220 0.143	0.048	-1.127 0.298	-0.266 0.858	-3.172 4.045	0.002 0.000	
m	0.378	0.143	0.020	-0.482	1.288	0.892	0.372	
iura	0.545	0.215	0.204	0.124	0.966	2.540	0.011	
hkubo	1.692	0.150	0.022	1.399	1.986	11.296	0.000	
kumiya	0.391	0.312	0.022	-0.219	1.002	1.256	0.209	
til	-0.265	0.259	0.067	-0.773	0.243	-1.022	0.307	
nami	0.182	0.317	0.100	-0.439	0.803	0.574	0.566	
iomas	0.000	0.177	0.031	-0.346	0.346	0.000	1.000	
tsavos	1.310	0.216	0.047	0.886	1.733	6.060	0.000	
eiseroth	1.104	0.304	0.092	0.509	1.699	3.637	0.000	
el Pozo-Cruz	1.136	0.333	0.111	0.484	1.788	3.416	0.001	
i Mauro	0.323	0.241	0.058	-0.149	0.794	1.342	0.180	
eibovitz	-1.000	0.300	0.090	-1.588	-0.412	-3.333	0.001	
roman	0.532	0.372	0.138	-0.196	1.260	1.432	0.152	
homiuk	0.297	0.214	0.046	-0.123	0.717	1.385	0.166	
imeo	0.330	0.291	0.084	-0.240	0.900	1.135	0.256	
ulkner	0.222	0.236	0.056	-0.241	0.686	0.940	0.347	
nucane	0.181	0.200	0.040	-0.212	0.574	0.902	0.367	
allinen	1.177	0.442	0.196	0.310	2.043	2.661	0.008	
iederseer	0.414	0.305	0.093	-0.183	1.011	1.359	0.174	
uggaard	-0.364	0.304	0.092	-0.960	0.232	-1.197	0.231	
ousa	-0.277	0.355	0.126	-0.973	0.419	-0.780	0.435	
esthoff eters	0.361	0.412	0.169	-0.446	1.168	0.877	0.380	
itor	0.217	0.449	0.201	-0.662	1.096	0.484 0.299	0.629	4
unhal	0.150 0.508	0.501 0.262	0.251 0.069	-0.832 -0.006	1.131 1.023	1.938	0.765 0.053	-
inha	0.558	0.262	0.130	-0.149	1.025	1.548	0.122	
e Freitas Brito	0.566	0.456	0.208	-0.328	1.460	1.240	0.215	
nior	1.470	0.504	0.254	0.482	2.458	2.916	0.004	
owenthal	2.263	0.362	0.131	1.553	2.973	6.247	0.000	
oreira	0.159	0.295	0.087	-0.419	0.738	0.540	0.589	
ota	0.745	0.259	0.067	0.239	1.252	2.883	0.004	🔁
ntana	0.000	0.447	0.200	-0.877	0.877	0.000	1.000	
her	0.500	0.359	0.129	-0.204	1.204	1.393	0.164	
nan	0.188	0.157	0.024	-0.118	0.495	1.204	0.229	
osta	0.136	0.295	0.087	-0.443	0.714	0.460	0.646	
ascimento	0.604	0.278	0.077	0.059	1.150	2.171	0.030	
ing	0.027	0.447	0.200	-0.849	0.904	0.061	0.951	
andro	1.124	0.311	0.096	0.515	1.732	3.617	0.000	
aith	1.074	0.347	0.120	0.394	1.754	3.094	0.002	
plegate	0.316	0.190	0.036	-0.056	0.689	1.663	0.096	
rone	0.600	0.202	0.041	0.203	0.997	2.963	0.003	
ouchonville	0.288	0.279	0.078	-0.258	0.835	1.034	0.301	
ısek	-0.040	0.181	0.033	-0.395	0.315	-0.222	0.824	
erage	0.167	0.366	0.134	-0.550	0.884	0.456	0.649	
oncalves	-0.257	0.344	0.119	-0.932	0.418	-0.747	0.455	4
ssup	0.755	0.441	0.195	-0.110	1.620	1.711	0.087	
adden	0.531	0.196	0.038	0.147	0.915	2.712	0.007	
adden illar	-0.500 1.372	0.321 0.314	0.103 0.099	-1.129 0.756	0.129 1.988	-1.557 4.364	0.119 0.000	
nons	-0.392	0.314	0.099	-0.742	-0.042	-2.198	0.000	
ang	-0.392	0.178	0.032	-0.742	0.326	-2.198	0.028	
ood	1.348	0.108	0.011	-0.088	2.274	2.853	0.239	
ssine	0.959	0.472	0.223	0.422	1.556	3.145	0.004	
ortimer	1.271	0.400	0.160	0.486	2.055	3.174	0.002	
	0.648	0.096	0.009	0.460	0.837	6.739	0.002	

FIGURE 13: Standard difference in mean between diastolic blood pressure changes pre- and postintervention.

TABLE 3: Subgroup analysis based on type of exercise.

Туре о	f exercise	Number of articles	Sample size	I^2	Egger test	Std. difference in mean (before and after intervention)
Aerobic exercise	Systolic blood pressure	48	1734	94.4	0.715	0.69 ± 0.16
Aerodic exercise	Diastolic blood pressure	40	1754	89.5	0.178	0.64 ± 0.11
Resistance	Systolic blood pressure	20	40.4	54.6	0.051	0.69 ± 0.1
exercises	Diastolic blood pressure	20	494	82.8	0.053	0.73 ± 0.16

5. Conclusion

The results of this study indicated that exercise significantly reduces blood pressure in the older adults across different continents. Accordingly, regular physical exercise can be part of the healthcare program of older adults with hypertension.

Abbreviations

SID:	Scientific information database
CONSORT:	Consolidated standards of reporting trials
PRISMA:	Preferred Reporting Items for Systematic
	Reviews and Meta-analysis.

Data Availability

Datasets are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

MK and NR contributed to the design, and MM and RJ were responsible of statistical analysis and participated in most of the study steps. AVR and AD prepared the manuscript. NS and MM assisted in designing the study and helped in the interpretation of the study. All authors have read and approved the content of the manuscript.

Acknowledgments

This work was funded by the Student Research Committee of Kermanshah University of Medical Sciences Deputy for Research and Technology, Kermanshah University of Medical Sciences (IR) (3009270).

References

 J. Allender, C. Rector, C. Rector, and K. Warner, Community & Public Health Nursing: Promoting the Public's Health, Lippincott Williams & Wilkins, Philadelphia, PA, USA, 2013.

- [2] K. L. Fiori, J. Smith, and T. C. Antonucci, "Social network types among older adults: a multidimensional approach," *The Journals of Gerontology Series B: Psychological Sciences* and Social Sciences, vol. 62, no. 6, pp. P322–P330, 2007.
- [3] S. Hamidizadeh, F. Ahmadi, and M. Fallahi, "The effect of progressive muscle relaxation on blood pressure in older adultspatients with primary hypertension in older adultspeople living in the center of the Kahrizak in 2004," *Journal* of *Rehabilitation Medicine*, vol. 5, no. 4, pp. 48–52, 2004, in Persian.
- [4] R. Schneider, C. Alexander, F. Staggers et al., "A randomized controlled trial of stress reduction in African Americans treated for hypertension for over one year," *American Journal of Hypertension*, vol. 18, no. 1, pp. 88–98, 2005.
- [5] P. P. Toth, "Short-term aerobic exercise in the older adults promotes blood pressure reduction," *Journal of Applied Research In Clinical And Experimental Therapeutics*, vol. 6, no. 3, p. 186, 2006.
- [6] R. F. Craven, C. J. Hirnle, and S. Jensen, *Fundamentals of Nursing: Human Health and Functionp.* 653, 7th edition, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, USA, 2012.
- [7] A. Cooper, L. Moore, J. McKenna, and C. Riddoch, "What is the magnitude of blood pressure response to a programme of moderate intensity exercise? Randomised controlled trial among sedentary adults with unmedicated hypertension," *British Journal of General Practice*, vol. 50, no. 461, pp. 958–962, 2000.
- [8] M. Hosseiny, Z. Farahani, H. Shiri, J. AbedSaeidi, H. AlaviMajd, and S. Hamidizadeh, "The effects of low intensity aerobic exercise on blood pressure," *Journal of Shahrekord University of Medical Sciences*, vol. 9, no. 2, pp. 14–19, 2007, in Persian.
- [9] A. Owen, J. Wiles, and I. Swaine, "Effect of isometric exercise on resting blood pressure: a meta analysis," *Journal of Human Hypertension*, vol. 24, no. 12, p. 796, 2010.
- [10] W. M. D. Moraes, P. R. M. Souza, M. H. N. P. Pinheiro, M. C. Irigoyen, A. Medeiros, and M. K. Koike, "Exercise training program based on minimum weekly frequencies: effects on blood pressure and physical fitness in elderly hypertensive patients," *Brazilian Journal of Physical Therapy*, vol. 16, no. 2, pp. 114–121, 2012.
- [11] K. E. Ferrier, T. K. Waddell, C. D. Gatzka, J. D. Cameron, A. M. Dart, and B. A. Kingwell, "Aerobic exercise training does not modify large-artery compliance in isolated systolic hypertension," *Hypertension*, vol. 38, no. 2, pp. 222–226, 2001.
- [12] Y. Tabara, T. Yuasa, A. Oshiumi et al., "Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly," *Hypertension Research*, vol. 30, no. 10, p. 895, 2007.

- [13] T. H. Westhoff, S. Schmidt, V. Gross et al., "The cardiovascular effects of upper-limb aerobic exercise in hypertensive patients," *Journal of Hypertension*, vol. 26, no. 7, pp. 1336–1342, 2008.
- [14] P. J. J. Herrod, B. Doleman, J. E. M. Blackwell et al., "Exercise and other nonpharmacological strategies to reduce blood pressure in older adults: a systematic review and metaanalysis," *Journal of the American Society of Hypertension*, vol. 12, no. 4, pp. 248–267, 2018.
- [15] N. J. Kirk-Sanchez and E. L. McGough, "Physical exercise and cognitive performance in the elderly: current perspectives," *Clinical Interventions in Aging*, vol. 9, pp. 51–62, 2014.
- [16] A. Vaisi-Raygani, M. Mohammadi, R. Jalali, A. Ghobadi, and N. Salari, "The prevalence of obesity in older adults in Iran: a systematic review and meta-analysis," *BMC Geriatrics*, vol. 19, no. 1, p. 371, 2019.
- [17] H. Haidari, F. Bolurchifard, F. Yaghmaei, N. Naseri, and S. Hamadzadeh, "The effect of short- terobic exercise on the blood pressure in older adultsclients urith hypertension," *Medical- Surgical Nursing Journal*, vol. 3, no. 1, pp. 45–51, 2014, in Persian.
- [18] N. Amooali, F. Daryanoosh, M. A. Babaee Baigi, and M. Mohammadi, *The Impact of 12 Weeks of Aerobic Exercise* on Serum Levels of Cardiotrophin-1, Blood Pressure and Left Ventricular Hypertrophy in Hypertensive Older adults-Women, Zanjan University of Medical Sciences & Health Services, Zanjan, Iran, in Persian, 2015.
- [19] Z. Noroalahi, V. Valipour, and R. Eslami, "The effect of eight weeks of exercise training on body weight, blood pressure, and cholesterol levels and liver enzymes in older adultswomen with metabolic syndrome," *Journal of Obstetrics and Gynecology*, vol. 22, no. 2, pp. 63–72, 2019, in Persian.
- [20] M. Faramarzi, A. Azamian, and A. Ghasemian, "The effect of a resistance training course on endothelin-1 concentration and systolic and diastolic blood pressure in older adults women," *Applied Research in Management and Life Sciences in Sport*, vol. 2, pp. 95–104, 2012.
- [21] A. Behjati Ardakani, A. Qassemian, M. Koushki, E. Shakour, and A. Mehrez, "The effect of a resistance training course on blood pressure and nitric oxide levels in older adults women," *Salmand: Iranian Journal of Ageing*, vol. 13, no. 1, pp. 16–27, 2018.
- [22] A. Ghasemian and M. Salesi, "The effect of a combination of resistance and aerobic exercise training on endothelin-1 concentration and blood pressure in older adults women," *Journal of Kerman University of Medical Sciences*, vol. 21, no. 1, pp. 11–24, 2013.
- [23] T. Kawasaki, C. V. Sullivan, N. Ozoe, H. Higaki, and J. Kawasaki, "A long-term, comprehensive exercise program that incorporates a variety of physical activities improved the blood pressure, lipid and glucose metabolism, arterial stiffness, and balance of middle-aged and elderly Japanese," *Hypertension Research*, vol. 34, no. 9, pp. 1059–1066, 2011.
- [24] D. Yin, H. Ijiri, I. Kohno et al., "Differences in exersice blood pressure response between dipper and non-dipper elderly patients with essential hypertension," *Japanese Journal of Geriatrics*, vol. 35, no. 11, pp. 845–850, 1998.
- [25] A. Wong, Y.-S. Kwak, S. D. Scott et al., "The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension," *Menopause*, vol. 26, no. 6, pp. 653–658, 2019.
- [26] R. Ruangthai and J. Phoemsapthawee, "Combined exercise training improves blood pressure and antioxidant capacity in

elderly individuals with hypertension," Journal of Exercise Science & Fitness, vol. 17, no. 2, pp. 67–76, 2019.

- [27] P. A. Hamdorf and R. K. Penhall, "Walking with its training effects on the fitness and activity patterns of 79–91 year old females," *Australian and New Zealand Journal of Medicine*, vol. 29, no. 1, pp. 22–28, 1999.
- [28] L.-L. Lee, A. Arthur, and M. Avis, "Evaluating a communitybased walking intervention for hypertensive older people in Taiwan: a randomized controlled trial," *Preventive Medicine*, vol. 44, no. 2, pp. 160–166, 2007.
- [29] S.-T. Lim, S.-K. Min, H. Park, J.-H. Park, and J.-K. Park, "Effects of a healthy life exercise program on arteriosclerosis adhesion molecules in elderly obese women," *Journal of Physical Therapy Science*, vol. 27, no. 5, pp. 1529–1532, 2015.
- [30] H. Miura, Y. Takahashi, Y. Maki, and M. Sugino, "Effects of exercise training on arterial stiffness in older hypertensive females," *European Journal of Applied Physiology*, vol. 115, no. 9, pp. 1847–1854, 2015.
- [31] T. Ohkubo, A. Hozawa, R. Nagatomi et al., "Effects of exercise training on home blood pressure values in older adults: a randomized controlled trial," *Journal of Hypertension*, vol. 19, no. 6, pp. 1045–1052, 2001.
- [32] K. Okumiya, K. Matsubayashi, T. Wada, S. Kimura, Y. Doi, and T. Ozawa, "Effects of exercise on neurobehavioral function in community-dwelling older people more than 75 Years of age," *Journal of the American Geriatrics Society*, vol. 44, no. 5, pp. 569–572, 1996.
- [33] S. G. Patil, M. R. Aithala, and K. K. Das, "Effect of yoga on arterial stiffness in elderly subjects with increased pulse pressure: a randomized controlled study," *Complementary Therapies in Medicine*, vol. 23, no. 4, pp. 562–569, 2015.
- [34] Y. Sunami, M. Motoyama, F. Kinoshita et al., "Effects of lowintensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects," *Metabolism*, vol. 48, no. 8, pp. 984–988, 1999.
- [35] G. N. Thomas, A. W. L. Hong, B. Tomlinson et al., "Effects of Tai Chi and resistance training on cardiovascular risk factors in elderly Chinese subjects: a 12-month longitudinal, randomized, controlled intervention study," *Clinical Endocrinology*, vol. 63, no. 6, pp. 663–669, 2005.
- [36] C. Pitsavos, C. Chrysohoou, M. Koutroumbi et al., "The impact of moderate aerobic physical training on left ventricular mass, exercise capacity and blood pressure response during treadmill testing in borderline and mildly hypertensive males," *Hellenic Journal of Cardiology*, vol. 52, no. 1, pp. 6–14, 2011.
- [37] A. Deiseroth, L. Streese, S. Köchli et al., "Exercise and arterial stiffness in the elderly: a combined cross-sectional and randomized controlled trial (EXAMIN AGE)," *Frontiers in Physiology*, vol. 10, 2019.
- [38] J. del Pozo-Cruz, B. del Pozo-Cruz, E. C. Rodríguez Bies, R. M. Alfonso-Rosa, P. Navas, and G. López-Lluch, "Hypotensive acute effect of a combined resistance and walkbased exercise among over 65-year old community-dwelling women," *Revista Andaluza de Medicina del Deporte*, vol. 5, no. 2, pp. 41–47, 2012.
- [39] S. Di Mauro, G. Spallina, C. Leotta et al., "The effects of caloric restriction and controlled physical exercise on hypertension in the elderly," *Archives of Gerontology and Geriatrics*, vol. 27, no. 1, pp. 1–8, 1998.
- [40] E. Leibovitz, D. Manevich, R. Viskoper, and D. Gavish, "Physical exercise does not help reduce blood pressure in very elderly populations," *American Journal of Hypertension*, vol. 18, no. 5, p. A110, 2005.

- [41] G. Broman, M. Quintana, T. Lindberg, E. Jansson, and L. Kaijser, "High intensity deep water training can improve aerobic power in elderly women," *European Journal of Applied Physiology*, vol. 98, no. 2, pp. 117–123, 2006.
- [42] T. Chomiuk, A. Folga, and A. Mamcarz, "The influence of systematic pulse-limited physical exercise on the parameters of the cardiovascular system in patients over 65 years of age," *Archives of Medical Science*, vol. 2, no. 2, p. 201, 2013.
- [43] F. Dimeo, N. Pagonas, F. Seibert, R. Arndt, W. Zidek, and T. H. Westhoff, "Aerobic exercise reduces blood pressure in resistant hypertension," *Hypertension*, vol. 60, no. 3, pp. 653–658, 2012.
- [44] J. Faulkner, G. McGonigal, B. Woolley, L. Stoner, L. Wong, and D. Lambrick, "The effect of a short-term exercise programme on haemodynamic adaptability; a randomised controlled trial with newly diagnosed transient ischaemic attack patients," *Journal of Human Hypertension*, vol. 27, no. 12, p. 736, 2013.
- [45] F. M. Finucane, S. J. Sharp, L. R. Purslow et al., "The effects of aerobic exercise on metabolic risk, insulin sensitivity and intrahepatic lipid in healthy older people from the Hertfordshire Cohort Study: a randomised controlled trial," *Diabetologia*, vol. 53, no. 4, pp. 624–631, 2010.
- [46] M. Kallinen, S. Sipilä, M. Alen, and H. Suominen, "Improving cardiovascular fitness by strength or endurance training in women aged 76–78 years. A population-based, randomized controlled trial," *Age and Ageing*, vol. 31, no. 4, pp. 247–254, 2002.
- [47] D. Niederseer, E. Ledl-Kurkowski, K. Kvita et al., "Salzburg skiing for the elderly study: changes in cardiovascular risk factors through skiing in the elderly," *Scandinavian Journal* of Medicine & Science in Sports, vol. 21, pp. 47–55, 2011.
- [48] L. Puggaard, J. B. Larsen, H. Støvring, and B. Jeune, "Maximal oxygen uptake, muscle strength and walking speed in 85-year-old women: effects of increased physical activity," *Aging Clinical and Experimental Research*, vol. 12, no. 3, pp. 180–189, 2000.
- [49] N. Sousa, R. Mendes, C. Abrantes, J. Sampaio, and J. Oliveira, "Long-term effects of aerobic training versus combined aerobic and resistance training in modifying cardiovascular disease risk factors in healthy elderly men," *Geriatrics & Gerontology International*, vol. 13, no. 4, pp. 928–935, 2013.
- [50] P. G. Peters, H. M. Alessio, A. E. Hagerman, T. Ashton, S. Nagy, and R. L. Wiley, "Short-term isometric exercise reduces systolic blood pressure in hypertensive adults: possible role of reactive oxygen species," *International Journal of Cardiology*, vol. 110, no. 2, pp. 199–205, 2006.
- [51] D. S. Ditor, M. V. Kamath, M. J. MacDonald, J. Bugaresti, N. McCartney, and A. L. Hicks, "Effects of body weightsupported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury," *Journal of Applied Physiology*, vol. 98, no. 4, pp. 1519–1525, 2005.
- [52] R. M. Cunha, C. B. MacEdo, S. F. Araujo, V. M. Borges, and A. A. Soares, "Subacute blood pressure behavior in older adults hypertensive women after aquatic exercise session," *Hypertension*, vol. 58, no. 5, pp. e147–e148, 2011.
- [53] R. M. Cunha, C. B. Macedo, S. F. M. Araújo et al., "Subacute blood pressure response in elderly hypertensive women after a water exercise session," *High Blood Pressure & Cardio*vascular Prevention, vol. 19, no. 4, pp. 223–227, 2012.
- [54] A. F. Brito, C. V. de Oliveira, M. S. Brasileiro-Santos, and A. C. Santos, "Resistance exercise with different volumes: blood pressure response and forearm blood flow in the

hypertensive elderly," *Clinical Interventions in Aging*, vol. 9, pp. 2151–2158, 2014.

- [55] F. A. Júnior, S. G. Gomes, F. F. da Silva et al., "The effects of aquatic and land exercise on resting blood pressure and postexercise hypotension response in older adults hypertensives," *Cardiovascular Journal of Africa*, vol. 30, pp. 1–7, 2019.
- [56] D. T. Lowenthal and K. R. Vincent, "Clinical physiology and pharmacology conference: a nonpharmacological, evidence based medical approach using exercise method to lower and maintain blood pressure control in the elderly," *International Urology and Nephrology*, vol. 36, no. 3, pp. 473–476, 2004.
- [57] S. R. Moreira, G. G. Cucato, D. F. Terra, and R. M. Ritti-Dias, "Acute blood pressure changes are related to chronic effects of resistance exercise in medicated hypertensives elderly women," *Clinical Physiology and Functional Imaging*, vol. 36, no. 3, pp. 242–248, 2016.
- [58] M. R. Mota, R. J. De Oliveira, M. T. Dutra et al., "Acute and chronic effects of resistive exercise on blood pressure in hypertensive elderly women," *Journal of Strength and Conditioning Research*, vol. 27, no. 12, pp. 3475–3480, 2013.
- [59] H. A. P. Santana, S. R. Moreira, W. B. Neto et al., "The higher exercise intensity and the presence of allele I of ACE gene elicit a higher post-exercise blood pressure reduction and nitric oxide release in older adults women: an experimental study," *BMC Cardiovascular Disorders*, vol. 11, no. 1, 2011.
- [60] L. M. D. L. Scher, E. Ferriolli, J. C. Moriguti, and N. K. C. Lima, "Pressão arterial obtida pelos métodos oscilométrico e auscultatório antes e após exercício em idosos," *Arquivos Brasileiros de Cardiologia*, vol. 94, no. 5, pp. 656–662, 2010.
- [61] A. W. K. Chan, S. Y. Chair, D. T. F. Lee et al., "Tai Chi exercise is more effective than brisk walking in reducing cardiovascular disease risk factors among adults with hypertension: a randomised controlled trial," *International Journal of Nursing Studies*, vol. 88, pp. 44–52, 2018.
- [62] I. B. B. Costa, D. Schwade, G. A. D. Macêdo et al., "Acute antihypertensive effect of self-selected exercise intensity in older women with hypertension: a crossover trial," *Clinical Interventions in Aging*, vol. 14, pp. 1407–1418, 2019.
- [63] D. Da Cunha Nascimento, C. R. Silva, D. C. Leite Vieira, B. J. Schoenfeld, and J. Prestes, "New insights for statistical analysis of blood pressure response to resistance training in older adultshypertensive women," *Journal of Physical Education (Maringa)*, vol. 30, no. 1, 2019.
- [64] H. E. Kling, E. M. D'Agostino, J. m. V. Booth et al., "The effect of a park-based physical activity program on cardiovascular, strength, and mobility outcomes among a sample of racially/ethnically diverse adults aged 55 or older," *Preventing Chronic Disease*, vol. 15, p. E166, 2018.
- [65] M. P. G. Leandro, J. L. S. d. Moura, G. W. P. Barros, A. P. d. Silva Filho, A. C. d. O. Farias, and P. R. C. Carvalho, "Effect of the aerobic component of combined training on the blood pressure of hypertensive elderly women," *Revista Brasileira de Medicina do Esporte*, vol. 25, no. 6, pp. 469–473, 2019.
- [66] R. W. Braith, M. L. Pollock, D. T. Lowenthal, J. E. Graves, and M. C. Limacher, "Moderate- and high-intensity exercise lowers blood pressure in normotensive subjects 60 to 79 years of age," *The American Journal of Cardiology*, vol. 73, no. 15, pp. 1124–1128, 1994.
- [67] W. B. Applegate, S. T. Miller, J. T. Elam et al., "Nonpharmacologic intervention to reduce blood pressure in older patients with mild hypertension," *Archives of Internal Medicine*, vol. 152, no. 6, pp. 1162–1166, 1992.

- [68] B. B. Barone, N. Y. Wang, A. C. Bacher, and K. J. Stewart, "Decreased exercise blood pressure in older adults after exercise training: contributions of increased fitness and decreased fatness," *British Journal of Sports Medicine*, vol. 43, no. 1, pp. 52–56, 2009.
- [69] M. Bouchonville, R. Armamento-Villareal, K. Shah et al., "Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial," *International Journal of Obesity*, vol. 38, no. 3, p. 423, 2014.
- [70] J. A. Dusek, P. L. Hibberd, B. Buczynski et al., "Stress management versus lifestyle modification on systolic hypertension and medication elimination: a randomized trial," *The Journal of Alternative and Complementary Medicine*, vol. 14, no. 2, pp. 129–138, 2008.
- [71] A. Gerage, C. L. Forjaz, M. Nascimento, R. S. Januário, M. Polito, and E. Cyrino, "Cardiovascular adaptations to resistance training in elderly postmenopausal women," *International Journal of Sports Medicine*, vol. 34, no. 9, pp. 806–813, 2013.
- [72] C. G. Goncalves, F. Y. Nakamura, M. D. Polito et al., "Functional and physiological effects of a 12-week programme of resistance training in older adults hypertensive women," *International SportMed Journal*, vol. 15, no. 1, pp. 50–61, 2014.
- [73] J. V. Jessup, D. T. Lowenthal, M. L. Pollock, and T. Turner, "The effects of endurance exercise training on ambulatory blood pressure in normotensive older adults," *Geriatric Nephrology and Urology*, vol. 8, no. 2, pp. 103–109, 1998.
- [74] F. Li, K. J. Fisher, and P. Harmer, "Improving physical function and blood pressure in older adults through cobblestone mat walking: a randomized trial," *Journal of the American Geriatrics Society*, vol. 53, no. 8, pp. 1305–1312, 2005.
- [75] K. M. Madden, C. Lockhart, T. F. Potter, and D. Cuff, "Aerobic training restores arterial baroreflex sensitivity in older adults with type 2 diabetes, hypertension, and hypercholesterolemia," *Clinical Journal of Sport Medicine*, vol. 20, no. 4, p. 312, 2010.
- [76] P. J. Millar, S. R. Bray, M. J. MacDonald, and N. McCartney, "The hypotensive effects of isometric handgrip training using an inexpensive spring handgrip training device," *Journal of Cardiopulmonary Rehabilitation and Prevention*, vol. 28, no. 3, pp. 203–207, 2008.
- [77] R. Simons and R. Andel, "The effects of resistance training and walking on functional fitness in advanced old age," *Journal of Aging and Health*, vol. 18, no. 1, pp. 91–105, 2006.
- [78] X. Wang, F.-C. Hsu, S. Isom et al., "Effects of a 12-month physical activity intervention on prevalence of metabolic syndrome in elderly men and women," *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, vol. 67A, no. 4, pp. 417–424, 2011.
- [79] R. H. Wood, R. Reyes, M. A. Welsch et al., "Concurrent cardiovascular and resistance training in healthy older adults," *Medicine & Science in Sports & Exercise*, vol. 33, no. 10, pp. 1751–1758, 2001.
- [80] H. N. Yassine, C. M. Marchetti, R. K. Krishnan, T. R. Vrobel, F. Gonzalez, and J. P. Kirwan, "Effects of exercise and caloric restriction on insulin resistance and cardiometabolic risk factors in older obese adults--A randomized clinical trial," *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, vol. 64A, no. 1, pp. 90–95, 2009.
- [81] J. Mortimer and A. J. Mckune, "Effect of short-term isometric handgrip training on blood pressure in middle-aged

females," Cardiovascular Journal of Africa, vol. 22, no. 5, p. 257, 2011.

- [82] L. Al Sowielem and A. El Zubier, "Compliance and knowledge of hypertensive patients attending PHC centres in Al-Khobar, Saudi Arabia," 1998.
- [83] E. Braunwald, *Heart Disease, a Textbook of Cardiovascular Medicine*, WB Saunders Company, Philadelphia, PA, USA, 2001.
- [84] S. J. Buss, J. H. Riffel, P. Malekar et al., "Chronic Akt blockade aggravates pathological hypertrophy and inhibits physiological hypertrophy," *American Journal of Physiology-Heart* and Circulatory Physiology, vol. 302, no. 2, pp. H420–H430, 2011.
- [85] A. V. Finsen, I. G. Lunde, I. Sjaastad et al., "Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-NFAT pathway," *PLoS One*, vol. 6, no. 12, Article ID e28302, 2011.
- [86] E. Dawson, K. George, R. Shave, G. Whyte, and D. Ball, "Does the human heart fatigue subsequent to prolonged exercise?" Sports Medicine, vol. 33, no. 5, pp. 365–380, 2003.
- [87] A. Hinderliter, A. Sherwood, E. C. D. Gullette et al., "Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension," *Archives of Internal Medicine*, vol. 162, no. 12, pp. 1333–1339, 2002.
- [88] P. F. Kokkinos, P. Narayan, J. A. Colleran et al., "Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension," *New England Journal of Medicine*, vol. 333, no. 22, pp. 1462–1467, 1995.
- [89] J. Cornelis, P. Beckers, J. Taeymans, and C. Vrints, "Comparing exercise training modalities in heart failure: a systematic review and meta-analysis," *International Journal of Cardiology*, vol. 221, pp. 867–876, 2016.
- [90] E. G. Ciolac, G. V. Guimarães, V. M. Dàvila, E. L. Doria, and E. A. Bocchi, "Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in longterm treated hypertensive patients," *International Journal of Cardiology*, vol. 133, no. 3, pp. 381–387, 2009.
- [91] J. S. Floras, C. A. Sinkey, P. E. Aylward, D. R. Seals, P. N. Thoren, and A. L. Mark, "Postexercise hypotension and sympathoinhibition in borderline hypertensive men," *Hypertension*, vol. 14, no. 1, pp. 28–35, 1989.
- [92] J. R. Halliwill, J. A. Taylor, and D. L. Eckberg, "Impaired sympathetic vascular regulation in humans after acute dynamic exercise," *The Journal of Physiology*, vol. 495, no. 1, pp. 279–288, 1996.
- [93] J. M. Kulics, H. L. Collins, and S. E. DiCarlo, "Postexercise hypotension is mediated by reductions in sympathetic nerve activity," *American Journal of Physiology-Heart and Circulatory Physiology*, vol. 276, no. 1, pp. H27–H32, 1999.
- [94] J. R. Halliwill, "Mechanisms and clinical implications of post-exercise hypotension in humans," *Exercise and Sport Sciences Reviews*, vol. 29, no. 2, pp. 65–70, 2001.
- [95] P. J. Franklin, D. J. Green, and N. T. Cable, "The influence of thermoregulatory mechanisms on post-exercise hypotension in humans," *The Journal of Physiology*, vol. 470, no. 1, pp. 231–241, 1993.
- [96] C. n. M. Melo, A. t. C. Alencar Filho, T. Tinucci, D. c. Mion Jr., and C. u. L. M. Forjaz, "Postexercise hypotension induced by low-intensity resistance exercise in hypertensive women receiving captopril," *Blood Pressure Monitoring*, vol. 11, no. 4, pp. 183–189, 2006.

- [97] A. N. Syme, B. E. Blanchard, M. A. Guidry et al., "Peak systolic blood pressure on a graded maximal exercise test and the blood pressure response to an acute bout of submaximal exercise," *The American Journal of Cardiology*, vol. 98, no. 7, pp. 938–943, 2006.
- [98] J. R. MacDonald, J. M. Rosenfeld, M. A. Tarnopolsky, C. D. Hogben, C. S. Ballantyne, and J. D. MacDougall, "Post exercise hypotension is not mediated by the serotonergic system in borderline hypertensive individuals," *Journal of Human Hypertension*, vol. 16, no. 1, p. 33, 2002.
- [99] H. Arazi and H. Rohani, "Blood pressure responses after resistance training methods, and double extra times," *Journal* of Sport Sciences, University of Guilan, vol. 27, pp. 123–136, 2009, in Persian.
- [100] P. M. d. B. C. Canuto, I. D. B. Nogueira, E. S. d. Cunha et al., "Influência do treinamento resistido realizado em intensidades diferentes e mesmo volume de trabalho sobre a pressão arterial de idosas hipertensas," *Revista Brasileira de Medicina do Esporte*, vol. 17, no. 4, pp. 246–249, 2011.
- [101] M. J. Kenney and D. R. Seals, "Postexercise hypotension. key features, mechanisms, and clinical significance," *Hypertension*, vol. 22, no. 5, pp. 653–664, 1993.
- [102] C. Y. Chen and A. C. Bonham, "Postexercise hypotension," *Exercise and Sport Sciences Reviews*, vol. 38, no. 3, pp. 122– 127, 2010.
- [103] T. Randall and M. Schapiro, "Managing symptoms of multiple sclerosis," *Neurologic Clinics*, vol. 23, pp. 177–187, 2007.
- [104] K. F. Schulz, D. G. Altman, and D. Moher, "CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials," *BMC Medicine*, vol. 8, no. 1, p. 18, 2010.