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Abstract: A high concentration of Zearalenone (ZEA) will perturb the differentiation of germ cells,
and induce a death of germ cells, but the toxic mechanism and molecular mechanism remain
unclear. The Sertoli cells (SCs) play an irreplaceable role in spermatogenesis. In order to explore
the potential mechanism of ZEA male reproductive toxicity, we studied the effects of ZEA on
cell proliferation, cell-cycle distribution, cell-cycle-related proteins and autophagy-related pathway
the PI3K/Akt/mTOR signaling in primary cultured rats SCs, and the effects of autophagy and
PI3K/AKT/m TOR signaling pathway on the SCs cell-cycle arrest induced by ZEA treated with the
autophagy promoter RAPA, autophagy inhibitor CQ, and the PI3K inhibitor LY294002, respectively.
The data revealed that ZEA could inhibit the proliferation of SCs by arresting the cell cycle in the
G2/M phase and trigger the autophagy via inhibiting the PI3K/Akt/m TOR signaling pathway.
Promoting or inhibiting the level of autophagy could either augment or reverse the arrest of cell cycle.
And it was regulated by PI3K/Akt/m TOR signaling pathway. Taken together, this study provides
evidence that autophagy and PI3K/Akt/m TOR signaling pathway are involved in regulating rats
primary SCs cell-cycle arrest due to ZEA in vitro. To some extent, ZEA-induced autophagy plays a
protective role in this process.

Keywords: Zearalenone (ZEA); Sertoli cells (SCs); cell cycle; G2/M arrest; Autophagy; PI3K/Akt/m
TOR signaling

Key Contribution: Inhibiting PI3K/Akt/mTOR signaling pathway to induce the occurrence of
autophagy could partly reverse arrest of SC in the G2/M phase which ZEA-induced.

1. Introduction

Zearalenone (ZEA), which has always been called F-2 toxin, is synthesized by the polyketide
pathway, a serious mycotoxin existed in human food and animal feed [1,2]. Many studies have
shown that ZEA and its dangerous secondary fungal metabolite can induce reproductive toxicity,
immunotoxicity, DNA damage, and carcinogenicity qualities [3,4]. Studies reported that female animals
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are more sensitive to ZEA compared to male animals, so studies of ZEA have mainly concentrated on
its toxicity in the female endocrine system [5,6]. ZEA can lead to female reproductive disorders such as
abortion, stillbirth, castration, and sow false heat, or even potential danger to public and environmental
health [7]. Studies also have shown that ZEA has estrogenic activity that acts on the reproductive
system of animals by binding to estrogen receptors and results in a variety of estrogenic effects [8,9].
In recent years, its estrogen-like effects of reproductive toxicity in male animals has attracted more
attention [10]. Qing [11] showed that ZEA can significantly reduce testosterone secretion in Leydig cells
by the cAMP pathway in both luteinizing hormone and human chorionic gonadotropin environments.
The primary rat Leydig cells treated with ZEA result in viability inhibition. The result also revealed
that low or high doses of ZEA can activate autophagy and apoptosis in Leydig cells and autophagy can
delay the occurrence of apoptosis in Leydig cells. Therefore, autophagy has an important protective
effect against cytotoxicity in a certain extent [12].

SCs comprise a good model for evaluating toxicity in the male reproductive system in vitro and
vivo, and revealing the mechanism of ZEA in male reproductive toxicity. For male animals, the number
of SCs is a key determinant about the size of the testis and spermatogenesis in adulthood [13,14].
Studies have shown that SCs are the most important target cells of the male reproductive system
for many environmental pollutants, and germ cells around of SCs are considered a barrier that
protects spermatogenesis from harmful influences [15,16]. In our preliminary studies [17,18], we chose
TM4 cells (mouse Sertoli cell line) as a model, as a result, damage to the cytoskeletal structure and
disturbance of specific secretory functions of TM4 cells were found, which may be an underlying cause
of ZEA-induced reproductive toxicity in the female endocrine system. The result indicates that a high
dose of ZEA also can perturb the differentiation of germ cells and induce a death of germ cells in an
extent, but the molecular mechanism remains unclear.

Cell cycle, the basic process of cell life activities, is under the control of endogenous and exogenous
factors in a certain order to complete the cell division and reproduction process. Many researchers have
found that autophagy play an important role in cell cycle and apoptosis regulation [19,20]. It plays
a role in maintaining a defensive and stress-regulating mechanism of cellular homeostasis in the
body [21,22]. The Autophagy related pathways, that PI3K/Akt/m TOR signaling pathway mediated
cell proliferation, differentiation, migration, apoptosis, autophagy, and other physiological functions
targeted at m TOR [23,24].

Our previous study [18] has shown that ZEA can interfere the differentiation of cells in high
concentration, and induce a death of germ cells to a certain extent. However, the underlying molecular
mechanism of the cytotoxicity is unclear. In this study, we used primary SCs of male Wistar rats to
elucidate the effect of autophagy and PI3K/Akt/m TOR signaling pathway on the cell-cycle arrest
induced by ZEA, and provide a theoretical basis for the prevention and treatment of ZEA poisoning.

2. Results

2.1. Cytotoxic Effect of ZEA in SCs

SCs were treated with different concentrations of ZEA. CCK-8 was used to determine the
effects of different concentrations of ZEA on SCs activity (Figure 1) after a 24 h experiment. As the
ZEA concentration increased, the survival rate of the SCs decreased, this shows a dose-dependent
relationship. At 20 µM, cell viability was significantly decreased (p < 0.01); at 40 µM, the half-maximal
inhibitory concentration was reached. In the following test, 10 µM and 20 µM ZEA were selected as
the concentrations.
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Figure1. Effects of Zearalenone (ZEA) treated on Sertoli cells (SCs) viability. * p < 0.05, ** p < 0.01 
versus control. 

2.2. The Effects of ZEA on the Cell Cycle Distribution and the Cell Cycle Associated Proteins in SCs 

When SCs grew in the phase of logarithmic, they were treated with different concentrations of 
ZEA for 24 h. The changes of the cell cycle were detectable on flow cytometry (Figure 1B). As the 
concentration of ZEA increased, the percentage of SCs in the G0/G1 phase decreased, while the 
percentage in the G2/M phase increased. When the ZEA concentration was 10 μM, the ratio of S phase 
change was not obvious, whereas the proportion of cells in the G2/M phase increased significantly  
(* p < 0.05); when the concentration of ZEA was 20 μM or 30 μM, the G0/G1 ratio decreased 
significantly (* p < 0.05), while that of the G2/M phase increased dramatically (** p < 0.01). These 
results indicate that ZEA could induce SCs cycle arrest in the G2/M phase and inhibit SCs 
proliferation in a dose-dependent manner. 

To elucidate the possible mechanisms which contribute to the induction of G2/M phase arrest 
by ZEA in SCs, we analyzed the expression levels of cell cycle–associated regulatory proteins for 
G2/M transition (cdc2, cdc25B, and Cyclin B1) by Western blotting (Figure 2B). Cdc2, Cyclin B1, and 
cdc25B proteins, which playing important roles in G2/M cell cycle progression, were significantly 
decreased by ZEA in a dose-dependent manner. ZEA also increased the protein expression levels of 
p53 and p21 (Figure 2B); compared with the control group, p-Histone H3 expression was significantly 
decreased, which confirmed that ZEA could markedly decrease the proportion of M phase cells and 
significantly inhibit SCs proliferation in a certain concentration range. 

P-Histone H3 (Ser-10) is a marker protein of the mitotic phase of cells. The positive expression 
of fluorescein isothiocyanate (FITC)-labeled p-Histone H3 was fluorescent red on confocal 
microscopy located in the nucleus of SC cells in the division phase, while the nucleus labeled with 
DIPA showed red fluorescence. The immunofluorescence results showed that after 20 μM ZEA 
treatment, the number of cells expressing p-H3 decreased significantly compared with that in the 
solvent control group, further confirming that the number of cells in the M phase could be reduced 
by ZEA treatment (Figure 2C). The results of flow cytometry (FCM), Western blotting, and 
immunofluorescence (Figure 2A–C) showed that ZEA treatment could induce G2/M arrest in SCs. 

Figure 1. Effects of Zearalenone (ZEA) treated on Sertoli cells (SCs) viability. * p < 0.05, ** p < 0.01
versus control.

2.2. The Effects of ZEA on the Cell Cycle Distribution and the Cell Cycle Associated Proteins in SCs

When SCs grew in the phase of logarithmic, they were treated with different concentrations of
ZEA for 24 h. The changes of the cell cycle were detectable on flow cytometry (Figure 1B). As the
concentration of ZEA increased, the percentage of SCs in the G0/G1 phase decreased, while the
percentage in the G2/M phase increased. When the ZEA concentration was 10 µM, the ratio of
S phase change was not obvious, whereas the proportion of cells in the G2/M phase increased
significantly (* p < 0.05); when the concentration of ZEA was 20 µM or 30 µM, the G0/G1 ratio
decreased significantly (* p < 0.05), while that of the G2/M phase increased dramatically (** p < 0.01).
These results indicate that ZEA could induce SCs cycle arrest in the G2/M phase and inhibit SCs
proliferation in a dose-dependent manner.

To elucidate the possible mechanisms which contribute to the induction of G2/M phase arrest by
ZEA in SCs, we analyzed the expression levels of cell cycle–associated regulatory proteins for G2/M
transition (cdc2, cdc25B, and Cyclin B1) by Western blotting (Figure 2B). Cdc2, Cyclin B1, and cdc25B
proteins, which playing important roles in G2/M cell cycle progression, were significantly decreased
by ZEA in a dose-dependent manner. ZEA also increased the protein expression levels of p53 and p21
(Figure 2B); compared with the control group, p-Histone H3 expression was significantly decreased,
which confirmed that ZEA could markedly decrease the proportion of M phase cells and significantly
inhibit SCs proliferation in a certain concentration range.

P-Histone H3 (Ser-10) is a marker protein of the mitotic phase of cells. The positive expression of
fluorescein isothiocyanate (FITC)-labeled p-Histone H3 was fluorescent red on confocal microscopy
located in the nucleus of SC cells in the division phase, while the nucleus labeled with DIPA showed red
fluorescence. The immunofluorescence results showed that after 20 µM ZEA treatment, the number of
cells expressing p-H3 decreased significantly compared with that in the solvent control group, further
confirming that the number of cells in the M phase could be reduced by ZEA treatment (Figure 2C).
The results of flow cytometry (FCM), Western blotting, and immunofluorescence (Figure 2A–C) showed
that ZEA treatment could induce G2/M arrest in SCs.
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Figure 2. ZEA induced G2 phase arrest in SCs. (A) After treatment with different concentrations of 
ZEA for 24 h, the cell cycle changes were detectable by flow cytometry; (B) The influence of protein 
expression of SCs in the G2/M phase versus control (* p < 0.05, ** p < 0.01); (C) Immunofluorescence 
analysis of the number of sensitive mitotic cell marker p-Histone H3–positive cells after ZEA 
treatment. 

2.3. ZEA Could Trigger the Autophagy in SCs 

To further confirm whether cytoplasmic vacuoles seen by inverted-phase contrast microscopy 
are related to autophagy, we divided the SCs into the ZEA treatment group (20 μM) and the control 
group for 24 h. No obvious distribution of autophagic vacuoles or cytoplasm was observed under 
electron microscopy in the control group (Figure 3A-a). While for the 20 μM ZEA treatment group, 
under the same situation, typical autophagic vesicles and bilayer membrane structures were visible 
(Figure 3A-c), showing autophagy lysosome (Figure 3A-b,A-c). These results further demonstrate 
that ZEA can induce morphological autophagy in SCs. 

Figure 2. ZEA induced G2 phase arrest in SCs. (A) After treatment with different concentrations of
ZEA for 24 h, the cell cycle changes were detectable by flow cytometry; (B) The influence of protein
expression of SCs in the G2/M phase versus control (* p < 0.05, ** p < 0.01); (C) Immunofluorescence
analysis of the number of sensitive mitotic cell marker p-Histone H3–positive cells after ZEA treatment.

2.3. ZEA Could Trigger the Autophagy in SCs

To further confirm whether cytoplasmic vacuoles seen by inverted-phase contrast microscopy
are related to autophagy, we divided the SCs into the ZEA treatment group (20 µM) and the control
group for 24 h. No obvious distribution of autophagic vacuoles or cytoplasm was observed under
electron microscopy in the control group (Figure 3A-a). While for the 20 µM ZEA treatment group,
under the same situation, typical autophagic vesicles and bilayer membrane structures were visible



Toxins 2018, 10, 398 5 of 14

(Figure 3A-c), showing autophagy lysosome (Figure 3A-b,A-c). These results further demonstrate that
ZEA can induce morphological autophagy in SCs.
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cytoplasm or perinuclear region are clear and visibly dotted (100×); (C) SCs in the logarithmic phase 
incubated at a concentration of 0 (control group), 1, or 20 μM ZEA for 24 h and then incubated with 
LC3 antibody using the observed technique (64×); (D,E) SCs treated with indicated concentrations of 
ZEA for 24 h and subjected to immunoblot analysis for the detection of LC3, Beclin1, p62, and 
autophagy-related genes Atg5 and Atg7 levels. * p < 0.05, ** p < 0.01 versus control. 
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pathway (PI3K, m TOR, and P70S6K). As shown in Figure 4A, within a certain concentration range, 
with the increase of ZEA concentration, the phosphorylation levels of PI3K, m TOR, and P70S6K 
decreased gradually. Compared with the blank group, when the concentration of ZEA was higher 
than 1 μM, the phosphorylation level of PI3K and P70S6K were significantly decreased (** p < 0.01), 
and the phosphorylation level of m TOR protein was significantly reduced (* p < 0.05), these results 
indicate that ZEA can induce autophagy by activating PI3K/Akt/m TOR signaling pathway. 

To further clarify the role of the PI3K/Akt/m TOR signaling pathway in autophagy, after the 
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shown in Figure 4D, Compared with the ZEA treatment group, the fluorescence signal intensity of 

Figure 3. ZEA induced autophagy in SCs. (A) SCs treated without (a) or with 20 µM ZEA 6600×
((b) Low power; (c) High power). Autophagic vacuoles are indicated by white arrows; (B) Autophagy
observed by fluorescence microscopy in which monodansylcadaverine-labeled bubble vesicles in the
cytoplasm or perinuclear region are clear and visibly dotted (100×); (C) SCs in the logarithmic phase
incubated at a concentration of 0 (control group), 1, or 20 µM ZEA for 24 h and then incubated with
LC3 antibody using the observed technique (64×); (D,E) SCs treated with indicated concentrations
of ZEA for 24 h and subjected to immunoblot analysis for the detection of LC3, Beclin1, p62,
and autophagy-related genes Atg5 and Atg7 levels. * p < 0.05, ** p < 0.01 versus control.
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MDC is a fluorescent dye that can be absorbed by cells and displayed on autophagy vesicles.
Autophagy was observed by fluorescence microscopy MDC-labeled bubble vesicles in the cytoplasm
or perinuclear region dotted with a clear structure. Thus, MDC can be used to evaluate the level of
autophagy in cells according to changes in the granular cells under fluorescence microscopy. As the
output in Figure 3B, compared with the control group, as ZEA concentration increased, fluorescence
density and the number of MDC-labeled autophagic particles increased as well. As it turns out,
the ZEA could induce the formation of autophagy in a dose-dependent manner within a certain
concentration range.

At the same time, to detect the effect of ZEA on SCs in the LC3 accumulation point, cells in each
group were incubated with LC3 antibody (Figure 3C). Under fluorescence microscopy, the control
group didn’t display any significant accumulation, while the ZEA treatment groups at concentrations
> 10 µM showed LC3 fluorescence signaling and significantly increased numbers of fluorescent cells
(** p < 0.01). The fluorescence intensity of individual cells in a certain concentration range increased in
a dose-dependent manner. These results indicated that ZEA treatment could increase autophagy in
SCs to some extent.

LC3 expression was detected by Western blotting (Figure 3D). The Western blot results showed
that LC3 protein expression increased as ZEA concentrations increased in vitro (** p < 0.01; * p < 0.05)
in a dose-dependent manner. The consistent detection and immunofluorescence results of the LC3
technique indicate that ZEA treatment can promote autophagy in SCs.

After treatment with different concentrations of ZEA treatment, ubiquitin binding protein p62
expression was downregulated (* p < 0.01; Figure 3E), However, the changes in Beclin-1, Atg5, and Atg7
protein expression were similar with that of LC3 II protein expression (** p < 0.01; * p < 0.05). Our results
further contend that ZEA treatment could increase autophagy in SCs.

2.4. ZEA Induced Autophagy through Inhibiting the PI3K/Akt/m TOR Signaling Pathway in SCs

The SCs in the logarithmic phase were disposed with different doses of ZEA for 24 h, Western-Blot
detected the expression of key proteins phosphorylation levels in the PI3K/Akt/m TOR signaling
pathway (PI3K, m TOR, and P70S6K). As shown in Figure 4A, within a certain concentration range,
with the increase of ZEA concentration, the phosphorylation levels of PI3K, m TOR, and P70S6K
decreased gradually. Compared with the blank group, when the concentration of ZEA was higher
than 1 µM, the phosphorylation level of PI3K and P70S6K were significantly decreased (** p < 0.01),
and the phosphorylation level of m TOR protein was significantly reduced (* p < 0.05), these results
indicate that ZEA can induce autophagy by activating PI3K/Akt/m TOR signaling pathway.

To further clarify the role of the PI3K/Akt/m TOR signaling pathway in autophagy, after the PI3K
inhibitor (LY294002) was pretreated, it was observed under the fluorescence microscope, as shown
in Figure 4D, Compared with the ZEA treatment group, the fluorescence signal intensity of LC3 in
LY294002 and ZEA was significantly increased (* p < 0.05); the increase of fluorescence signal cells
increased gradually (* p < 0.05), and the fluorescence accumulation was more obvious. The Western
blot results showed in Figure 4B,C, compared with the ZEA-only treatment group, the LY294002 and
ZEA combination treatment caused markedly decreased expression levels of p-AKT/AKT and p-m
TOR/m TOR (** p < 0.01), while the expression of LC3II/LC3I was significantly increased (** p < 0.01).
These results suggested that PI3K/Akt/mTOR signaling pathway exerted a negative regulatory role
in autophagy which ZEA induced in SCs.
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Figure 4. The role of the PI3K/Akt/m TOR signaling pathway in autophagy induced by ZEA.
(A) The cells in the logarithmic phase were treated with different concentrations of ZEA for 24 h,
Western-Blot detected the expression of key proteins phosphorylation levels in the PI3K/Akt/m TOR
signaling pathway (* p < 0.05, ** p < 0.01); (B,C) Expression levels of p-AKT/AKT, p m TOR/m TOR,
and LC3II/LC3I after adding PI3K inhibitors (LY294002) in the experiments (** p < 0.01); (D) Effects of
PI3K inhibitor on point phenomenon of SCs treated with the ZEA.
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2.5. The Role of Autophagy in ZEA-Induced G2/M Arrest in SCs

When the cells were disposed with 10 µM ZEA for 24 h and autophagy inhibitor (CQ) and
autophagy promotor (RAPA) were then added, cell cycle changes were detectable by flow cytometry
(Figure 5A). Compared with the ZEA-only group, after using autophagy inhibitor CQ, the percentage
of SC in the G2/M phase was increased significantly (* p < 0.05). After co-treatment with RAPA,
the proportion of SCs in the G2/M phase was decreased significantly (* p < 0.05). These results have
indicated that autophagy could reverse the G2/M phase arrest of SCs cell cycle induced by ZEA.
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To further clarify the effect of PI3K/Akt/m TOR pathway in ZEA-induced G2 arrest of SCs,
the cells in the logarithmic phase were pre-treated with PI3K inhibitor (LY294002) for 30 min and then
exposed to ZEA for another 24 h, the cell cycle changes were detected by flow cytometry. The results
are shown in Figure 5B, Compared with the ZEA-only group, after the addition of PI3K inhibitor
(LY294002), the percentage of SCs in the G2/M phase decreased significantly (* p < 0.05). These results
have shown that using the PI3K inhibitor (LY294002) to promote the level of autophagy could also
reverse the cell cycle arrest induced by ZEA in SCs.

2.6. The Role of Autophagy in the Expressions of Cell Cycle Regulatory Protein in SCs

In order to detect the function of autophagy in the expressions of the G2/M transition associated
proteins including cdc2 and Cyclin B1 in SCs, the autophagy inhibitor and promotor CQ and RAPA,
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and PI3K inhibitor (LY294002) were used in this study. As shown in Figure 4B, compared with the
ZEA-only treatment group, the CQ and ZEA combination treatment resulted in markedly decreased
expressions of the G2/M transition associated proteins including cdc2, cdc25B, and Cyclin B1.
In addition, the ZEA-induced increased expression levels of cdc2/p-cdc2, cdc25B, and cyclin B1
were restored by RAPA pretreatment (Figure 6A). Compared with the ZEA-only treatment group,
the LY294002 and ZEA combination treatment resulted in markedly enhanced activity of the G2/M
phase critical kinase cdc2 (* p < 0.05). The expressions of CyclinB1 and cdc25B were different, but the
difference was not significant (Figure 6B). These results have indicated that the inhibition of the
PI3K/Akt/m TOR signaling pathway could partly reverse the ZEA-induced arrest of SCs in the G2/M
phase, which through modulating the activity of cdc2.
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3. Discussion

In this study, we employed rat primary SCs to investigate the effects and the molecular
mechanisms of autophagy and PI3K/Akt/m TOR signaling pathway on male reproduction in vitro.
We found that ZEA significantly inhibited SCs proliferation at certain concentrations and led to cell
cycle arrest in the G2/M phase. The regulation of cell cycle is a multi-level and complex multi-step
process [25]. Several researches have revealed that the early toxic effects of mycotoxins such as
fusarium B1, ZEA, and deoxynivalenol (DON) are caused by apoptosis and proliferation inhibition or
cell cycle arrest in high concentration, induce a death of germ cells [26,27].

Of note, cell cycle regulation is a very complex process that involves multiple signaling pathways
and cytokines [28]. The key mitosis-promoting factor which regulated the transition from G2 to M
phase is in part by Cyclin B1 and cdc2. Thereinto, the phosphorylation state of cdc2 inhibited the
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activity of Cyclin B1/cdc2 complex, an important enzyme that promotes conversion to the G2/M
phase; when cdc25B is activated, it can cause cdc2 dephosphorylation, which enhanced the activity
of Cyclin B1/cdc2 and stimulated the G2 conversion. Therefore, when G2/M arrest occurs, due to
cdc25B activity inhibition, the higher-level phosphorylation state of cdc2 maintained and the activity
of Cyclin B1/cdc2 complex is inhibited [29,30]. Moreover, p21 is a downstream mediator of the tumor
suppressor p53 in stress conditions, which also negatively regulated the complex activation of Cyclin
B1/cdc2 [31,32]. The results of our research showed that ZEA increased the protein expression levels
of p53 and p21 (Figure 2B), and the expressions of cell cycle related proteins decreased significantly
(Figure 2B). The expression of p-Histone H3 was decreased significantly in the mitotic phase (Figure 2C).
These results suggest that ZEA inhibits SCs proliferation and is closely related to G2/M arrest.

It has been known for many decades that autophagy, a conserved lysosomal degradation
pathway, is highly active during cell differentiation and development, and it regulates the intracellular
homeostatic mechanism that mediates protein and organelle degradation. Studies [33–35] have
shown that autophagy regulates the intracellular homeostatic mechanism that mediates protein and
organelle degradation. Autophagy can be induced through multiple interconnected pathways, such as
the MAPK, PI3K-AKT-mTOR, and ATP-AMPK-m TOR signaling pathways [36,37]. In our study,
the immunofluorescence analyses show that as ZEA concentration increased, the LC3 accumulation in
SCs significantly increased and the number of acidic vesicles increased (Figure 3C). Thus, these results
demonstrated that ZEA can trigger autophagy in SCs. To further clarify the role of the PI3K/Akt/m
TOR signal pathway in autophagy, we use LY294002 Inhibitor treatment. Results indicate that
PI3K/Akt/m TOR signaling pathway plays a negative regulatory role in autophagy which ZEA
induced in SCs.

Autophagy stabilizes the intracellular environment and maintains cell survival through balancing
anabolism and catabolism [38]. The PI3K-Akt-mTOR signaling pathway is also a major signal
transduction cascade involved in cellular metabolism, proliferation, and survival, and plays an
important role in autophagy [39]. Thereinto, autophagy-related proteins such as Akt regulate many
physiological processes within cells, promote cell division and proliferation, and play an important
role in the cell cycle [40]. m TOR is one of the important regulatory factors in autophagy, which can
sense the nutritional status and cell stress [41]. We supposed that there exists a forceful and intricate
relationship between cell cycle and autophagy under different circumstances, to further investigate
the effect of autophagy and PI3K/Akt/m TOR pathway on ZEA-induced G2 arrest of SCs, we add
chloroquine (CQ), PI3K specific inhibitor (LY294002) treatment, and rapamycin (RAP) promoter
treatment. The results are shown in Figure 5A,B, compared with the ZEA-only treatment group,
we found that the percentage of SCs in the G2/M phase decreased significantly after the addition of
PI3K inhibitor (LY294002). Western blot results showed that (Figure 6A,B) the expressions of Cyclin B1,
ccd2, and cdc25B increased significantly when promoting autophagy, though compared with the ZEA
treatment group, the LY294002 and ZEA combination treatment resulted in markedly enhanced cdc2
activity of the G2/M phase, the expressions of CyclinB1 and cdc25B were different, but the difference
was not significant. These results indicate that the defects of autophagy could lead to cell cycle arrest
in the G2/M phase; the inhibition of the PI3K/Akt/m TOR signal pathway could partly reverse the
ZEA-induced arrest of SCs in the G2/M phase, through modulating the activity of cdc2.

4. Conclusions

In summary, this study suggests that ZEA could inhibit the proliferation through arresting the cell
cycle arrest in the G2/M phase. ZEA could induce autophagy through inhibiting the PI3K/AKT/m
TOR signaling pathway in SCs. Inhibiting PI3K/Akt/m TOR signaling pathway can partially reverse
the ZEA-induced arrest of SCs in the G2/M phase. Thus, to some extent, the ZEA-induced autophagy
plays a protective role in this process (Figure 7).
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5. Materials and Methods

5.1. Reagents

Zearalenone (ZEA), chloroquine (CQ), rapamycin (RAP), and dansylcadaverine (MDC) were
purchased from Sigma-Aldrich (St. Louis, MO, USA); PI3K specific inhibitor (LY294002) were obtained
from MCE (Shanghai, China); and the cell cycle assay propidium iodide (PI) were purchased from
Becton Dickinson Company (BD, Franklin Lakes, NJ, USA).

The polyclonal antibodies against Beclin-1 (Ref. No.: 07/2016), LC3 (Sigma, L7543), Atg5 (Ref. No.:
09/2015), GAPDH (Ref. No.: 12/2016), HRP- conjugated goat anti-rabbit IgG (Ref. No.: 10/2016) were
purchased from Cell Signaling Technology (Danvers, MA, USA); Enhanced chemiluminescence (ECL)
solution was obtained from Thermo Fisher Scientific (Waltham, MA, USA). All the other chemicals
and reagents were analytical grade and were obtained commercially.

5.2. Cell Cultures

All experimental procedures were conducted in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Research Council and were
approved by the Animal Care and Use Committee of Yangzhou University (Yangzhou University
Medical Center, Approval ID: SYXK (Su) 2017-0044). 18–21 days male Wistar rats were provided by
Yangzhou University Medical Center Rats primary SCs were cultured at 37 ◦C in 5% CO2 in Dulbecco’s
Modified Eagle Medium/F12 supplemented with 10% fetal bovine serum and antibiotics (100 U/mL
penicillin G and 100 µg/mL streptomycin). ZEA was dissolved in dimethylsulfoxide (DMSO) and
stored at −20 ◦C.

5.3. Cell Proliferation Assay

Cell proliferation was analyzed using a Cell Counting Kit-8 (CCK-8) (Dojindo, Japan). Cells were
plated at a density of 1 × 104 per well in a 96-well plate, after exposure to ZEA at different
concentrations (0, 0.1, 1, 10, 20, 40, 60, and 80 µM) for 24 h. CCK-8 solution (10 µM) was added
to each well, the culture plate was placed in an incubator for 2–4 h, the plate was examined by an
enzyme-linked immunosorbent assay tester, and absorbance was determined at 450 nm.

5.4. Cell Cycle Assay

To verify the effects on cell cycle distribution by ZEA and the percentage of cell cycle, the cells
were examined by using the cell cycle detection kit. Before cell cycle determination, the SC were
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cultured with various concentrations of ZEA (0, 0.1, 1, 10, 20, 30 µM) for 24 h, and then suspended in
75% ethanol and fixed overnight at 4 ◦C. Then the cells were treated with 25 µg/mL propidium iodide
(PI) for 15 min at room temperature in the dark. The proportions of cells in the G0/G1, S, and G2/M
phases were determined by examining the intensity of PI fluorescence with flow cytometer using an
argon laser and 570-nm bandpass filters.

5.5. Western Blotting Analysis

SCs in the logarithmic phase were cultured in a 100-mm dish, after exposure to different treatment
group for 24 h. Proteins were extracted with cell lysis buffer on ice, then the lysis buffer was collected
and centrifuged, each sample was diluted to the same protein concentration. Equal amounts of
protein (40 µg/lane) was separated on 6–15% SDS–PAGE and then transferred to PVDF membranes
(Millipore Corporation, Bedford, MA, USA). After incubated in blocking buffer for 2 h at room
temperature. The membranes were probed with the indicated primary antibodies at 4 ◦C overnight,
washed and then incubated with goat anti-rabbit/ mouse secondary antibodies for 2 h at room
temperature. After extensive washed with Tris-buffered saline + Tween 20, they were visualized and
analyzed with an ECL detection system.

5.6. Transmission Electron Microscopy (TEM)

To observe the cell ultrastructure changes and autophagy formation by transmission electron
microscopy, the cells were inoculated into the dish and treated with 0 or 20 µM ZEA for 24 h.
All suspended and adherent cells were collected. Using 0.25% trypsin, the cells were digested into a
single cell suspension and centrifuged at 1000 r/min for 10 min. After precooling, the supernatant
was washed twice with cold phosphate buffered saline (PBS), 2.5% glutaraldehyde was slowly added
to prevent dissolution of the cells, and the suspension was fixed at 4 ◦C for 90 min. The cells were
washed again with PBS, fixed with 1% osmium tetroxide at 4 ◦C for 30 min, and rinsed again with PBS.
Finally, the cells were dehydrated with a series of ethanol (50–100%) (10%) and pure acetone and then
embedded into EPON 812 resin. The embedded block was cut into thin sections, stained with uranyl
acetate and lead citrate Zi, and observed under electron microscopy.

5.7. Immunofluorescence Microscopy

The SC were inoculated into the pre-placed six-well slide plates at 37 ◦C and 5% CO2 incubator
training overnight. After exposure to different treatment group for 24 h, and fixed with 4%
paraformaldehyde at 4 ◦C for 30 min, and after three washes with PBS, the cells were incubated
with 5% BSA sealing solution at room temperature for 30 min. Then cells were incubated with LC3
primary antibody overnight at 4 ◦C, After washing, the cells were labeled with goat anti-rabbit IgG
secondary antibody conjugated with FITC for 1 h, After washing again, nucleus was stained with
DAPI for 15 min. Images were obtained by confocal microscope.

5.8. Statistical Analysis

The results are presented as the mean ± standard deviation (SD). Statistical data comparisons
among groups were performed using a non-parametric, SPSS one-way analysis of variance, with p < 0.05
considered statistically significant. Each experiment was performed at least in triplicate.
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