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Abstract

Background: Although reciprocal regulation of protein phosphorylation represents a key aspect
of signal transduction, a larger perspective on how these various interactions integrate to
contribute towards signal processing is presently unclear. For example, a key unanswered question
is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the
signaling network translates into modulation of the net signal output and, thereby, the cellular
phenotypic response.

Results: To address the above question we, in the present study, examined the dynamics of
signaling from the B cell antigen receptor (BCR) under conditions where individual cellular
phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly
enmeshed structure for the signaling network where each signaling node was linked to multiple
phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted
in a configuration where individual signaling intermediates could be influenced by a spectrum of
regulatory phosphatases, but with the composition of the spectrum differing from one intermediate
to another. Consequently, each node differentially experienced perturbations in phosphatase
activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This
heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of
the corresponding signaling axes for the downstream transcription factors.

Conclusion: Our cumulative results reveal that it is the tight integration of phosphatases into the
signaling network that provides the plasticity by which perturbation-specific information can be
transmitted in the form of a multivariate output to the downstream transcription factor network.
This output in turn specifies a context-defined response, when translated into the resulting gene
expression profile.

Background transduction [1-6]. Although information on the role of
Reciprocal regulation of protein phosphorylation by  phosphatases in regulating individual signaling modules
kinases and phosphatases represents a key aspect of signal ~ continues to accumulate, a larger perspective on how

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18798986
http://www.biomedcentral.com/1756-0500/1/81
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Research Notes 2008, 1:81

these various interactions integrate to contribute towards
signal processing is lacking [7-9]. To explore this we exam-
ined the dynamics of signaling from the B cell antigen
receptor (BCR) under conditions where individual cellu-
lar phosphatases were selectively depleted by siRNA. We
found that each phosphatase exhibited an extended
sphere of influence where the rate, amplitude and dura-
tion of the signal at multiple nodes could be simultane-
ously affected. Thus, any perturbation in phosphatase
activity was propagated in an unequal fashion across the
network, thereby producing its own unique fingerprint in
terms of nodal contribution to the net signal output. It
was this property that ensured that the effector output of
the signaling network could be manipulated in a combi-
natorial manner.

Findings

Phosphatase-mediated regulation of BCR signaling
Murinr B lymphoma, A20, cells were first individually
depleted of one of a set of ten selected phosphatases
siRNA. The extent of depletion varied 65% to 90% at the
protein level (Additional file 1). Subsequently, these cells
were stimulated with anti-IgG, and the time-dependent
phosphorylation of a select panel of eighteen signaling
intermediates was monitored[10]. Figure 1A summarizes
the results obtained (see Additional files 2 and 3) in the
form of a heat map. It is evident that silencing of any given
phosphatase led to distinct effects on each of the signaling
intermediates examined (Fig. 1A). However, the phos-
phatases involved and the extent of their effects differed
between the intermediates (Fig. 1A). Conversely, each sig-
naling molecule also displayed sensitivity to a broad
range of phosphatases, although the effect varied depend-
ing upon which phosphatase was inhibited. For instance,
the amplitude of BLNK phosphorylation was enhanced
following PP2A-silencing, while it was attenuated either
when PP1, SHP-1, HePTP, or MKP1 was suppressed (Fig.
1A). Thus, phosphatases appear to be intimately involved
in shaping the phosphorylation profile of the various,
BCR-dependent, signaling intermediates.

Phosphatases modulate the signal output

We next determined the area under the phosphorylation
curve (AUC) obtained for each intermediate, for each of
the various conditions of perturbation. Although a gross
approximation, we took this value to represent signal
intensity at that particular node, under that specific per-
turbation condition. To estimate total flux of signal gener-
ated, the AUCs of each of the nodes under individual
conditions were then summed up. Figure 1B reveals that
cellular phosphatases influence the cumulative strength of
receptor-dependent signal generated. Further, significant
effects were also observed at the level of signal composi-
tion (Fig. 1B). Thus, contributions from Shc and JNK were
substantially reduced in cells depleted either of SHP-1,
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HePTP, or PTP1B. In contrast, the effect was restricted to
Shc in cells expressing reduced levels of SHP-2, or MKP1
(Fig. 1B). Such phosphatase-dependent variations in sig-
nal intensity were observed for all individual signaling
intermediates examined, resulting in unique patterns of
proportional contributions from the individual compo-
nents to the signal strength. Thus, cellular phosphatases
individually exert weighted effects on the signaling net-
works.

Figure 2 compares three different aspects of the phospho-
rylation curves obtained in Figure 1. These are; the peak
phosphorylation level, the initial rate of activation (upto
1 min.), and the rate of subsequent dephosphorylation
(decay rate) for the individual molecules. It is evident that
all these three parameters displayed differential sensitivity
to phosphatase depletion. Typical examples for each
parameter are shown in Figure 2A, B and 2C. That both
positive and negative effects can be seen in each case high-
lights the multiplicity of mechanisms that seem to be
involved in the phosphatase-mediated regulation of BCR-
dependent signaling.

Activation-induced protein phosphorylation represents
dynamic shifts in the kinase-phosphatase equilibrium

We next selected four target proteins that were stably
phosphorylated - upon cell stimulation - to yield a pla-
teau phase that was sustained over an extended period of
time (i.e. Lyn, ERK, PLCy, and JNK). Our aim was to ascer-
tain whether this plateau phase truly described a stably
phosphorylated state, or, if it simply identified an altera-
tion in turnover between the phosphorylated and the
dephosphorylated states of the protein.

We performed pulse chase experiments wherein cells that
were pre-equilibrated with 32[P]-orthophosphoric acid
were chased with excess of non-radioactive phosphate at
the time of maximal stimulation with anti-IgG. The target
proteins were then immunoprecipitated from cell lysates
at various times thereafter, and the extent of phosphoryla-
tion determined either by Western blot with specific anti-
bodies, or by autoradiography to monitor the level of
radioactive phosphate incorporated. Western blot analy-
sis confirmed that stimulation of cells leads to phosphor-
ylation of all four proteins examined, with the maximally
phosphorylated state persisting over the remainder of the
experiment (Fig. 3A &3B). This, however, contrasted with
the profile obtained for the phosphate-associated radioac-
tivity. A progressive, time-dependent, decline in the spe-
cific activity of the radiolabel was detected in all cases (Fig.
3A &3B). Importantly, this dilution in specific activity
could be significantly inhibited by the inclusion of phos-
phatase inhibitors (Fig. 3A &3B). These results, therefore,
reveal that the stimulus-induced phosphorylation profile
of a signaling intermediate defines a continuum of mod-
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Figure | (see previous page)

Influence of Phosphatase knockdowns on BCR-dependent activation of signaling intermediates. Panel 'A’ depicts
the kinetics of phosphorylation of select intermediates in the BCR signaling pathway. Normalized phosphorylation profiles are
represented here as a heat map with rows showing various siRNA knockdowns and columns showing different signaling inter-
mediates whose phosphorylation were measured. The blown out region shows such profiles of PKD under all the knockdown
conditions. The color bar shows relative magnitude of phosphorylation at individual time points. Panel 'B' shows cumulative
area under curve calculated for activation profile of all the signaling molecules under individual knockdown condition (see text).
Total area under activation curve as well as individual contribution of signaling intermediates varied across the siRNA knock-
down conditions. The height of each bar gives the net strength of BCR signal generated (see text) following transfection of cells
either with Mock, or individual phosphatase-specific sSiRNA. The colored regions within each bar identify the signaling interme-
diates examined, and the area of spread represents their proportional contribution to the net signal strength.

ulations in the turnover between the phosphorylated and
non-phosphorylated states of the target protein.

We also scanned for associations between select signaling
intermediates and the protein phosphatases. Five repre-
sentative signaling intermediates (Akt, ERK-1/2, JNK,
PLCy, and Raf) were immunoprecipitated from lysates of

A: Peak Phosphorylation B: Initial Rate of Phosphorylation (u/sec)

< Akt JNK Bad Lyn Pyk2 _ BLNK

5 F 2

K 10

et 3}— = [

8 2 s |-

s 1_i.._l__‘___'{,_.__1_ ..g 6

= 05 L

T 0.9]- 3 = —

S "3 F X3 2,

- 3 a y F

1 ] E | 1 i L (2] ’ 2 .

Sy FSFH S 2 0 10 1 0 1 1
&> 2 g V& S o

C: Relative rate of de-phosphorylation

< JNK MEK1/2 PKD Syk Bcl2 Pyk2
g3 100 .
§3
E x 75 B
E‘&’ B T
o
£5 %0 .
2
.g ~ 25 I | 1 1 1 1 1 1 1 L I
o 10 20 10 20 10 20 10 20 10 20 10
Time (Minutes)
Figure 2

Phosphatase-dependent regulation provides for the generation of signal plasticity. Panels A, B and C depict the
effect of silencing of either PP| (@), PP2A (O), MKP3 (#), MKPI (), MKP2 (M), SHP2 (V), HePTP (A), PP2B (¥), SHPI (A)
or PTPIB (®) on peak phosphorylation levels, initial phosphorylation rate and rate of de-phosphorylation respectively on rep-
resentative examples, as compared to that obtained for cells treated with non-silencing siRNA (dashed line in panel A, or * in
panels B and C).
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Figure 3 (see previous page)

The kinase-phosphatase dynamic equilibrium determines the activity profile of signaling intermediates. Panel A,
shows the results of a pulse-chase experiment (see text) where the indicated intermediates were immunoprecipitated and
their phosphorylation status monitored either by Western blot (with phospho-specific antibodies, lane 1), or by autoradiogra-
phy (lane 2). Lane 3 shows the results of a parallel experiment where phosphatase inhibitor (Sodium vanadate) was also
included during the chase period. Lane 4 compares the amount of the parent protein present in each group as detected by
Western blot using antibodies specific for the individual proteins. Panel B provides a graphical depiction of the relative stability
of the phosphorylated forms of each of these intermediates after they reach the peak, when detected either by Western blot
(left hand side), or by autoradiography (middle). The profile obtained in parallel groups that included phosphatase inhibitor is
also shown (right hand side). Intensity values obtained for the data shown in panel A are plotted here, and values are the mean
(x S.D.) of two independent experiments. The rate of turnover of the 32P-labelled y phosphate of ATP, in these cells, is shown
in panel C. Panel D shows the results of co-immunoprecipitation experiments where the indicated signaling intermediates
(indicated on the left of the blots) were immunoprecipated from cells stimulated for various times as shown. These immuno-

precipitates were then examined by Western blot analysis for the association of various cellular phosphatases. The results
obtained are shown here and the identified phosphatases are indicated on the right of the blots.

either unstimulated cells, or, cells stimulated either for 10
or 30 min. Immunoprecipitates were then subjected to a
Western blot analysis with antibodies directed against the
seven phosphatases identified in Figure 1A.

Figure 3D shows that each signaling intermediate associ-
ated with multiple cellular phosphatases through a com-
bination of constitutive and dynamic interactions. Thus,
Raf was constitutively associated with PP2A and PP1,
whereas PLCy interacted with SHP-1 and SHP-2 (Fig. 3D).
In addition, stimulus-dependent modulations were also
evident as in the case of PP2A with ERK-1/2, and the
recruitment of SHP-1 and HePTP by Raf, and PLCy respec-
tively (Fig. 3D). This confirms that the phosphorylation
status of at least several of the signaling intermediates is
regulated by the action of multiple phosphatases both
under basal and receptor-activated conditions.

Altered transcription factor activation and gene
expression in response to phosphatase-mediated signal
perturbation

To examine the consequences of phosphatase-induced
modulations in signaling behavior, we studied activation
of a set of three transcription factors (TFs) as a simple and
direct readout for modulations in net signal output[11].
These were the p65 subunit of NFkB, NFAT, and the c-Jun
subunit of AP-1. TF activation was measured as the extent
of nuclear accumulation of the activated form by immun-
ofluorescence-based microscopy [12-17]. Cells treated
either with non-silencing, or phosphatase-specific, siRNA
were stimulated for 0, 30, or 60 min, and the temporal
modulations in the nuclear pool of the three TFs was
determined, as a function of phosphatase-depletion (Fig.
4A-D). In the representative example shown, the activa-
tion profile of AP1 was significantly altered in cells
depleted of SHP-1 (compare Figs. 4C-E).

Figure 4F summarizes the results obtained (Additional
files 4 and 5). The observed diversity in the range of activ-
ity profiles induced supports that cellular phosphatases
play a key role in facilitating the combinatorial processing
of signal, thereby leading to multivariate outcomes at the
level of TF activation. Consistent with this, depletion
either of PP1, PP2A, or SHP1 (representative examples)
was also found to influence the BCR-dependent gene
expression profile such that a unique pattern was gener-
ated in each case (Additional files 6 and 7). Thus, combi-
natorial modulation of signal processing translates into a
multivariate output at the level of transcription factor acti-
vation, the outcome of which is then expressed through a
diversification in the pattern of gene expression (Addi-
tional file 6).

Defining a signaling axis for transcription factor activation
To extract underlying inter-dependencies between the sig-
naling network and TF activation, we used Partial Least
Square Regression (PLSR) analysis [18-20]. We trained the
PLS model using the signaling parameters as independent
variables (X), and the activation profile of the individual
TFs as the dependent variables (Y). The signaling variables
were determined from the phosphorylation profiles of
each intermediate, under each of the siRNA conditions
tested. Here, each phosphorylation profile was resolved
into three separate parameters, which were the activation
rate (S,.«/tmay Measured as the ratio of the peak activa-
tion and the time taken to achieve it), the total area under
the phosphorylation curve (A), and the rate of subsequent
dephosphorylation (A)[10]. Details of the model refine-
ment and validation are provided in Methods (Additional
files) and Additional files 8, 9, 10, 11. Figure 5A shows the
plot for the observed versus predicted values for all the
three TF-activation responses. The prediction accuracy
achieved was about 90% for all cases.
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Figure 4 (see previous page)

Differential signal processing results in differential activation of transcription factors. A20 cells were transfected
with phosphatase specific siRNAs or mock siRNA, stimulated for 0, 30 and 60 minutes and were then stained with antibodies
specific to transcription factors pp65, NFAT and p-c-jun followed by secondary antibody conjugated to Alaxa488. Cells were
also stained with DAPI to locate the nucleus and were then monitored under Nikon TE 2000E microscope equipped with 60%/
I.4 NA planapochromat DIC objective lens. Panel A, B and C shows representative fields for pp65, NFAT and p-c-jun respec-
tively. Within each panel, column one shows antibody specific fluorescence, column two shows nuclear staining of the cells by
DAPI, third column shows merging of the first two images (to see co-localization) and fourth columns shows white light image
of the cells for which fluorescence were measured. The rows in each panel show various time points after stimulation of the
cells. Panel D shows similar images for p-c-Jun under SHPI knockdown condition. Images in column three, panel D bordered
red (0 minutes and 60 minutes post stimulation) are enlarged below in Panel E for better depiction of visible differences in co-
localization (see text for detail) in stimulated cells. Co-localization coefficients were calculated (for details see Additional Meth-
ods) for all the three transcription factors in the nucleus at every time points under all the perturbation conditions. Values
measured from a minimum of 15 cells were taken to obtain average co-localization and they are plotted for all the transcription

factors under various conditions (Panel F).

We next enlisted all of the principle component axes
obtained in the models for each of the TFs. The corre-
sponding signaling parameters were then arranged along
these axes in the descending order of their significance to
determine whether this produced segregation between
those signaling parameters that correlated positively and
negatively, with the activation of that particular TF. PC2
yielded this segregation for the models for NFAT and AP1,
whereas it was PC1 for the pp65-derived model (Addi-
tional file 12). The constituent signaling parameters, and
their quantitative distribution in the three TF-specific
principle component axis space is shown in Figure 5B.
Interestingly, these parameters could be further classified
into three groups depending upon whether they were
common to all three TFs, common to only any two, or,
unique to a given TF (Fig. 5C).

To evaluate the relative sensitivities of the constituent sig-
naling parameters to the individual phosphatases, we
examined each signaling axis described in Figure 5C for
the extent of phosphatase-induced variation in individual
VIPs. These values were expressed as the fold-variation
over that obtained in cells treated with non-silencing
siRNA, and the results are shown in the form of a pseudo-
color diagram in Additional file 13. Individual VIPs that
comprise the TF response-axes showed a wide variation in
the extent of their sensitivity to the phosphatase-targeted
perturbations. As a result, each phosphatase-perturbation
yielded its own characteristic fingerprint of VIP values,
along each of the three TF activation pathways. That is,
each perturbation exerted non-identical effects on the
individual signaling parameter tracks for the various TFs,
thereby ensuring an output that is multivariate in nature.

Our results highlight two overlapping structural features
that complement each other to provide plasticity to the
signaling network. At one level, each node was regulated
by multiple phosphatases such that both the quantitative

and kinetic aspects of its phosphorylation represented the
end result of these combined effects. Complementing this
was our related finding that each cellular phosphatase, in
turn, exerted its influence over multiple nodes of the sign-
aling network. Importantly, this effect was weighted in
nature, leading to both quantitative and qualitative varia-
tions in the contribution of individual nodes to the net
signal output. Thus these combined insights reveal an
intricately enmeshed structure for the signaling network,
with each node being connected - either directly or indi-
rectly - to several phosphatases on the one hand, and each
phosphatase being - in turn - linked to multiple nodes,
on the other. This high degree of connectedness allowed
for the effects of phosphatase-perturbation to be propa-
gated to a substantial proportion of the nodes of the sign-
aling network. However, given that the 'small world'
environment of regulatory phosphatases differed from
one node to another, each node experienced this pertur-
bation in distinct ways, leading to a situation where the
composition of the output could be diversified in a com-
binatorial manner. It is this structural feature that sensi-
tizes the signaling network to modulations in component
activity, where a given modulation was expressed as a con-
text-unique fingerprint of VIP values. Each such finger-
print in turn translated into variable effects on the TF-
specific signaling axes, thus eventually generating a con-
text-unique output in terms of the resulting gene expres-
sion profile. The segregation of signaling parameters
derived from same node into different response-specific
axes extends our earlier findings [10], implicating it as a
general mechanism for defining the signal-dependent cel-
lular response. (Please see additional files 14 and 15.)

Abbreviations

BCR: B Cell Receptor; siRNA: small interfering RNA; anti
IgG: Fab2 fragment of Goat anti Mouse IgG; TF: Transcrip-
tion Factor; PLS: Partial Least Square; PC: Principle com-
ponent; VIP: Variables in Importance of Projection
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Signaling axes for transcription factor activation consisting of molecular parameters. The multivariate data for sig-
naling molecules and transcription factor activation were taken into a partial least square regression model (see text for
details). Panel A shows observed versus predicted values for transcription factor activation under various knockdown condi-
tions. The signaling axes for transcription factor activation were determined using our approach to classify signaling parameters
on principle component axis according to correlation with TF activation (see text for detail). The overlapping set of signaling
parameters are pictorially depicted in panel B in a 3-D plot consisting of PC1 for pp65 and PC2 for NFAT and p-c-Jun model.
Response specific signaling parameter tracks are shown in Panel C where unique, common to two and common to all three
cellular responses are depicted schematically.
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Additional material

Additional File 1

Rationale for the selection of the molecules in this study. The text discuss
about how we selected the list of signaling intermediates, phosphatases
and transcription factors.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S1.doc]

Additional File 2

Methods. The text discusses all the methodologies used in this study.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S2.doc]

Additional File 3

Specific knockdown of phosphatases using specific siRNA. Western blot
images are shown depicting specific knockdowns.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S3.pdf]

Additional File 4

Signaling events downstream of BCR following depletion of specific phos-
phatases. Western blot profiles of signaling intermediate, as obtained
under various phosphatase knockdown conditions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S4.pdf]

Additional File 5

Normalized values for the Western blot data shown in Additional file 4.
Quantitated data of western blot profiles.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S5.pdf]

Additional File 6

Microscopy images for transcription factor activation. Confocal micros-
copy images for the activation of three transcription factors studied here.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-86.pdf]

Additional File 7

Numerical values for the TF activation. Data shows quantitative co-local-
ization coefficient between specific fluorescence and DAPI fluorescence.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S7.pdf]

Additional File 8

Transcription regulation of BCR dependent genes by phosphatases. Path-
way specific gene expression data from cells treated with specific siRNAs
against individual phosphatases.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S8.pdf]
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Additional File 9

Data for GE Superarray experiment. Quantitative values for the gene
expression data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-89.pdf]

Additional File 10

List of VIPs for the three TFs. Variables in importance of projection, for
the three TFs activation as listed by the respective PLS model.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S10.pdf]

Additional File 11

Iterative cross-validation of the PLS model. Cross validation of the model
for its R2 (variability captured) and Q2 (predictive ability).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S11.pdf]

Additional File 12

Microscopy images of AP1 activation under Signaling intermediate knock-
down condition. Confocal microscopy images for the activation of AP1
under new set of perturbations.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S12.pdf]

Additional File 13

Predictive ability of the model for untrained data. Ability of the PLS model
to predict AP1 activation under untrained conditions.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S13.pdf]

Additional File 14

Alignment of signaling parameters on PC1 and PC2axes and respective
correlation with the three TF activation profile. Functional segregation of
signaling parameters on principle component axes along specific TF acti-
vation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S14.pdf]

Additional File 15

Sensitivity of response specific VIPs to perturbations. Sensitivity of
response specific VIPs to perturbations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-1-81-S15.pdf]
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