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Comprehensive assessment 
of TP53 loss of function 
using multiple combinatorial 
mutagenesis libraries
Vincent Carbonnier1, Bernard Leroy2, Shai Rosenberg3,4 & Thierry Soussi1,2,5*

The diagnosis of somatic and germline TP53 mutations in human tumors or in individuals prone to 
various types of cancer has now reached the clinic. To increase the accuracy of the prediction of TP53 
variant pathogenicity, we gathered functional data from three independent large-scale saturation 
mutagenesis screening studies with experimental data for more than 10,000 TP53 variants performed 
in different settings (yeast or mammalian) and with different readouts (transcription, growth arrest or 
apoptosis). Correlation analysis and multidimensional scaling showed excellent agreement between 
all these variables. Furthermore, we found that some missense mutations localized in TP53 exons 
led to impaired TP53 splicing as shown by an analysis of the TP53 expression data from the cancer 
genome atlas. With the increasing availability of genomic, transcriptomic and proteomic data, it is 
essential to employ both protein and RNA prediction to accurately define variant pathogenicity.

The analysis of somatic and germline TP53 mutations in human cancer is becoming clinically pertinent in 
numerous settings. In several hematological malignancies such as chronic lymphocytic leukemia (CLL), acute 
myeloid leukemia (AML), and myelodysplastic syndrome, TP53 status is used to identify patients likely to benefit 
from specific  treatment1,2. Furthermore, the early identification of germline TP53 mutations has been shown to 
be highly beneficial for disease surveillance in patients with Li-Fraumeni syndrome or families with hereditary 
breast and ovarian cancer  syndrome3. Today, high-throughput next generation sequencing (NGS) has ended 
the analysis bottleneck, but meeting quality requirements for clinical diagnostics used in personalized medicine 
requires the careful analysis of an exponentially-growing amount of genomic data.

One of the most unusual aspects of the TP53 gene is the high frequency of somatic and germline missense 
mutations that occur in it, which is particularly unusual for a tumor suppressor  gene4. This specific selection is 
believed to be linked to the antimorphic and/or neomorphic activities of the variants that transform the tumor-
suppressive wild-type TP53 into a mutant oncogene.

An analysis of the most recent release of the UMD_TP53 database in the context of the TCGA showed that 
nearly any of the 393 residues of the TP53 protein can be found mutated in a human tumor, albeit at very dif-
ferent  frequencies5. Determining the impact of all these mutations on protein functions will thus be essential. 
Multiple prediction methods are currently available, using information related to phylogenetic sequence con-
servation, amino acid physicochemical properties, functional domains and structural  attributes6. Furthermore, 
several meta-tools integrating various predicting methods have been developed, such as Condel, PONP2, or 
 REVEL7. More recently, machine learning has been used to develop algorithms that improve variant classifica-
tion. Although many of these methods have been used for the prediction of TP53 variants, none of them have 
reached sufficient specificity and sensitivity for routine use.

The availability of functional data is a tremendous advantage in the analysis of TP53 variants. In 1994, we 
performed the first systematic analysis of 30 TP53 variants and demonstrated in that work a high heterogeneity of 
TP53 variant loss of  function8. In 2003, C. Ishioka’s group released the first large-scale functional analysis of more 
than 2000 TP53  variants9. Using a convenient yeast assay, they were able to define the transcriptional activity of 
those variants using eight different reporter genes. Further studies showed that there was an excellent correlation 
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between the loss of TP53 activity and the frequency of TP53 variants in human  cancer10. That information was 
quickly included in a number of databases and is currently the most informative and useful parameter to infer 
TP53 variant pathogenicity. More recently, this functional analysis approach was extended to a larger panel of 
TP53 variants in two new studies, each employing different read-outs to infer TP53 variant  activities11,12. In 
both of them, TP53 variants were expressed in mammalian cells and activities such as growth arrest or apop-
tosis were analyzed. Whether data from these three functional analyses, each using different read-outs, are in 
agreement for each TP53 variant has not yet been determined. In the present study, we performed an in-depth 
correlation analysis using these three large datasets of TP53 activities. Taking advantage of a newly devised set 
of pathogenic TP53 variants, we demonstrate excellent correlation between the three datasets. Furthermore, we 
show that cancer variants with intact protein functionality can display impaired splicing and RNA stability. This 
latter aspect suggests that the determination of variant pathogenicity systematically through protein function 
falls short of optimal and that it can be improved by systematically including information on RNA expression 
to increase the accuracy of predictive analysis.

Results
Mutability of the TP53 open reading frame in human cancer. For the present study, we focused on 
missense variants as they are the most frequent modifications observed in the TP53 gene and the most difficult to 
predict. The TP53 open reading frame (ORF) (CCDS11118.1) contains 1185 nucleotides, 393 significant codons 
and a single terminator codon. Theoretically, each codon can sustain one, two or three bases substitutions, i.e., 
24,822 potential variants (Supplementary Fig. 1). In human tumors, the vast majority of TP53 (99.4%) variants 
result from single nucleotide substitutions (SNS) and very few from two or three substitutions in the same codon 
(Supplementary Fig. 1). In a previous study, we showed that TP53 variants resulting from dinucleotide (DNS) or 
trinucleotide substitutions (TNS) at hotspot codons 175, 248 and 273 could be highly deleterious for TP53 activ-
ity but were never observed in human cancer due to the very low probability of such  events8. Although the first 
saturation mutagenesis of TP53 performed by Kato et al. included only SNS, the two recent studies performed by 
Kotler et al. and Giacomelli et al. included SNS, DNS and TNS in either the core domain of  TP5311 or the entire 
TP53  ORF12. Variants in the core domain of TP53, whether they result from SNS or DNS and TNS, lead to a loss 
of function of the TP53 protein (Fig. 1A). The absence of DNS and TNS variants in the UMD_TP53 database (or 
any other cancer database) is coherent with their rarity in cancer genomes.

Relation between TP53 loss of activity and frequency in the UMD_TP53 database. The UMD_
TP53 database has been steadily updated since its creation in 1991. It is furthermore regularly and carefully 

Figure 1.  Functional analysis of TP53 variants. (A) TP53 variants from the core domain resulting from SNS, 
DNS and TNS are functionally impaired. TP53 variants were separated into 3 categories: amino (residues 1 
to 99), core (residues 100 to 300) and carboxy (residues 301 to 393). Remaining activity ranging from 0 (no 
activity) to 1 (full activity) was determined from the normalized data of Giacomelli et al.12 (see "Methods"). All 
variants: all types of substitutions; SS: SNS variants; MS: DNS and TNS variants. (B) Analysis of the activity 
of TP53 variants according to their frequency in the UMD_TP53 Mutation Database. Boxplots display TP53 
variant loss of activity from the whole database (orange plot) or from various datasets with TP53 mutants 
classified into eight categories according to their frequencies in the database (blue plot). CSD data are shown in 
red. The read-outs are identified on the x-axis with data from the three different datasets, Kato et al. (top), Kotler 
et al. (middle) and Giacomelli et al. (bottom). The Y axis shows variant-normalized TP53 functionality.
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curated to remove artifactual data. UMD_TP53 was the first database to integrate the functional data from Kato 
et al.13,14.

A full analysis of the 2018 release of the database was recently published in collaboration with the TCGA and 
will not be reiterated here. The new release of the database (100K_UMD TP53 database, October 2019) includes 
more than 100,000 TP53 mutations and a novel feature developed for the analysis of TP53 variants, the cancer 
shared dataset (CSD), which comprises only variants highly likely to be  pathogenic15 (see "Methods"). The CSD 
includes 258 TP53 SNS common to four different large independent sequencing datasets (see "Methods"). In addi-
tion to its hotspot variants found highly frequently in various types of cancer, the CSD also includes less common 
variants that would have been missed in a selection based solely on mutation frequency. The 100K_UMD TP53 
database now includes the data of the two recent saturation mutagenesis studies performed by Kotler et al. and 
Giacomelli et al.11,12. The database thus comprises 12 different read-outs for each TP53 variant, with 8, 3 and 1 
read-outs resulting respectively from the works of Kato et al., Giacomelli et al., and Kotler et al. (see "Methods").

Analysis of the loss of activity of TP53 variants in relation to their frequency in the database is shown in 
Fig. 1B, Supplementary Fig. 2. First, for the 12 different readouts, we confirmed a clear correlation between the 
TP53 variants’ losses of activity and their frequency in human tumors. Second, TP53 single nucleotide variants 
that are never found in human cancer displayed a strong propensity for keeping their wild-type activity and had 
profiles similar to those of uncommon cancer variants. Third, the profiles of TP53 variants included in the CSD 
were the same as those of frequent TP53 variants, despite different frequency distributions in human tumors 
(Fig. 1B and Supplementary Fig. 2.).

Correlation analysis for the three large-scale mutagenesis analyses of TP53. The analysis 
shown in Fig. 1B revealed a clear relation between TP53 variant frequency and TP53 loss of activity for each 
functional study (each using a different read-out for TP53 function). However, it did not provide a comparison 
of each TP53 variant among the three studies; indeed, to date, such an analysis has never been done. Therefore, 
we performed a correlation analysis using the 12 read-outs available for TP53 loss of function (Figs. 2 and 3, and 
Supplementary Fig. 3). A correlation matrix for the three studies showed a highly significant positive correlation 
between them (Fig. 2). Data from the two studies performed in mammalian cells (Kotler et al. and Giacomelli 
et al.) showed strong correlation, with Pearson R (R) values between 0.52 and 0.72 (Fig. 2) and a highly signifi-
cant p value (p < 0.001 for all binary comparison, Supplementary Fig. 3). Depending on the promoter used to 
report TP53 loss of activity, the correlation between the yeast-derived data from Kato et al. and those from Kotler 
et al. and Giacomelli et al. remained significant but with more heterogeneous R values. Of note: among the data 
of the eight promoters tested by Kato et al., those of the NOXA promoter, involved in apoptosis, systematically 
showed the best correlations with Kotler et al. (R = 0.74) and Giacomelli et al. (R = 0.54, 0.66 and 0.68 respectively 
for the three readouts). In binary comparisons, data tended to be distributed in two groups (Fig. 3 and Supple-
mentary Fig. 3). To clarify the presentation, variants markedly present in the CSD datasets were colored red and 
those found infrequently in the database green (Fig. 4A, Supplementary Fig. 3, Supplementary Video 1). Most 
CSD variants clustered in the lower left corner of the graph, confirming minimal remaining activity. In contrast, 

Figure 2.  Correlation matrix for the three large-scale (12 read-outs) analyses of TP53 activity. Correlation 
R values are shown on the left part of the panel. Positive correlations are displayed in blue and negative 
correlations in red. Color intensity and the size of the square are proportional to the correlation coefficients. 
On the right side of the correlogram, the legend color shows the correlation coefficients and the corresponding 
colors. All correlations are highly significant (p < 0.001) (see supplementary Fig. 3 for a detailed view of the 
statistics).
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rare variants were located preferentially in the upper right part of the graph, indicating functional proteins. This 
specific pattern, observed in all binary comparisons using the 12 different read-outs, confirms that these func-
tional readouts are robust to rank TP53 cancer associated variants (Fig. 4A, Supplementary Fig. 3). Neverthless, 
there were several outlier variants included in the CSD that displayed near wild-type activity (Fig. 4A, Supple-
mentary Fig. 3). To get a global picture of the relations between the activities of all 12 readouts, a multidimen-
sional scaling (MDS) analysis was performed (Fig. 5, Supplementary Fig. 4). The MDS plot clearly revealed two 
distinct groupings, one with the pathogenic mutations from the CSD and a second with the rare mutations. To 
define and explore the outlier mutations, we measured the coordinates of the center of the CSD mutations on the 
bidimensional graph of the MDS, and thereafter the Euclidean distance of each CSD mutation from that center.

We selected the 2.5% of mutations with the largest Euclidean distances. The seven CSD variants therein were 
defined as outliers with minimal loss of activity (Fig. 4B, Table 1, Supplementary Fig. 5). One of them, p.A138V, 
described in 126 tumors in the UMD, displayed complete activity in the study performed in yeast but complete 

Figure 3.  Binary correlation analysis between the various read outs of TP53 loss of activity. Overall Pearson R 
correlation coefficients and p values are shown at the top of each figure. Data for other read-outs are shown in 
Supplementary Fig. 3.
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Figure 4.  (A) TP53 variants can be divided into two classes according to their loss of activity. The binary 
comparison between two studies (Kotler and Giac_A) has been split into two panels, with variants found in the 
CSD in the lower right panel (red) and rare TP53 variants (variants found once in or absent from the database) 
in the upper right panel (green). Data for other read-outs are shown in Supplementary Fig. 3. (B) Position of the 
7 CSD outlier variants in different binary comparison. Two variants, p.A138V and p.V218G (shown by black 
arrows), display no loss of activity in the yeast assay (top figures) but are inactive using the various mammalian 
readouts (bottom figures). Other variants associated with splice defects are also displayed in the figure. Data for 
other read-outs are shown in Supplementary Fig. 5.

Figure 5.  Multidimensional scaling (MDS) for reduction of the 12 activity measures into bidimensional space. 
CSD, CSD outliers and no CSD mutations are colored red, green and black respectively.
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inactivity in both studies performed in mammalian cells. This variant has been shown to be thermosensitive with 
wild-type activity at 30 °C and inactivity at 37 °C16. Because the yeast assay was performed at 30 °C, it is likely that 
the loss of function for this pathogenic variant was misidentified (Fig. 4B Supplementary Fig. 5). Similarly, CSD 
variant p.V218G, described in 35 tumors in the UMD, was fully active in yeast but inactive in mammalian cells. 
Although this variant is not known to be thermosensitive, it is likely that the yeast assay, based on transcription, 
did not fully reflect losses of function. Furthermore, several variants that retain DNA binding activity have been 
shown to be devoid of biological activities such as growth arrest or  apoptosis17.

Two other outlier CSD variants, p.G187S and p.E224D, were located at the two extremities of exon 5. Muta-
tions at penultimate codons have been shown to be able to affect  splicing18. In the TP53 gene, it is well established 
that synonymous mutations at codons 224 and 125, two penultimate positions in exons 4 and 6, impair TP53 
 splicing19. The exclusion of specific exons from a transcript can cause a frameshift by creating a premature stop 
codon if the exons flanking the skipped exon are not in the same reading  frame20. Translation of the truncated 
protein should induce the nonsense-mediated decay (NMD) pathway and result in the degradation of the tran-
script, thus preventing protein production. To gain more insights into the possible defect in RNA splicing, we 
used TCGA data as they include both genomic and transcriptomic information from matched samples. RNA data 
from 10,000 tumors were analyzed for TP53 RNA content (Fig. 6) (see "Methods"). Tumors carrying wild-type 
TP53 and those expressing missense TP53 variants showed similar TP53 RNA expression. In contrast, TP53 RNA 
expression was significantly lower in tumors expressing variants leading to the potential expression of a prema-
ture TP53 protein, thus confirming an NMD phenomenon. In a comparable manner and similarly to nonsense 
variants, tumors with variants in canonical splice site sequences (intronic variants at positions + 1; + 2 or −1; −2) 
displayed a significant decrease in TP53 (Fig. 6). Notably, no decrease of TP53 RNA was observed in tumors 
expressing in-frame TP53 variants, suggesting that these proteins are fully translated and no NMD is induced. 
TP53 RNA expression was analyzed for several individual mutants included in the study. The CSD outlier vari-
ants p.G187S and p.E224D were both associated with very low TP53 RNA contents, resembling what has been 
observed for splicing variants. Similar results were found for the synonymous variants p.E224 = and p.T125 = , 
which have been shown to be defective for TP53 splicing (Fig. 6)19. Missense variants at hotspot positions were 
not associated with decreased expression of TP53 RNA. Therefore, for these two variants located in the vicinity of 
an intron (p.G187S and p.E224D), the consequences of mutation manifest at the level of RNA and not that of the 
protein. For a third outlier variant, p.S106R, there was a sufficient number of samples to examine TP53 expression 
and a decrease of TP53 RNA similar to those found for splice or nonsense mutations was observed (Fig. 6). This 
variant is located inside exon 4, twenty codons before the exon–intron junction. Exonic sequences such as exon 
splice enhancers (ESE) or exon splice silencers (ESS) are known to regulate mRNA splicing and can be targeted 
by pathogenic mutations. We used the Human Splicing Finder (HSF) system to identify and predict the effects of 
mutations on splicing motifs. This included the acceptor and donor splice sites, the branch point, and auxiliary 
sequences known to either enhance or repress splicing. The region around codon 106 was shown to contain a 
SF2/ASF motif that recruits the serine/arginine-rich splicing factor 1 (SRSF1) involved in pre-mRNA splicing 
(Supplementary Fig. 6). The C > G mutation associated with p.S106R was strongly predicted to inactivate this site 
and therefore to impair TP53 splicing (Supplementary Fig. 6). Two other CSD outlier TP53 variants, p.R181H 
and p.R181C, were located at the same position. Recent structural studies have shown that the TP53 molecules 

Table 1.  Alternative loss of function of the 7 CSD TP53 variants. 1 The sequence nomenclature used for 
TP53 variants in this work is in accordance with the Human Genome Variation Society’s guidelines using 
the NM_000546.5 transcript sequence and the full-length protein NP_000537.3. 2 TP53 functional data were 
scaled in the range of 0 to 1 with 0 corresponding to the lowest activity of TP53 variants. 3 Number of tumors 
expressing each TP53 variant included in the TP53_UMD. 4 Data from the transcriptional activity performed 
in yeast using 8 different p53 response elements (mean of the activities for the 8 readouts) from the work of 
Kato et al.9. 5 Score from the growth arrest assay in H1299 cells performed by Kotler et al.11. 6 Mean score from 
the three assays performed by Gacomelli et al.12 (see "Methods" for a full description of the assays). 7 Both 
in vitro studies and mouse models indicate that these variants are functionally  defective21,32.

TP53  variant1

Activity2

Occurrence in  UMD3
Position in the TP53 
gene

Potential loss of 
function

Score according to Kato 
et al.4

Score according to 
Kotler et al.5

Score according to 
Giacomelli et al.6

p.E224D 0.91 0.65 0.56 48 Last Base Exon Splice variant

p.V218G 0.86 0.20 0.20 35 Exon
Differential loss of activity 
in yeast and mammalian 
cells

p.G187S 0.72 0.57 0.55 34 Exon Splice variant

p.A138V 0.67 0.13 0.35 126 Exon
Thermosensitive; differen-
tial loss of activity in yeast 
and mammalian cells

p.S106R 0.51 0.69 0.63 39 Exon RNA destabilization; pos-
sible splicing defect

p.R181H 0.44 0.61 0.50 77 Exon Position 181 is known to 
impair TP53 for specific 
 functions7p.R181C 0.40 0.65 0.58 103 Exon
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within the tetramer, which assembles as a dimer of dimers, do not only interact through their oligomerization 
domains but also tightly and specifically through their DNA-binding domains including H1 helix residues 180 
and 181, which have been shown to be essential for dimer  stability21,22. Modifications at codon 181 do not fully 
abolish TP53 function. These variants have differential losses of function depending on the TP53 target genes. 
They were shown to be able to transactivate p21CDKN1A or mdm2 at levels similar to wild-type TP53 but unable 
to transactivate genes associated with apoptosis, such as NOXA or p53AIP1 and induce  apoptosis21,22. Although 
p.R181H and p.R181C showed only partial losses of activity they should nonetheless be considered as pathogenic.

Discussion
Advances in and the application of massive parallel sequencing have revolutionized molecular diagnostics in 
cancer and provided an immense quantity of information on human genetic  variations23. Interpreting these lat-
ter, whether somatic or constitutional, has provided important insights into the genetic basis of many types of 
cancer, and opened new promising vistas for preventive, diagnostic, and therapeutic strategies. This vast body 
of genetic data has also enabled the development of successful predictive tools that integrate genetic, molecular, 
evolutionary, and/or structural  information7. These predictive tools have been applied to TP53 with variable 
success and heterogeneous  results24,25. The clinical relevance of TP53 diagnostics is nonetheless growing for both 
somatic and germline  mutations26. The TP53 gene is the most frequently mutated gene in human cancer but it 
is also the gene that sustains the largest diversity of single nucleotide variants, with more than 3000 different 
missense variants identified so far. Although hotspot variants have been shown to be truly pathogenic, the situ-
ation is more ambiguous for rare variants. The UMD database includes 4500 TP53 missense variants that have 
been described only once or twice and whether they are true pathogenic variants, rare passenger mutations or 
sequencing artifacts is currently unknown. The greatest advantage for TP53 is that the read-out of its functions 
can be easily monitored. In 2003, C. Ishioka’s group published a seminal paper wherein they described the first 
large-scale analysis of TP53 using a transactivation assay developed in  yeast9. Their functional data, unique for a 
cancer gene, have been widely used to increase the prediction of TP53  variants10. Nevertheless, multiple studies 
have shown that the relation between the transcriptional activity of TP53 and the effects on biological functions, 
such as growth arrest or apoptosis, is not  straightforward27. The two recent large-scale analyses performed in 
mammalian cells have greatly advanced the identification of TP53 variants that sustain a loss of  function11,12.

For the present analysis, we developed upon the CSD, a specific TP53 benchmark dataset that includes only 
highly likely pathogenic  variants15. As variant recurrence is one of the strongest indicators of pathogenicity, 
using four independent sources of TP53 variants, each deploying a different analysis methodology, should negate 
methodological issues for the specific selection of pathogenic variants.

We found excellent correlation between the three saturation studies used as a base for the present study, i.e., 
those of Kato et al., Kotler et al., and Giacomelli et al. We showed that the yeast assay using the NOXA promoter 
was highly correlated with the two studies performed in mammalian cells, thus confirming the importance of 
this gene in the tumor suppression function of  TP5328. Furthermore, our analysis showed that the vast major-
ity of the variants in the CSD sustain a loss of function in the TP53 protein. The inclusion of data derived from 

Figure 6.  TP53 RNA expression differs in tumors depending on TP53 mutation status. Box-and-whisker 
plots show the interquartile ranges (boxes), median values (horizontal lines inside the boxes), and full-range 
distributions (whisker lines) for TP53 RNA content according to the type of TP53 mutation. RNA expression 
and TP53 mutational status values for multiple tumor types were extracted from cBioPortal (see "Methods").
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mammalian cells increased the accuracy of the analysis with the identification of leaky pathogenic variants that 
were not identified in the yeast assay. In addition, several pathogenic variants found at high frequency in the 
various databases did not display any prominent losses of function.

Of course, gene mutations can impair mRNA, and RNA splicing and/or stability can be damaged by multiple 
synonymous or nonsynonymous mutations located in exons or  introns19,29. Several motifs localized in exons, 
such as ESEs or ESSs, are known to modulate gene splicing. Most computational predictive algorithms rely on 
the properties of the protein, and functional assays force protein expression using unspliced cDNA constructs. 
It is therefore possible that some TP53 loss of function is due to RNA expression and not a potential inactiva-
tion of protein.

Using RNA data expression from tumors with matched TP53 status, we showed that some CSD TP53 variants 
without obvious loss of protein activity are in fact spliced variants associated with a loss of TP53 RNA expression.

The number of variants altering TP53 RNA is likely underestimated; although functional assays may report 
inactivity for the protein, it is possible that this latter was never expressed due to the lack of RNA expression.

Increasing the number of tumors with matched genomic and transcriptomic data will be the only way to 
improve the detection of this type of variant and define more accurately whether the ultimate target of the muta-
tion is the mRNA or the protein. This will be essential for clinical studies targeting the TP53 protein as TP53 null 
tumors, whether at the DNA or RNA level, will not benefit from them.

Benchmark variants are required for developing, optimizing and assessing the performance of sequencing 
and bioinformatics methods. For TP53, benign variants are generally identified in ClinVar, dbSNP or gnomAD 
whereas their pathogenic counterparts usually emanate from cancer mutation databases. Unfortunately, both 
sets of data are generally not accurate. We have previously shown that gnomAD is heavily contaminated by 
pathogenic TP53 variants due to the high frequency of de novo mutations in the human  population15. Similarly, 
as shown in previous studies, cancer mutation databases can include passenger mutations, unidentified low fre-
quency SNP and artifactual  data30,31. The use of the cancer shared dataset (CSD) in the present study alleviated 
some of these problems and did not bias the choice of pathogenic variants toward hotspot variants. Moreover, 
this approach can capture pathogenic TP53 variants that would be missed by functional analysis. The robustness 
of the CSD and the availability of multiple independent cancer datasets such as TCGA, MSKSCC, ICGC or the 
Locus-Specific Database (LSDB) could be easily mined to define multiple, gene-specific CSDs. Such resources 
would contribute to pinpointing rare pathogenic variants and also curating fast-growing population databases 
such as gnomAD that are essential for genetic analyses.

Methods
Database and datasets used for the analysis. The most recent issue of the UMD database (100K_
UMD TP53 database) was released in November 2019 with 125,130 TP53 mutations retrieved from the litera-
ture. Of them, 40,624 were identified in studies using conventional Sanger sequencing and 75,339 in studies 
using NGS. Variants from publications using other methodologies or combining conventional sequencing and 
NGS were not used in the present study.

Functional data used in the present study. Functional data from the works of Kato et  al.9, Kotler 
et al.11, and Giacomelli et al.12 were used for the present study.

Transcriptional activity from the work of Kato et al. in yeast transformants containing a p53 cDNA and a 
green fluorescent protein reporter plasmid was assessed with eight different promoters for 2315 TP53 variants. 
These yeast data are currently the most widely used criteria to define the pathogenicity of TP53  variants10.

Kotler et al. generated a library of TP53 variants from the core domain of TP53 (residues 100 to 300) that 
were analyzed using a range of assays both in mammalian cell lines and in mice. Only data obtained from the 
over-expression of 9833 TP53 variants in H1299 cells was used in the present study as only a subset of their TP53 
variants was used for other read-outs. Data from TP53 variants with two or more mutations in different codons 
were discarded as were nonsense and frameshift variants to focus our analysis on missense variants with one, 
two or three substitutions in a single codon.

Data from Giacomelli et al. included 7469 TP53 variants observed across the whole TP53 protein. The present 
analysis used their three different read-outs: TP53 activity in (i) wild-type A549 cells treated with nutlin was 
defined as the Giac_A read-out; (ii) TP53-null cells treated with nutlin as the Giac_B read-out; and (iii) TP53-
null cells treated with etoposide as the Giac_C read-out. Similarly to the Kotler et al. data, only missense variants 
involving one, two or three substitutions in a single codon were selected.

For the three studies, TP53 functional data were normalized to a range of 0 to 1 with 0 indicating the lowest 
activity of TP53 variants.

The cancer shared dataset (CSD). The CSD concept was developed to optimize the representativeness 
of pathogenic variants in a  dataset15. Previously, training sets used for defining TP53 pathogenicity were based 
on either the whole set of mutations found in various databases or a selection of the most frequent TP53 vari-
ants with an arbitrary cut off. Both methods showed bias: The first one included the potential passenger and 
artifactual variants that plague the various cancer databases and the second did not account for infrequent 
pathogenic variants resulting from rare genetic events such as T > A transversions. To circumvent these issues, 
we developed a novel strategy involving the extraction of TP53 mutation data from four non-overlapping data-
bases: (i) TP53 variants from the UMD database that were harvested from studies using exclusively conventional 
Sanger sequencing for diagnostics; (ii and iii) data from the TCGA and MSKCC studies and downloaded from 
cBioPortal (https ://www.cbiop ortal .org/, October 2019); and (iv) data from the ICGC portal and downloaded 
from the ICGC website (https ://dcc.icgc.org/, data release 26 December 2017). Only missense variants found at 
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least once in each dataset were included in the CSD. Compared to the CSD described in our previous study, we 
added another parameter in this selection, i.e., the choice of tumors carrying only a single TP53 mutation. That 
additional parameter removed the passenger mutations frequently associated with hotspot variants. The CSD 
used for the present study thus included a core of 258 recurrent missense TP53 variants found at least once in 
each database. As the four datasets were derived from independent studies using different patients and different 
methodologies, it was highly likely that the 258 shared variants were true recurrent pathogenic variants. This 
dataset was validated in a previously-published  report15. It includes both hotspot and less frequent variants and 
is more representative of the heterogeneous frequency of TP53 mutation in human cancer.

In silico analysis of TP53 splice variants. The Human Splicing Finder (HSF; https ://www.umd.be/
HSF/) system combines 12 different algorithms to identify and predict the effects of mutations on splicing motifs 
including the acceptor and donor splice sites, the branch point, and auxiliary sequences known to either enhance 
or repress splicing: exonic splicing enhancers (ESE) and exonic splicing silencers (ESS).

These algorithms are based on position weight matrices, the maximum entropy principle or a motif compari-
son method. For each of them, we defined a consensus value threshold and a score variation threshold, based 
on literature datasets.

Multidimensional scaling (MDS). We used MDS to reduce the 12 functional scores into two dimensions. 
Euclidean distance was calculated between every possible pair of mutations and thereafter MDS was performed 
to optimally locate the mutations on a bidimensional graph. The coordinates of the center of the CSD mutations 
were calculated as the average of the coordinates of the CSD mutations calculated separately for each of the two 
axes.

RNA expression analysis. Data for TP53 RNA expression was available from 31 non-overlapping tumor 
studies available in cBioPortal (https ://www.cbiop ortal .org/). TP53 status was available for all concerned tumors. 
Only RNA data normalized by Z score transformation was used for the analysis.
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