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Abstract: Novel printable composites based on high aspect ratio graphene nanoplatelets (GNPs),
fabricated without using solvents, and at room temperature, that can be employed for flexible,
standalone conducting lines for wearable electronics are presented. The percolation threshold of
examined composites was determined to be as low as 0.147 vol% content of GNPs. Obtained sheet
resistance values were as low as 6.1 Ω/sq. Stretching and bending tests are presented, proving
suitability of the composite for flexible applications as the composite retains its conductivity even
after 180◦ folding and 13.5% elongation.
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1. Introduction

The printing of electronic devices is a branch of technology intensively developed both by
research institutions and industry. This method of fabrication allows easy processing of materials
without rigorous restrictions for the production lines such as clean rooms, protective atmospheres,
etc. Researchers have focused on flexible application with employment of printing substrates such
as polymer foils [1], paper [2] or even fabrics [3]. Numerous printing techniques, such as screen
printing [4], flexography [5] or ink-jet printing [6], have been present for a long time in the printed
electronics industry. With the use of functional materials such as microscale and nanoscale metal
particles, various carbon allotropes or precisely engineered nanocomposites, printed layers for
numerous applications can be fabricated, e.g., conductive [7,8], resistive [9,10], dielectric [11,12]
or sensitive layers [13,14].

In numerous wearable applications, which are a constantly growing market [15], novel biosensors
are introduced [16] with a significant contribution of printed sensors [17]. In these devices, biological
components such as enzymes [18], nucleic acids [19], anti-bodies [20] etc., play crucial roles as
bio-recognition agents, allowing detection of desired biological analytes such as hormones [21] or
metabolites [22,23]. Given the vast range of these bio-recognition agents, incorporating them into
printed structures is a demanding task, which often involves multiple modification steps and thus
elongates fabrication time of the final device. It creates a set of restrictions for printing technology,
such as low temperature (below 40 ◦C) curing, meeting biocompatibility with a given compound, etc.
In this work we present printing paste that is cured in room temperature and does not involve any
solvents, which, together with the non-toxicity of the silicone vehicle, eliminates the risk of disrupting
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biological particles. This potential platform for various biomedical applications was examined mainly
for its electrical properties. Thus, enabling future employment of the material in applications requiring
conductive, resistive as well as dielectric properties. Flexibility of the composite was also briefly
examined, proving that it is suitable for printed wearable devices. As filler material for prepared
composite, graphene nanoplatelets (GNPs) with a high aspect ratio were employed, as they were
previously confirmed to contribute to performance of voltammetric and potentiometric sensors [24,25].
It was also proved that a high aspect ratio enables lower percolation thresholds [26], thus lowering the
required amount of the functional phase.

2. Materials and Methods

2.1. Materials

Graphene nanoplatelets type M15 and M25 (thickness 6 nm, medium diameter 15 µm and 25 µm,
respectively) were purchased from XG Sciences (Lansing, MI, USA, USA). Silver microflakes-based
L-121 paste was delivered by Institute of Electronic Materials Technology (ITME, Warsaw, Poland).
3140-RTV silicone rubber (RTV) was acquired from Farnell Ltd. (Leeds, UK). Dispersing agent
AKM-0531 was purchased from NOF Corp. (Tokyo, Japan). Poly (ethylene terephthalate) (PET) foil
Melinex 453 with a thickness of 100 µm was delivered by TEKRA (Milwaukee, WI, USA).

2.2. Preparation of Printed Layers

Prior to addition to silicone vehicle, GNPs were sonicated in acetone for 1 hour with an
addition of 3 wt% dispersing agent to disperse any agglomerates and dried for 30 min. at 150 ◦C.
After deagglomeration of nanoplatelets, they were added to silicone rubber in the proportions given in
Table 1, and mixed using an agate mortar until uniform filler distribution was achieved.

Table 1. Proportions for prepared RTV/GNP pastes and respective sheet resistance values (RS),
errors are one standard deviation (not given for samples below 9 wt% due to route resistance exceeding
measurement range); for samples below 9 wt% GNP, measured resistance exceeded ohmmeter upper
limit of measurable resistance, so it was assumed as the lower limit of sample resistance, upper limit is
derived from the bare silicone characteristics [27].

Sample – GNP Content (wt%) RS (Ω/sq)

GNP-5% 7.27 × 105 ÷ 2.1 × 1012

GNP-7% 7.27 × 105 ÷ 2.1 × 1012

GNP-8% 7.27 × 105 ÷ 2.1 × 1012

GNP-9% 1.7 × 104 ± 1.1 × 104

GNP-10% 8.1 × 103 ± 5.1 × 103

GNP-15% 287 ± 69
GNP-20% 101 ± 41
GNP-25% 47 ± 12
GNP-30% 28.6 ± 9.0
GNP-35% 36.3 ± 6.3

GNP-37.5% 11.9 ± 0.4
GNP-40% 7.2 ± 0.6
GNP-45% 6.2 ± 0.9
GNP-50% 6.1 ± 1.2

GNP-52.5% 8.9 ± 2.1
GNP-55% 10.5 ± 1.4

Employing silver microflake-based polymer paste, electrical contacts were printed on PET foil
using a SPP-600FV screen-printer (Tampoexpert s.c., Warsaw, Poland) with 68T polyester screens.
The printed layer was cured at 120 ◦C for 30 min. Then, overlapping on the electrical contacts,
conducting routes were printed with prepared graphene/silicone composite pastes using stencils cut
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in PET foil. Dimensions of the printed routes: length L = 110 mm, width W = 2 mm, layer thickness
t = 100 µm. Routes were kept in room temperature for 24 hours to allow full cross-linking of the
composite [27]. Since the paste contains no solvent, composition of the samples before and after
cross-linking were assumed to be equal. A set of printed samples is shown in Figure 1a. Due to the
composite flexibility, it was possible to detach conducting routes from the substrate (Figure 1b,c) end
examine their properties under mechanical deformation.
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Figure 1. Conductive routes printed with silicone/graphene nanoplatelets composite. (a) samples with
silver electrical contacts; (b) detachment of the sample from substrate; (c) standalone conducting route.

2.3. Characterization

Scanning electron microscopy (SEM) was done using Phenom ProX (Phenom-World, Eindhoven,
The Netherlands). Observations were carried out with magnification ×1000. Acceleration voltage
was 10 kV. An integrated backscattered electron detector (full mode) was used in SEM analysis.
The detector used in the Phenom microscope provides material contrast and topographic imaging in
parallel with what was useful in the analysis of measured samples. Cross-sections were obtained by
cutting composites with scissors in room temperature. Both top and cross-sectional micrographs are
shown in Figure 2.
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Figure 2. SEM micrographs of prepared composite layers, from left to right: 8, 15, 27 and 45 wt%
graphene nanoplatelets content. Top: surface of the samples; on the surface of 8 wt% sample only single
GNPs were visible, for 15 wt% outlines are visible from below silicone, for 27 and 45 wt% samples only
a thin layer of silicone covers otherwise visible graphene structure. Bottom: cross-sections; for 8 wt%
sample close to homogenous silicone structure is visible, which corresponds to observed insulating
properties of the samples below 9 wt% graphene content.

Electrical resistance (Table 1) of the conducting routes was measured through a four-point
method employing Keysight 34461A (Keysight Technologies, Santa Rosa, CA, USA) multimeter.
Sheet resistance RS was calculated from measured values and sample dimensions (Equation (1),
R = measured resistance value, W = layer’s width, L = length of the layer). Next, electrical conductivity
was calculated as reciprocal of resistivity ρ in Equation (2), where t -layer’s thickness. For values of W,
L, t, see Section 2.2.

RS = R·W
L

(1)

ρ = RS·t (2)

3. Results and Discussion

3.1. Experimental Determination of Conductivity Threshold

Electrical resistance of the samples prepared as described in Section 2.2 was measured. Obtained
values allowed computing of the composites’ sheet resistance (Table 1) and electrical conductivity
(Figure 3). For samples below 9 wt% GNP content, measured resistance values exceeded measurement
range, i.e., 40 MΩ (data shown only for 8 wt% sample). Conversion from wt% to vol% content of GNP
was calculated assuming density of GNP ρGNP = 2.2 g/cm3, being equal to the density of graphite [28],
given the same crystal structure of both materials. Thus, 9 wt% content of GNP corresponds to 4.51 vol%
and can be interpreted as the lower limit of filler concentration allowing electrical conductivity in
most applications (vEX). This determination, however, is only coarse and prone to deviation, therefore
theoretical models of percolation were employed for precise results. On the other hand, conductivity
of the samples with GNP content above 45 wt% was not further increasing, dropping drastically
above 50 wt%. It was presumed that this effect was caused by increased brittleness of the composite,
which was confirmed by SEM imaging (Figure 4).

As the first approximation, a sigmoid function (Figure 3) was fitted to experimental data for
characterization of both lower and upper conductivity plateaus. The function fitted was in accordance
with Equation (3). For fitting, Solver tool (Frontline Systems Inc., Incline Village, NV, USA) was
employed with mean square error criterion. In computation, points beyond vGNP = 32 vol% were not
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included, since conductivity of composites was disturbed by their brittleness. In Table 2. the fitted
function parameters are listed.

σ(vGNP) =
a

b + c·e−d(vGNP− f )
+ t (3)

Table 2. Parameters of sigmoid function fitted to experimental conductivity data, parameters
corresponding to Equation (3).

a b c d f t

2.328524 0.127924 0.154164 21.55641 0.358685 0.158932
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Figure 4. SEM images of composite fractures for 55 wt% (36.8 vol%) GNP sample.

3.2. Classical Percolation Theory

According to percolation theory described in 1991 by Stauffer and Aharony [29], electrical
conductivity of a composite comprised of an insulating matrix and conductive filler can be described
as in Equation (3) below, where: σc = conductivity of the composite, σGNP = conductivity of filler (in
this case: graphene nanoplatelets), vGNP = volumetric content of the filler, vp = percolation threshold
and β = critical exponent (2 for randomly distributed resistor model in Reference [29]).

σc = σGNP
(
vGNP − vp

)β (4)



Nanomaterials 2018, 8, 829 6 of 10

First, single GNP particle conductivity was calculated, as it is known that multi-layer
graphene-like structures exhibit different physical properties depending on layer number and
geometrical dimensions [30]. As specified by the manufacturer [31], a single GNP particle falls
within the range of 6–8 nm. According to work by Romanenko et al. [32], it corresponds to 19 layers of
graphene. Thus, conductivity of a single M25 GNP can be approximated as σGNP ≈ 6.23× 104S/cm.

Fitting of the critical exponent (shown in Figure 5) yielded β ≈ 5.44. Substituting this value
and solving Equation (3) with respect to percolation threshold yields vp ≈ 0.167 vol%, which is well
below the one observed as conductivity threshold (4.51 vol%). This significant difference could be
explained based on the statistical nature of percolation. As given in Table 1, standard deviation of
RS for samples below 15 wt% GNP equals more than half of the mean value. This was interpreted as
an indication of a low probability of forming conducting lines in composite. In addition, there is an
assumption that above vp at least one conducting line is formed, which may result in conductivity
below values measurable by apparatus. For verification of this interpretation, two other models of
percolation were employed.
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3.3. Comparison with Other Approaches

As shown in the work of Balberg et al. [33], certain volumes can be defined around filler particles,
into which the center of another particle is not allowed to enter (excluded volume). It can be shown
that overlapping of excluded volumes is sufficient to form a conducting link [34]. Thus, percolation
threshold can be expressed in relation to the excluded volume coefficient (Vex, depending on the shape
of particle) and particle specific dimensions (in the case of GNPs: d = thickness, r = radius) as follows:

vp = 1− e−
Vexd

πr (5)

From work by Charlaix [35], for particle shaped as an infinitely thin disc Vex assumes value of
Vex = 1.8. Analogically, for spherical particles Vex = 2.8 as described by Celzard et al. [36]. Since GNPs
have non-negligible thickness, Vex is predicted to lie between those two numbers. Thus, the following
double inequality for vp can be formulated:

1− e−1.8d/πr ≤ vp ≤ 1− e−3.8d/πr (6)

The mean radius of GNPs was assumed to be 12.5 µm, according to the material supplier’s
information. The critical distance between two particles, below which the tunneling effect occurs,
allowing electric conductivity, is approx. 10 nm [37]. Hence, thickness of the GNPs was assumed as
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6 nm, given by the manufacturer, plus±10 nm range of tunneling effect, i.e., 26 nm in total. Substituting
all of the above into Equation (5), the following range was obtained:

0.119vol% ≤ vp ≤ 0.185vol% (7)

This is in accordance with findings by Wu et al. [26], and with results obtained from the
Stauffer/Aharony model. Next, the model described by Helsing and Helte [38] as mean field theory
was employed. In this model, the polymer matrix and conductive filler structure are approximated as
a homogenous system, which represents a random resistor network. Derived from this assumption,
an empirical formula for the percolation threshold is given:

vp = 1.18η (8)

where η is filler particle aspect ratio—in this case: Thickness divided by diameter. Substituting
this dimension (including the 20 nm thickness margin mentioned above), Equation (8) yields
vp ≈ 0.123 vol%, which corresponds to the results obtained from previous calculations.

Summarizing these considerations, a set of volumetric fractions is obtained, corresponding to the
onset of electrical conductivity in RTV/GNP composite. These values are listed in Table 3, and since
they are within a range of ± 0.025 vol% from the mean, it can be concluded that the results were
coherent. Thus, mean value vp ≈ 0.147 vol%, can be named composite’s percolation threshold.

Table 3. Volumetric content of graphene nanoplatelets in RTV/GNP composite corresponding to the
onset of conductivity: vEX = critical fraction observed during experiment, vCP = percolation threshold
according to classical percolation equation [28], vEV = percolation threshold range in excluded volume
approach [30], vMF = percolation threshold derived from mean field theory [31].

vEX (vol%) vCP (vol%) vEV (vol%) vMF (vol%)

4.51 0.167 〈0.119 ÷ 0.185〉 0.123

3.4. Flexibility Tests

For assessment of the RTV/GNP composite applicability in wearable and flexible electronics,
two tests were employed: Bending and stretching (Figure 6). Experimentally, a 15 wt% sample was
selected, as it exhibited the highest endurance to deformation (data not shown). Results of the tests,
and values of the sample resistance are listed in Table 4.
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13.5% (glass and ruler are shown for scale only). 

Figure 6. Procedures employed for flexibility testing of RTV/GNP composite testing: (a) – bending,
angle, from top to bottom: 0◦, 90◦, 180◦; (b) – stretching, elongation, from top to bottom: 0%, 4.5%, 9%,
13.5% (glass and ruler are shown for scale only).
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Bending of the sample firstly resulted in a decrease of resistance value by 16% (90◦), but further
deformation (180◦) caused only 1% increase. Initial resistance drop was caused by local compression
of the composite structure in the inner plane of bending. Simultaneously, the outer plane was subject
to stretching, which counterbalanced further resistance decrease. During longitudinal stretching of
the sample, close to exponential (R2 = 94.01%, data not shown) increase of resistance was observed.
Above 13.5% elongation, visible disruption of the sample structure was observed, hence further results
are not given. Below this level, however, resistance of the sample was observed to return over time to
the initial value, which indicates that the composite structure was intact.

Table 4. Resistance of a 15 wt% RTV/GNP composite route with length of 110 mm and width of 2 mm
during bending and stretching as shown in Figure 6.

Bending angle (◦) 0 90 180
R (kΩ) 43.9 36.9 37.3

Stretching elongation (%) 0 4.5 9 13.5
R (kΩ) 43.9 68 307 1.6 × 104

4. Conclusions

A conductive composite is presented with low percolation threshold vp ≈ 0.147 vol%, which is
consistent with other reports [26,39] concerning GNP-based materials. Concentration of graphene
for practical application in conducting structures was also found, which will enable development of
electrodes for various biosensing techniques. Flexibility of the composite was also tested, proving that
the material retains its conductive properties after bending up to 180◦, as well as after longitudinal
stretching up to 13.5%. It is crucial for applying printed layers for wearable devices and will be further
investigated for optimal composition.
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