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Simple Summary: From the representative data in Korea, we developed individual lung cancer risk
prediction model of Korean adults. Our model would serve as a tool to screen high-risk individuals
who would benefit from participating in lung cancer screening in a clinical setting applicable to
health examinees or the general adult population. We believe that interactive approaches between
healthcare providers and examinees using an easily accessible and visualized risk score can be used
for the development of health policies for lung cancer prevention.

Abstract: Early detection of lung cancer by screening has contributed to reduce lung cancer mortality.
Identifying high risk subjects for lung cancer is necessary to maximize the benefits and minimize
the harms followed by lung cancer screening. In the present study, individual lung cancer risk in
Korea was presented using a risk prediction model. Participants who completed health examinations
in 2009 based on the Korean National Health Insurance (KNHI) database (DB) were eligible for
the present study. Risk scores were assigned based on the adjusted hazard ratio (HR), and the
standardized points for each risk factor were calculated to be proportional to the b coefficients.
Model discrimination was assessed using the concordance statistic (c-statistic), and calibration ability
assessed by plotting the mean predicted probability against the mean observed probability of lung
cancer. Among candidate predictors, age, sex, smoking intensity, body mass index (BMI), presence
of chronic obstructive pulmonary disease (COPD), pulmonary tuberculosis (TB), and type 2 dia-
betes mellitus (DM) were finally included. Our risk prediction model showed good discrimination
(c-statistic, 0.810; 95% CI: 0.801–0.819). The relationship between model-predicted and actual lung
cancer development correlated well in the calibration plot. When using easily accessible and modifi-
able risk factors, this model can help individuals make decisions regarding lung cancer screening or
lifestyle modification, including smoking cessation.
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1. Introduction

Lung cancer is the leading cause of cancer death worldwide [1,2]. In Korea, there were
25,780 cases of lung cancer and 17,963 deaths from lung cancer in 2016 [2]. Although the
lung cancer survival rate remains poor, a decrease in lung cancer incidence and mortality
has been observed in Korea over the last few decades [3,4]. Early detection using low-
dose chest computed tomography (CT) screening has contributed to the reduction in lung
cancer mortality, as well as the introduction of new chemotherapy and molecular targeted
agents. In 2019, the Korean national screening program for lung cancer was initiated
for individuals >55 years of age and who currently smoke or have a smoking history
(e.g., ≥30 pack-years of smoking and <15 years since quitting). However, identifying
the appropriate population recommended for screening to maximize the efficacy of the
screening program remains controversial.

The US National Lung Screening Trial (NLST) projected a 20% risk reduction in lung
cancer mortality in high-risk patients when screened [5]. However, even within this high-
risk population, 20% of participants at lowest risk of lung cancer in the NLST accounted
for only 1% of the lung cancer deaths prevented when using CT screening [6], empha-
sizing the importance of having a precisely defined population for screening. Limiting
screening to subjects at sufficiently high risk, who are most likely to benefit from screening,
will maximize the benefit in terms of early detection and minimize the harm associated
with detecting false positives among subjects at lower risk [7].

However, previous prediction models are predominantly from Western
countries [8–16]. A previous prediction model in Korea showed good performance with a
c-statistic of 0.871 and that early exposure to smoking is an important factor for developing
lung cancer [17]. Unfortunately, the model was developed only for men due to insufficient
data for smoking in women. Regarding the ethnic difference in lung cancer epidemiology
in Korea compared with Western countries [18], development of an individualized risk
prediction model for lung cancer and methods to identify high-risk groups that can be
applied to the entire Korean population is necessary. Therefore, we developed a risk
prediction model for lung cancer using representative data from a large population-based
cohort in Korea.

2. Methods
2.1. Database Source

In the present retrospective cohort study, the Korean National Health Insurance
(KNHI) database (DB) was used, which includes data on inpatient visits, outpatient visits,
procedures, and prescription medications covered by the KNHI, a mandatory universal
public health insurance system that covers the entire Korean population except for Medicaid
beneficiaries in the lowest-income bracket (approximately 3% of the population). All
Korean citizens are encouraged to receive regular biannual or pre-employment health
evaluations provided by the KNHI. The KNHI DB contains a qualification DB (e.g., age,
sex, income, region, and type of eligibility), a claims DB (e.g., general information on
specifications; consultation statements; diagnosis statements defined by the International
Classification of Diseases, 10th revision (ICD-10); and prescription statements), a health
checkup DB, and death information. Medical history and alcohol, smoking, and exercise
habits are collected using standardized self-reporting questionnaires. The KNHI DB has
been widely used in various epidemiological and health policy studies [19,20]. Details of
the DB profile are described elsewhere [21,22]. This study was approved by the institutional
review board (IRB) of Samsung Medical Center (IRB file no. SMC 2017-12-039).

2.2. Study Population

Among all KNHI beneficiaries, the population for this study consisted of 40% ran-
domly sampled participants who completed health examinations from 1 January 2009 to
31 December 2009. Among approximately 4 million subjects who participated in health
screening in 2009, individuals <40 years of age (n = 1,337,958) or >90 years of age (n = 1848)
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or who had any type of cancer (confirmed C-code) before health screening (n = 58,653)
were excluded in the present study. In addition, subjects diagnosed with any type of
cancer within 1 year of study enrollment (n = 10,084) were excluded. Finally, a total of
2,689,864 subjects were eligible for participation in this study (Figure 1).
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Figure 1. Study design summary.

The development and validation datasets were formed by splitting the original cohort
DB into two datasets. Approximately 70% of the eligible subjects were selected for the
development cohort. For the internal validation cohort, the remaining 30% of the eligible
subjects were extracted from the same DB using simple random sampling methods.

2.3. Predictor Variables

Among the available values in the KNHI DB, demographic information and personal
clinical information were obtained, including age, sex, BMI, and socioeconomic status based
on Medicaid insurance coverage. Age was divided into 5 groups (40–49, 50–59, 60–69,
70–79, and ≥80 years). Smoking intensity was categorized as follows: nonsmokers, <10,
10–20, 20–30, and ≥30 pack-years. Alcohol consumption was categorized as follows: non-
drinkers, light (<15 g/day), moderate (15–30 g/day), and heavy drinkers (>30 g/day). The
subjects were also classified into 5 groups based on the BMI category of WHO recommen-
dations for Asians (<18.5, 18.5–22.9, 23.0–24.9, 25.0–29.9, and ≥30 kg/m2).

The presence of comorbidities was defined based on diagnostic codes with or without
prescription of relevant medications or health checkup results: diabetes was defined as
ICD-10 codes E11–E14 with at least one prescription of an antidiabetic medication or a
fasting glucose level ≥126 mg/dL. Chronic obstructive pulmonary disease (COPD) was
defined based on ICD-10 codes J43 (emphysema) and J44 (other COPD) within 1 year of
enrollment. The presence of pulmonary tuberculosis (TB) (ICD10 codes A15–A19) within
1 year of enrollment was also included. Insurance coverage was assessed using monthly
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insurance premiums because insurance contribution is determined based on income level
in Korea.

2.4. Lung Cancer as an Outcome

The incidence of lung cancer was defined based on diagnosis codes for lung cancer
(C34) registered after baseline screening with inclusion in a special copayment reduction
program for critical illness. In Korea, nearly all people apply for this program if they
are diagnosed with cancer because a 5% copayment applies for the work-up and cancer
treatment (vs. 20–30% for other common diseases). If the patients were clinically compatible
with radiological findings of lung cancer, histopathological confirmation was obtained
for qualification of the copayment reduction program, unless there was clinically evident
advanced cancer for which no treatment was indicated. Therefore, cancer incidence in
Korea is rarely omitted from this claims DB and is sufficiently reliable. To evaluate the
occurrence of lung cancer among the included participants, the claims DB was monitored
until 31 December 2018.

2.5. Development of Risk Prediction Model

Among potential risk factors for lung cancer, 9 variables that had good predictive
abilities based on literature review were selected. Candidate predictors included age, sex,
cigarette smoking (intensity), BMI (kg/m2) [23,24], alcohol consumption (intensity) [25],
presence of diabetes mellitus (DM) [26], COPD (emphysema and chronic bronchitis) [27],
pulmonary TB [28], and health insurance types (covered or not by Medicaid) [29]. Both
crude and adjusted risks were explored for possible risk variables, and each variable
was input into the model as a categorical variable. A multivariable model using the Cox
proportional hazards model was developed using the times to event between the date of
health examination and the date of first lung cancer diagnosis or follow-up termination,
whichever came first. The proportional hazards assumption was evaluated by investigating
Schoenfeld residuals with the logarithm of the cumulative hazard function based on Kaplan–
Meier curves. Finally, the best-fit risk prediction model was built using backward selection.

The 7 adopted predictors (age category, sex, BMI category, cumulative smoking
intensity, presence of COPD, type 2 DM, and pulmonary TB) were applied as weighted risk
scores based on the b coefficients for each risk factor in the final Cox proportional hazards
by assigning scores ranging from 0 to 100 [30]. The total score, which was the sum of the
scores for each of the 7 variables, ranged from 0 to 240. The detailed nomogram for lung
cancer risk in our prediction model is presented in Figure 2.Cancers 2021, 13, x FOR PEER REVIEW 5 of 14 
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2.6. Validation of the Risk Prediction Model

Performance of the model was evaluated with respect to discrimination and calibration.
Model discrimination was assessed using the concordance statistic (c-statistic) for

survival data. ROC curves are concordance measures with c-statistic interpreting the
probability of how closely the model predicts the risk of lung cancer for subjects who
actually developed lung cancer compared with those who did not during follow-up. The
prediction model is considered good when the discrimination is 0.60–0.80, and a value >0.80
is considered excellent [31]. Internal validation of model discrimination was assessed by
calculating the bootstrap optimism-corrected c-statistic with 100 bootstrap replications [32].

Model calibration was assessed by plotting the mean predicted probability against
the mean observed probability of lung cancer. Calibration ability refers to how closely
the predicted probabilities agree numerically with the actual outcomes. The χ2 statistic
was calculated by first dividing the data into deciles based on the predicted probabilities
produced by the model in ascending order. Then, in each decile, the average predicted
probabilities were compared with the actual lung cancer risk estimated using the Kaplan–
Meier approach. The performance of the developed model was also tested on the validation
dataset with regard to both discrimination and calibration.

2.7. Statistical Analyses

Descriptive data are presented as means ± standard deviation (SD) and frequencies
as percentage (%). To evaluate the difference between the proportions or means of two
variables, chi-square tests and Student’s t-tests were used. Incidence rates of lung cancer
were estimated as events per 1000 person-years (PYs). A two-sided p-value <0.05 was
considered statistically significant, and all analyses were performed using complete data
only. All analyses were performed using SAS (version 9.4; SAS Institute, Cary, NC, USA).

3. Results
3.1. Clinical Characteristics of the Study Population in the Development and Validation Cohorts

Among 1,975,846 subjects in the development cohort, 16,747 individuals (0.85%)
developed lung cancer during the follow-up period (mean, 8.2 years). The incidence
rate of lung cancer was 1.09 per 1000 PYs. Compared with the subjects who did not
develop lung cancer, the subjects who developed lung cancer were older and male. Greater
smoking intensity and alcohol consumption were observed in patients who developed lung
cancer (Table 1). Among the other 30% of the study population in the validation cohort
(n = 803,934), the mean age was 54.2 years, and approximately 50% of the subjects were
female. Among them, 7115 patients (0.89%) developed lung cancer during the follow-up
period (mean, 8.2 years). The clinical characteristics of the validation cohort were similar
to those of the development cohort, including age, sex, and BMI, as well as lung cancer
incidence rate (1.08/1000 PYs) (Table 1).

Table 1. Baseline characteristics of cohort population based on lung cancer incidence in the development and
validation cohorts.

Developmental Cohort (n = 1,975,846) Validation Cohort (n = 803,934)

Lung Cancer
Did Not Develop

(n = 1,859,099)

Lung Cancer
Developed
(n = 16,747)

p-Value a
Lung Cancer

Did Not Develop
(n = 796,819)

Lung Cancer
Developed
(n = 7115)

p-Value a

Age (years) (N, %)
40–49 725,609 (39.0) 1481 (8.8) <0.001 310,720 (39.0) 561 (7.9) <0.0001
50–59 578,958 (31.1) 3859 (23.0) 247,804 (31.1) 1674 (23.5)
60–69 361,299 (19.4) 6193 (37.0) 155,121 (19.5) 2659 (37.4)
70–79 168,698 (9.1) 4606 (27.5) 72,753 (9.1) 1989 (28.0)
≥80 24,535 (1.3) 608 (3.6) 10,421 (1.3) 232 (3.3)

Sex (male) (N, %) 926,036 (49.8) 11,989 (71.6) <0.001 396,541 (49.8) 5200 (73.1) <0.0001
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Table 1. Cont.

Developmental Cohort (n = 1,975,846) Validation Cohort (n = 803,934)

Lung Cancer
Did Not Develop

(n = 1,859,099)

Lung Cancer
Developed
(n = 16,747)

p-Value a
Lung Cancer

Did Not Develop
(n = 796,819)

Lung Cancer
Developed
(n = 7115)

p-Value a

BMI (kg/m2) (N, %)
<18.5 40,779 (2.2) 670 (4.0) <0.001 17,599 (2.2) 260 (3.65) <0.0001

18.5–23 668,716 (36.0) 6668 (39.8) 286,694 (36.0) 2839 (39.9)
23–25 496,918 (26.7) 4329 (25.9) 212,892 (26.7) 1868 (26.3)
25–30 590,430 (31.8) 4714 (28.2) 252,927 (31.7) 2004 (28.2)
≥30 62,256 (3.4) 366 (2.2) 26,707 (3.4) 144 (2.0)

Smoking (pack-years) (N, %)
Nonsmoker 1,193,868 (64.2) 7247 (43.3) <0.001 512,328 (64.3) 2973 (41.8) <0.0001

<10 158,726 (8.5) 979 (5.9) 68,088 (8.5) 423 (6.0)
10–20 185,327 (10.0) 1571 (9.4) 79,402 (10.0) 646 (9.1)
20–30 157,04 7(8.5) 1899 (11.3) 67,004 (8.4) 861 (12.1)
≥30 164,131 (8.8) 5051 (30.2) 69,997 (8.8) 2212 (31.0)

Alcohol drinking (N, %)
Nondrinker 1,085,573 (58.4) 9421 (56.3) <0.001 465,956 (58.5) 3940 (55.4) <0.0001

Light drinker 453,362 (24.4) 3653 (21.8) 194,041 (24.3) 1568 (22.0)
Moderate drinker 183,947 (9.9) 1903 (11.3) 78,682 (9.9) 828 (11.6)

Heavy 136,217 (7.3) 1770 (10.6) 58,140 (7.3) 779 (11.0)
Type 2 DM (yes) (N, %) 220,692 (11.9) 3028 (18.1) <0.001 95,092 (11.9) 1329 (18.7) <0.0001

COPD (yes) (N, %) 64,554 (3.5) 1997 (11.9) 28,004 (3.5) 847 (11.9)
Pulmonary TB (yes) (N, %) 22,083 (1.2) 485 (2.9) 9688 (1.2) 228 (3.2)

Insurance coverage
(Medicaid) (N, %) 76,054 (4.1) 738 (4.4) 0.04 32,830 (4.1) 311 (4.4) 0.29

Abbreviations: BMI, body mass index; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; TB, tuberculosis. a Tested
using chi-square test for categorical variables.

3.2. Selection of Predictor Variables for the Prediction Model

The crude and adjusted hazard ratios (aHRs) for nine variables in the model are
presented in Table 2. The HR was higher based on age group and persisted after adjusting
for all listed variables (model 1): sex, exercise level, BMI, smoking and drinking habits,
presence of diabetes, COPD, previous history of pulmonary TB, alcohol consumption,
and insurance coverage. Female sex (aHR, 0.56; 95% CI: 0.53–0.58) was also a significant
predictive factor for the development of lung cancer. After categorization into five groups,
smoking intensity was significantly associated with lung cancer risk with a linear trend
(for <10 pack-years, aHR, 1.12; 95% CI: 1.05–1.21; and for ≥30 pack-years, aHR, 3.07; 95%
CI: 2.93–3.22) (model 1). After BMI categorization into five groups, an inverse relationship
with a linear trend was observed compared with normal BMI (18.5–22.9 kg/m2) in Asians
(<18.5 kg/m2; aHR, 1.26; 95% CI: 1.16–1.36; and ≥30 kg/m2; aHR, 0.66; 95% CI: 0.59–0.73)
(model 1). The presence of COPD (aHR, 1.70; 95% CI: 1.62–1.79) or previous history of
pulmonary TB (aHR, 1.34; 95% CI: 1.22–1.47) also showed increased risk for lung cancer
incidence. However, alcohol consumption (aHR for heavy drinkers, 0.97; 95% CI: 0.91–1.02)
and coverage by Medicaid (aHR, 1.05; 95% CI: 0.97–1.13) were not significant factors in
model 1. To determine the best-fit model using backward elimination methods, alcohol
consumption and coverage by Medicaid were finally eliminated from the final model
(model 2).

3.3. Development of Scores for Lung Cancer Prediction

The risk prediction model for lung cancer was translated into a risk score nomogram
(Figure 2). The sum of the scores for seven variables ranged from 0 to 240. Individual risk
can be estimated as follows: for example, a male (21 points), 60 years of age (75 points),
currently smoking >20 pack-years (24 points), without chronic lung disease (0 point),
or past history of pulmonary TB (0 points) but with type 2 DM (3 points), would have
123 points (Figure 2, Table S1). The 5-year lung cancer incidence probability for this male
is estimated to be 1.2%. If the total score is >200 points, lung cancer incidence probability
increases up to >10.0% (Figure 3).
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Table 2. Hazard ratios (HRs) and 95% confidence interval (CI) for lung cancer incidence.

Number of
Subjects Event Follow-Up

(PYs) IR Crude HR
(95% CI)

Model 1
aHR (95% CI)

Model 2
aHR (95% CI)

Age (years)
40–49 727,090 1481 6027, 618.8 0.25 1 (ref) 1 (ref) 1 (ref)
50–59 582,817 3859 4822, 231.1 0.80 3.26 (3.07–3.46) 3.03 (2.86–3.22) 3.05 (2.87–3.24)
60–69 367,492 6193 2996, 657.1 2.07 8.42 (7.95–8.91) 7.61 (7.18–8.07) 7.71 (7.27–8.17)
70–79 173,304 4606 1334, 442.8 3.45 14.15 (13.34–15.00) 13.11 (12.33–13.93) 13.35 (12.57–14.19)
80–89 25,143 608 160, 846.8 3.78 15.87 (14.44–17.44) 14.88 (13.51–16.39) 15.21 (13.82–16.75)
Sex

Male 938,025 11,989 7597, 638.5 1.58 1 (ref) 1 (ref) 1 (ref)
Female 937,821 4758 7744, 157.9 0.61 0.39 (0.38–0.40) 0.56 (0.53–0.58) 0.60 (0.52–0.71)

BMI (kg/m2)
<18.5 41,449 670 321, 011.2 2.09 1.73 (1.60–1.88) 1.26 (1.16–1.36) 1.20 (0.90–1.59)

18.5–23 675,384 6668 5504, 084.6 1.21 1 (ref) 1 (ref) 1 (ref)
23–25 501,247 4329 4113, 813.5 1.05 0.87 (0.84–0.90) 0.82 (0.79–0.86) 0.86 (0.75–0.98)
25–30 595,144 4714 4889, 253.9 0.96 0.80 (0.77–0.83) 0.75 (0.72–0.78) 0.76 (0.67–0.86)
≥30 62,622 366 513, 633.42 0.71 0.59 (0.53–0.65) 0.66 (0.59–0.73) 0.65 (0.45–0.94)

Smoking (pack-year)
Nonsmoker 1,201,115 7247 9874, 552.2 0.73 1 (ref) 1 (ref) 1 (ref)

<10 159,705 979 1307, 649.6 0.75 1.023 (0.96–1.09) 1.12 (1.05–1.21) 1.28 (1.01–1.63)
10–20 186,898 1571 1524, 583.2 1.03 1.41 (1.33–1.49) 1.47 (1.38–1.56) 1.51 (1.22–1.88)
20–30 158,946 1899 129, 0218.4 1.47 2.01 (1.91–2.12) 1.98 (1.87–2.10) 2.53 (2.09–3.06)
≥30 169,182 5051 1344, 793.1 3.76 5.14 (4.96–5.33) 3.07 (2.93–3.22) 3.47 (2.96–4.07)

Alcohol
consumption
Nondrinker 1,094,994 9421 8951, 014.5 1.05 1 (ref.) 1 (ref.) -

Light 457,015 3653 3753, 142.2 0.97 0.93 (0.89–0.96) 0.89 (0.85–0.92)
Moderate 185,850 1903 1518, 858.3 1.05 1.19 (1.14–1.25) 0.94 (0.89–0.99)

Heavy 137,987 1770 1118, 511.4 1.58 1.51 (1.43–1.59) 0.96 (0.91–1.02)
Presence of
type 2 DM

No 1,652,126 13,719 13,563, 423.2 1.01 1 (ref) 1 (ref) 1 (ref)
Yes 223,720 3028 1,778,373.3 1.70 1.67 (1.62–1.76) 1.09 (1.05–1.14) 1.22 (1.07–1.40)

Presence of COPD
No 1,809,295 14,750 14,830, 410.7 0.99 1 (ref) 1 (ref) 1 (ref)
Yes 66,551 1997 511, 385.8 3.91 3.94 (3.76–4.13) 1.70 (1.62–1.79) 1.70 (1.44–2.00)

Presence of pulmonary
TB

No 1,853,278 16,262 15,165, 257.7 1.07 1 (ref) 1 (ref) 1 (ref)
Yes 22,568 485 176, 538.8 2.75 2.57 (2.35–2.81) 1.34 (1.22–1.47) 1.62 (1.23–2.14)

Insurance
coverage

Non-Medicaid 1,799,054 16,009 14,712, 765.1 1.09 1 (ref) 1 (ref) -
Medicaid 76,792 738 629, 031.4 1.17 1.08 (1.00–1.16) 1.05 (0.97–1.13)

Abbreviations: PYs, person-years; HR, hazard ratio; IR, incidence rate per 1000 person-years; aHR, adjusted hazard ratio; CI, confidence
interval; BMI, body mass index; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; TB, tuberculosis. Model 1: adjusted
for all possible predictor variables listed in the table. Model 2: adjusted for selected predictor variables using backward selection.
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The decile score showed that the subjects in the highest decile (total score >124) had
the highest incidence rate of 5.39 per 1000 PYs (Figure 4, Table S2).Cancers 2021, 13, x FOR PEER REVIEW 9 of 14 
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3.4. Validation of the Risk Model

Our risk prediction model showed good discrimination (c-statistic, 0.810; 95% CI:
0.801–0.819). When the performance of the developed model was tested on the validation
cohort, the c-statistic for 5-year prediction of lung cancer incidence was 0.825 (95% CI:
0.810–0.840).

The relationship between model-predicted and actual lung cancer development corre-
lated well in the calibration plot (Figure S1). Compared with the dashed line representing
the performance of an ideal nomogram, the solid line representing the actual outcome
showed a nearly 45-degree line, indicating that this model corresponded well with an
absolute lung cancer event.

4. Discussion

A risk prediction model for lung cancer in Korea was developed and validated using
the KNHI DB. The performance of the model was good with competent discrimination
with a c-statistic of 0.810 (95% CI: 0.801–0.819) and calibration ability. To establish clinically
relevant and meaningful models for the general population, the use of easily accessible
and modifiable risk factors for lung cancer has been emphasized. Each of the seven
variables used in the 5-year lung cancer risk model consisted of clinically important but
easily applicable variables. We showed that this prediction model provides accurate
risk prediction for lung cancer in a population-based cohort and is applicable to health
examinees or the general adult population.

Since a Korean national lung cancer screening program has been in operation since
2019, there are several efforts to identify the appropriate population recommended for
screening and to maximize the efficacy of the screening program. Of them, the Korean
Cancer Society and the Korean Foundation for Cancer Research has driven a study project
to provide aid for self-decisions on participating in lung cancer screening, and our lung
cancer risk model for Koreans has been developed. Healthcare providers can advise early
screening for lung cancer or lifestyle modification, including smoking cessation, based
on the estimated risk using this prediction model. We believe that interactive approaches
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between healthcare providers and examinees using an easily accessible and visualized risk
score can be used for the development of health policies for lung cancer prevention.

The crude lung cancer incidence rates in study participants were compared with
those in subjects in the general population in Korea within identical age ranges. Study
participants having follow-ups between their health examinations in 2009 and December
2018 were compared with those included in the 2017 registry of cancer incidence in the
Korean population [33] to determine the age-specific rates per 100,000 PYs in each age
group. The results for the study participants and general population were as follows:
40–49 years of age (24.6 vs. 22.3), 50–59 years of age (80.0 vs. 91.8), 60–69 years of age
(206.7 vs. 291.3), 70–79 years of age (345.2 vs. 575.6), and >80 years of age (378.1 vs. 651.0).
Because the number of subjects >90 years of age included in the registry and the number
of subjects >80 years of age who participated in health examinations in our study cohort
were relatively low, this model was representative of the Korean population, although the
incidence rates of the study participants were slightly lower.

4.1. Previous Lung Cancer Prediction Models

Previous prediction models from Western countries have estimated individual lung
cancer risk with good predictive abilities [8–14]. Although relatively few prediction models
have been developed in Asian countries, a prospective cohort study of 395,875 subjects
in Taiwan consistently predicted individual lung cancer risk with a c-statistic of 0.73–0.85
regardless of smoking status after integrating the risk factors of family history, tumor
markers (carcinoembryonic antigen (CEA) or alpha fetoprotein (AFP)), and lung function
(FEV1) [34]. A Korean prediction model [17] with modifiable risk factors also showed
accuracy with a c-statistic of 0.87 in predicting 8-year lung cancer risk in men. A previous
Korean model included family history of lung cancer, but it was not significant in the final
model. Instead of fasting glucose level, DM diagnosis evaluated in our model showed a
similar risk level for lung cancer and appeared more intuitive for obtaining an immediate
assessment in a clinical setting or self-assessment. Regarding discrimination ability, our
model is comparable to or better than previous models without integrating other genetic
or laboratory findings.

Smoking exposure is the most important established risk factor for lung cancer in-
cidence [35–38]. In previous models, smoking-related variables were used to estimate
smoking exposure: smoking intensity (UK Biobank [14], PLCO [8], EPIC [13], Spitz [12],
Bach [15], Pittsburgh [16], and Korean [17] models), duration (Spitz [12], LLP [11], PLCO [8],
Bach [15], and Pittsburgh models [16]), age when started smoking (Spitz [12], EPIC [13],
and Korean [17] models), age when stopped smoking (Spitz model [12]), and/or time since
smoking cessation (Bach [15] and UK Biobank [14] models). In several studies, individual
smoking exposure was titrated based on spline effects of pack-years, smoking duration,
and smoking quit-time duration [8,17]. Similar to previous models, smoking intensity
estimated based on pack-years, a well-known reliable parameter for smoking exposure,
adequately predicted lung cancer incidence in Koreans with a clear dose-response man-
ner in the present study. Furthermore, regarding decline in discrimination by including
noncurrent smokers in the model [8,11,12], our model with noncurrent smokers and the
calculated risk relative to them could be expanded to the general adult population with
an excellent performance. Immediate calculations based on self-assessment could help
subjects readily use lung cancer prediction models.

4.2. Predictor Variables in Lung Cancer

In addition to age and smoking exposure, candidate variables in epidemiologic studies
for lung cancer incidence included sex, with higher risk in men; BMI, with an inverse
association [23]; underlying pulmonary diseases such as COPD; pulmonary infectious
diseases, including bronchitis [11,27], TB [28], and pneumonia [39]; and individual lung
function represented by FEV1 [14]. Other variables included nicotine addiction [36], oc-
cupational exposure and secondhand smoking [12], inflammatory markers [34], allergic
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conditions [40,41], and type 2 DM [26], as well as family history of lung cancer [42–44].
Because we wanted to develop a simple and easily accessible prediction model for adults,
parameters that needed further questionnaires or laboratory tests to complete risk calcula-
tion were not considered. Future prediction models including environmental exposure or
genetic factors should be developed.

In the present study, fewer women were current smokers than men, and risk of lung
cancer was lower in women (aHR, 0.60; 95% CI: 0.52–0.71) than in men. After selection
of predictor variables, male sex was a significant predictor for lung cancer incidence,
which was consistent with previous models. Regarding the higher risk in men, previous
models have also included sex in the model as a predictor variable (Bach [15], LLP [11], UK
Biobank [14], and EPIC [13] models) based on stratification (PLCO model [8]) or restriction
to men (Spitz [12] and Korean [17] models). Regarding the status of smoking rates in
women compared with the decline in men over decades [45,46], the risk difference based
on sex should be a factor of interest in lung cancer prediction in Korea.

In addition, lower BMI was mainly associated with lung cancer risk among the
statistically selected seven variables. Lean body weight represented by lower BMI indicated
increased risk of lung cancer. In previous epidemiological studies, higher BMI was shown
to be associated with lower overall lung cancer risk, which was further confirmed in
meta-analyses [23,24]. To clarify the confounding effects of smoking, a meta-analysis of
nonsmokers was performed to investigate the association between BMI and lung cancer
risk. Zhu et al. reported that an inverse linear dose-response relationship was observed
between BMI and lung cancer risk in never smokers [47]. In the present study, subjects
with lower BMI (<18 kg/m2) had the highest score (score 24) even after adjusting for
smoking intensity in a statistically fitted model. The inverse relationship between BMI
and lung cancer was consistently present in a previous Korean prediction model [17]. The
possible plausibility of this inverse association between BMI and lung cancer risk can be
explained by the effect of adipose tissue on DNA adducts that are associated with storage
and metabolism of carcinogen [48,49]. In addition, the linkage of excess body fat to increase
in insulin level might inhibit carcinogenesis by suppressing apoptosis and improving
immune function [50,51].

Several studies have been performed regarding comorbidities associated with lung
cancer incidence. Regarding the presence of COPD, in a large pooled case–control study,
chronic bronchitis and emphysema increased lung cancer risk by 30% after accounting
for smoking [27]. A potential explanation for the increase in lung cancer risk is the in-
flammatory response to chronic bronchitis and emphysema, which is conducive to tumor
initiation [52]. Increases in genetic mutations, angiogenesis [53], and antiapoptotic signal-
ing [54] are potential processes through which inflammation may increase the risk of cancer
development. However, a prediction model in a prospective cohort study of UK Biobank
previously showed that lung function was incorporated with lung cancer incidence [14].
Pulmonary TB has also been postulated to have a causal association with lung cancer. In a
previous study including 1 million people with a 16-year median follow-up in Korea, which
has a high prevalence of TB, the presence of underlying TB was significantly associated
with increased risk of lung cancer [28]. Due to a modest increase in the lung cancer risk
without an effect modification by smoking, the authors suggested that underlying TB can
be incorporated into a lung cancer model, especially in Korea, where a high prevalence
of TB exists. This association can be evidenced by chronic inflammation, oxidative stress,
or fibrosis [55,56]. The presence of pulmonary TB in this model showed increased lung
cancer risk, although the score strength was relatively small.

In our model, type 2 DM was also associated with a small risk of lung cancer incidence.
Subjects who were comorbid with type 2 DM showed a 20% increased risk of lung cancer
with an incidence rate of 1.70 (per 1000 PYs). In a meta-analysis, type 2 DM was signifi-
cantly associated with increased risk of lung cancer compared with nondiabetic controls
after adjusting for smoking (RR, 1.11; 95% CI: 1.02–1.20) [26]. Hyperinsulinemia, insulin
resistance, and chronic inflammation may contribute to lung structural damage and be
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associated with the neoplastic process [57]. Although the presence of listed comorbidi-
ties showed that the increased lung cancer risk was relatively small, there are important
health implications for motivating patients with comorbidities to participate in lifestyle
modification based on individualized lung cancer risk.

4.3. Limitations

The present study has several limitations. First, smoking habits included in the model
were based only on intensity and not on duration or age at smoking initiation. However,
pack-year estimation is a representative measure for smoking exposure, and pack-years
in our model showed good performance. Second, underestimation of smoking in women
may have occurred because female smoking has a negative connotation in the Korean
culture. Third, severity status of disease comorbidities was not input into the model.
Fourth, information on histopathologic type or stage of lung cancer was not available in
our model.

5. Conclusions

We developed a multivariable risk model to predict lung cancer incidence in Korean
adults. The scores in this prediction model may serve as a tool to screen high-risk individ-
uals who would benefit from participating in lung cancer screening in a clinical setting.
Physicians or healthcare providers can motivate participants with or without comorbidities
to reduce their risk by quitting smoking or maintaining proper body weight not only for
overall health improvement but also for prevention of future lung cancer based on the
risk calculated using this model. Future studies identifying whether this model helps
subjects in making decisions to participate in lung cancer screening or initiating lifestyle
modifications based on their individualized risk should be performed.
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.3390/cancers13143496/s1, Table S1: Scores for each risk factor category, Table S2: Predicted incidence
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plots between predicted and observed 5-year lung cancer development.
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