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Abstract: Antibodies have become an important class of biological products in cancer treatments
such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity
antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to
separate antibodies from complex mixtures. Quality chromatographic components (matrices and
affinity ligands) have either been found or generated to increase the purity and yield of antibodies.
More importantly, some matrices (mainly particles) and affinity ligands (including design protocols)
for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for
radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy.
This paper provides a brief overview on the matrices and ligands used in affinity chromatography
that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich
potential approaches for improving the efficacy of radiotherapy.

Keywords: matrices; particles; affinity ligand; antibody purification; radiotherapy; radiosensitizer;
therapeutic radionuclide

1. Introduction

Antibodies and their products have presented an approximately exponential growth
in recent years [1] and have become the predominant class of new drugs for cancer
treatment [2,3]. The therapeutic applications require high-purity antibodies [4], which
are usually separated from complex mixtures containing various useless proteins. Anti-
bodies can be isolated through a highly standardized platform, including pre-treatment,
a capture step (protein A affinity chromatography), a polishing step (ion-exchange chro-
matography, hydrophobic interaction chromatography, etc.), and virus inactivation [5,6].
Chromatography has always been the mainstay of the antibody purification process, owing
to its unparalleled scalability, robustness, and selectivity [7]. More importantly, all of the pu-
rification schemes for antibody production rely on the utilization of affinity chromatography
to concentrate the product [5], thereby reducing the pressure of downstream purification.

Affinity chromatography employs different types of matrices and ligands. Protein
A is the most commonly used affinity ligand for antibody purification and is covalently
bonded to a natural or synthetic matrix [8]. However, protein A chromatography faces
several disadvantages such as expensiveness, toxic ligand leakage [9], and a shorter lifetime
of the resin [10], increasing the purification cost. To overcome these difficulties, a great
deal of effort has been made to find or generate quality matrices and affinity ligands over
the years.

Antibodies, especially monoclonal antibodies (mAbs), have been successfully utilized
in combination with radiotherapy, providing an enhanced therapeutic effect in cancer
treatment. Radiotherapy, harnessing high energy ionizing radiation to eradicate tumor
cells, is a routine method for cancer treatment, and over half of all cancer patients need
radiotherapy in current clinical therapy [11,12]. However, radiotherapy causes inevitable
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injury to surrounding healthy tissues and the emergence of radioresistance in cancer
cells, which remarkably lowers the therapeutic efficiency or even leads to the failure of
radiotherapy [13]. Hence, it has become an urgent priority to develop new regimens to
enhance the therapeutic effects of radiotherapy.

Recent years have witnessed tremendous efforts in improving the efficiency of radio-
therapy. Novel and effective radiosensitizers and carriers for therapeutic radionuclides (or
for radiosensitizers) are two excellent representatives. Moreover, some radiosensitizers and
carriers are similar to or the same as the matrices or affinity ligands for antibody purifica-
tion. In other words, some matrices and affinity ligands (including design protocols) for
antibody purification can either directly or indirectly (after further modification) play a
vital role in improving the therapeutic efficiency of radiotherapy.

So far, there are few reports on the application of affinity chromatographic components
in radiotherapy. This paper briefly reviews the chromatographic matrices and ligands for
antibody affinity purification and highlights their applications in radiotherapy. At present,
except for some published clinical experiences, these applications are still mainly in the
experimental stage. This review will provide further available methods for increasing the
efficacy of radiotherapy.

2. Chromatographic Matrices and Corresponding Applications in Radiotherapy
2.1. Chromatographic Matrices

A prerequisite for affinity chromatography is a suitable matrix for the ligands. An ideal
matrix should possess the characteristics of uniformity, stability, hydrophilicity, insolubility,
minimum nonspecific absorption, and a large surface area for ligand attachment [14]. The
stationary phase used for antibody affinity purification can be in the formats of packed-
column, membrane, and monolith, as shown in Figure 1A, and the matrices packed in
columns are adsorbents (mainly porous particles).
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2.1.1. Particles

The particles used as chromatographic matrices include microparticles and nanoparti-
cles according to their sizes, and the micron-sized porous resins are the most commonly
used matrices in packed-column chromatography. Based on the origin of the materials,
particles are categorized into three groups [1], including natural, synthetic, and inorganic
particles (Figure 1B).

Natural particles are usually prepared with agarose, cellulose, dextran, and their
derivatives, and synthetic particles are commonly synthesized with polymethacrylate,
polystyrene, and acrylamide derivatives [1,10]. For a detailed description of the natural
and synthetic particles, please refer to other review articles [1,15].
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The inorganic particles usually include porous silica particles and magnetic beads.
Porous silica particles demonstrate a potential to be an alternative to traditional polymer
supports on account of their easier regeneration, inexpensiveness, excellent flow properties,
and easier surface modification [16,17]. Magnetic beads of different sizes are fabricated via
entrapping magnetite within agarose, cellulose, polystyrene, or other polymeric materials,
onto which ligands are fixed. Protein affinity separation using the magnetic beads offers
the advantages of a low cost, robustness, rapid separation, few handling steps, and reduced
system costs [4,18]. For example, an affinity sorbent was prepared by coupling protein A to
magnetic monodisperse-porous SiO2 microspheres and employed to isolate immunoglobu-
lin G (IgG) from rabbit serum in shorter isolation periods [19]. Nanometer-size magnetic
beads are also applied in antibody purification. Without internal diffusion limitations, the
non-porous structure of nanoparticles permits fast mass transfer of protein [4]. Cheng [20]
prepared PEG-modified magnetic nanoparticles with a novel core-shell structure coupled
with protein A to rapidly separate Omalizumab and IgG from cell culture supernatant and
fetal calf serum, respectively.

Typically, affinity adsorbents have a porous structure to increase their surface area for
protein adsorption, and these porous microspheres can be applied to columns. However,
the pores are easily clogged with other proteins or foulants. On the contrary, non-porous
microparticles or nanoparticles are not affected by particulate matter that presents in the
mixture to be separated. Non-porous particles, especially magnetic beads, can be employed
in antibody affinity separation in a non-column form. To date, the applications of magnetic
separation have remained at a lab-scale.

2.1.2. Membrane and Monolith

As an alternative to column chromatography, membrane chromatography that com-
bines membrane filtration and liquid chromatography together has captured growing
attention for antibody purification. Membranes offer the advantages of simplicity, ease
of handling, a larger surface area, an improved mass-transfer efficiency, and an easier
scale-up [21,22]. Affinity ligands, such as protein A/G [21], mimetic™ A2P [23], ligand
22/8 [24], and tryptamine [25], have been immobilized onto membranes for antibody purifi-
cation from complex mixtures. For work regarding a detailed review of affinity membranes,
please refer to the following article [22].

Monoliths are another alternative to packed columns, succeeding membrane adsorbers [7].
Monoliths are characterized by a single block of a homogenous stationary phase, a network
of large, interconnected channels (or pores), endowing them with myriad advantages,
including enhanced mass transfer, increased permeability, higher dynamic binding capacity,
and lower preparation cost [26,27]. Monoliths have been extensively applied in antibody
purification with different affinity ligands, such as protein A [28], L-histidine [29], and
peptides [30,31]. Further discussion on affinity monoliths has been reported [26,32], and
this review will not repeat it.

2.1.3. Concluding Remarks

Despite the advantages of membranes and monoliths as affinity matrices, neither
affinity membrane chromatography nor affinity monolith chromatography has replaced
affinity column chromatography as the standard for antibody purification. The avoidance
of regulatory issues is considered as the main reason [10]. Up to now, the most commonly
used supports for affinity column chromatography are still the micron-sized porous resins
(particles). Importantly, it is these particles that are associated with radiotherapy. Thus,
in the following description of their applications in radiotherapy, the chromatographic
matrices consist of these particles.

2.2. Applications of Particles in Radiotherapy

Radiotherapy has been a routine method for clinical cancer therapy and is carried
out with ionizing radiation that consists of particle radiation (α particles, β particles, etc.)
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or high-energy photon radiation (X-rays and γ rays) [33,34]. A higher dose of ionizing
radiation is required in this therapy because of the low radiation absorption or the radiore-
sistance of the tumors, causing severe damage to adjacent normal tissues. To enhance the
efficacy of radiotherapy and decrease its radio-toxicity, novel and effective radiosensitizers
or therapeutic radionuclide carriers have been developed. Some of the aforementioned
microparticles and nanoparticles have been applied in radiotherapy either directly or with
further modification. The applications mainly include acting as radiosensitizers, delivering
therapeutic radionuclides, or radioprotectors [33,35,36], as shown in Figure 2.
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2.2.1. Acting as Radiosensitizers

Radioresistance has been a major reason for radiotherapy failure and subsequent
tumor relapse [37] and the increasing radiosensitivity of tumor cells is thus greatly sig-
nificant for attempt to enhance the efficacy and safety of radiotherapy. Radiosensitizers
are promising agents to achieve this aim. To date, many highly effective and low-toxicity
radiosensitizers have been developed to make various tumors more vulnerable to external
radiation, and nanomaterials, such as silica-based and magnetic nanoparticles, are a type
of effective radiosensitizers.

Silica-based nanoparticles have been used as radiosensitizers in radiotherapy. Silicon
nanoparticles (<5 nm in size) clearly enhanced the reactive oxygen species (ROS) genera-
tion in rat glioma C6 cells upon exposure to X-rays, and the level of produced ROS was
proportional to the received radiation dose, showing their ability to improve the efficacy
of radiotherapy [38]. Aminosilanized oxidized silicon nanoparticles (NH2-SiNPs) could
also significantly promote ROS production under X-ray irradiation in breast cancer and
mouse fibroblast cells, and after reaching the mitochondria, NH2-SiNPs caused oxidative
stress damage within the organelle [39], indicating that NH2-SiNPs has a potential role as a
radiosensitizer for X-rays in tumor cells.



Biomolecules 2022, 12, 821 5 of 20

Magnetic nanoparticles can also act as physical radiosensitizers in radiotherapy [40,41].
They are highly biocompatible and have negligible toxicity to healthy tissues, and they
can be directed and localized to tumors through an external magnetic force. Magnetic
nanoparticles can produce cytotoxic effects on account of their ROS generation, leading to
the damage of DNA and other cellular components [37,42]. Moreover, superparamagnetic
iron oxide could enhance irradiation-induced DNA damage through catalyzing the genera-
tion of ROS [43], and this was confirmed on MCF-7 cells loaded with superparamagnetic
nanoparticles [44]. Dextran-coated magnetic nanoparticles with increased chemical stability
and biocompatibility [45,46] were also able to enhance the radiosensitivity of HeLa and
MCF-7 cells, and the radiosensitivity increased with the dose rate or the concentration
of nanoparticles [41].

In fact, there have been various kinds of nanoparticles that have displayed the ability
to act as radiosensitizers. Nanoparticles based on heavy metal with a high atomic-number
value, especially gold, have been typical radiosensitizers in recent years [34]. Likewise,
these nanoparticles are beyond the scope of this review and are not discussed here.

2.2.2. Delivering Therapeutic Radionuclides

Delivering therapeutic radionuclides into tumors is a promising strategy to enhance
the effect of radiation on tumors and decrease radio-toxicity to neighboring normal
tissues [33]. Generally, therapeutic radionuclides (such as 131I and 90Y [47]) are specifically
delivered into tumors via suitable tumor-homing carriers, chiefly liposomes, microparti-
cles, nanoparticles, micelles, dendrimers, and hydrogels [33,48]. Here, we describe the
utilization of microparticles and nanoparticles in delivering therapeutic radionuclides.

Silica particles have been used to deliver therapeutic radionuclides. For instance,
90Y-labeled mesoporous silica particles have shown a high chemical durability even un-
der weakly acidic conditions [49], and radiolabeled silica nanoparticles have presented
an excellent stability in vivo [50]. Magnetic nanoparticles are another common type of
particles used to deliver therapeutic radionuclides, such as the magnetic nanoparticles
functionalized with PEG600 used as radioactive vectors to deliver 90Y [51]. Magnetic
nanoparticles with other coatings, such as dextran, silica, human serum albumin, and
phosphate ligands [33], have also been reported to deliver radionuclides. Radiolabeled
magnetic nanoparticles could enhance tumor uptake and retention after intravenous ad-
ministration [33]. In addition, there have been some commercially available radiolabeled
microspheres, such as 90Y-labeled resin microspheres (SIR-Spheres).

These carriers are non-degradable, which not only leads to the inhibition of multiple
administration, but also prohibits a precise therapeutic evaluation due to infeasibility of
in vivo imaging [52,53]. Recently, biodegradable carriers have attracted increasing attention.
Organic biomaterials, such as chitosan, are biocompatible, non-toxic, and biodegradable,
and have been successfully used in the preparation of a new generation of radionuclide
carriers [52]. For example, the biodegradable composite microspheres prepared from
chitosan and collagen had a considerable biodegradability within 12 weeks. After being
injected into rats with orthotopic hepatocellular carcinoma via the hepatic artery, the
microspheres labeled with 131I effectively prolonged the median overall survival of the rats
from 19 to 44 days [52].

In addition, several other biodegradable microspheres have already been developed
to carry radionuclides, such as polylactic acid (PLA) microspheres loaded with 186/188Re
and 166Ho and gelatin microspheres labeled with 131I [53]. These carriers are beyond the
scope of this review and thus are not discussed.

2.2.3. Delivering Radioprotectors to Healthy Tissues

The radioprotection of the surrounding healthy tissues is another promising approach
to enhancing the efficacy and safety of radiotherapy. Most radioprotectors (radioprotective
agents, which are basically free radical scavengers, antioxidants, or immunomodulators,
which help to mitigate the radiation injuries) belong to organic molecular agents, which
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are insoluble in water and have a fast metabolism and thus a short circulation in the body,
generating reduced radioprotective effects [54]. A drug delivery system is an ideal choice
to compensate for these drawbacks. Nanoparticles are suitable as carriers for delivering
radioprotectors into the body to increase the stability and circulation time of radioprotectors
in vivo, eventually enhancing their bioavailability.

Inorganic nanoparticles are gradually used as carriers to assist radioprotectors in radio-
protection [36,55]. For example, silica nanoparticles (20 nm) were used to load and deliver
melanin, which was a naturally occurring pigment and possessed the properties of radio-
protection. Melanin-coated nanoparticles minimized hematologic toxicity in irradiated
mice, whereas they had no protective effect for metastatic melanoma tumors [55].

2.2.4. Other Applications

Nanoparticles have also been utilized in the synergistic treatment combining radiother-
apy and other treatments for cancer, such as chemo-radiotherapy and thermo-radiotherapy.

Chemo-radiotherapy, a combination of chemotherapy and radiotherapy [56], is a signif-
icant method for solid tumor treatment. Chemo-radiotherapy can increase the local efficacy
of radiotherapy on primary tumors and may even inhibit the growth of distant metastatic
tumors [57]. Although it improves tumor-killing, concurrent chemo-radiotherapy might
have the risk of higher toxicities. Therefore, increasing the efficacy of chemo-radiotherapy
and lowering its toxicity is of vital importance. Nanoparticles have been used to deliver
chemo drugs for chemo-radiotherapy based on their unique characteristics, such as prefer-
ential accumulation in tumors and controlled drug release profiles [58,59]. Multifunctional
mesoporous silica nanoparticles have been developed as vehicles to load an anticancer
drug, selenocysteine (SeC) [60]. The SeC-loaded nanoparticles could significantly enhance
the growth-inhibitory effect of cervical cancer cells induced by X-rays.

Thermo-radiotherapy is a combination of hyperthermia therapy and radiotherapy for
cancer treatment. Hyperthermia treatment, carried out by locally raising the temperature
of tumors, can inhibit the repair of irradiation-induced DNA breaks [61], make cancer
cells in the G1 and G2/M phases more sensitive to radiotherapy [62], and increase tumor
oxygenation [63], generating synergistic effects. Magnetic nanoparticles can be used in
thermo-radiotherapy under an external alternating magnetic field to evenly heat the tu-
mors [63,64]. For example, magnetic nanoparticles of 12 nm were directly injected into
tumors of human glioblastoma multiforme patients, and subsequently heated under an
alternating magnetic field. Furthermore, the treatment was conducted in combination
with fractionated stereotactic radiotherapy, and finally presented a remarkable increase in
overall survival to 13.4 months, compared with the control group treated with fractionated
stereotactic radiotherapy alone (6.2 months) [65].

2.2.5. Concluding Remarks

In radiotherapy, particles, nanoparticles in particular, can act as radiosensitizers,
deliver radionuclides and radioprotectors, and apply to synergistic treatments, such as
chemo-radiotherapy and thermo-radiotherapy. The characteristics of nanoparticles, such as
their small size and high specific surface area, effective tissue penetration, and selective
distribution to tissues and organs, are beneficial for increasing the efficacy of radiotherapy.
Further progress is needed to promote the successful application of nanoparticles to clinical
radiotherapy [66], such as developing nanoparticles with biosafety, improving tumor-
specific accumulation and minimizing retention in vivo after radiotherapy, and effecting
reproducible large-scale production under good manufacturing practice guidelines.

3. Affinity Ligands and Corresponding Applications in Radiotherapy
3.1. Affinity Ligands

Affinity ligands are the principal components of affinity chromatography. A suitable
affinity ligand should possess these essential properties: a high affinity and specificity to a
target protein, feasibility of immobilization, a retention of the binding capacity of the target
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protein after the attachment to the matrices, and possess stability under harsh washing
and elution conditions [1,14]. Many ligands have been developed to purify antibodies, and
these ligands are mainly classified into four broad categories, namely biospecific ligands,
alternative scaffold proteins, synthetic ligands, and pseudobiospecific ligands. In addition,
affinity tags, which are co-expressed as fusion partners with target proteins, are also able to
act as affinity ligands for recombinant antibody capture [14]. The ligands are summarized
in Table 1. In this review, we mainly focus on the ligands associated with radiotherapy and
describe them in detail.

3.1.1. Biospecific Ligands

Biospecific ligands refer to a group of naturally derived molecules, such as bacterially
derived proteins, lectins, antigens, and nanobodies, which offer a high binding affinity and
specificity to antibodies [67]. Bacterially derived proteins mainly include staphylococcal
protein A, streptococcal protein G, and peptostreptococcal protein L, and are the most used
affinity ligands for full-length antibodies. Lectins can specifically recognize and bind to
the glycosylation sites on antibodies. Antigens can also act as affinity ligands to purify
specific antibodies. Detailed description of these biospecific ligands can be found in other
articles [1,68,69].

Nanobody, also known as VHH, is the recombinant, single-domain, and antigen-
specific fragment of the heavy-chain-only antibodies that exist in the sera of camelids [70,71].
Nanobodies exhibit many peculiar characteristics, such as smaller size (15 kDa), high
solubility and stability, refoldability, pH tolerance, and easy conjugation [71,72]. Moreover,
their single-domain nature and strict monomeric behavior make it easy to produce them
on a large scale by using microbial systems [1,14]. Nanobodies have been used to purify
antibodies. For instance, a nanobody, separated from a naïve camelid single-domain
phase display library, showed an affinity for the IgG-Fc fragment, and could bind to
IgGs at a wide pH range (6.0–9.0) and NaCl concentrations. Under milder conditions,
the bound IgGs could be efficiently eluted [72]. Nanobody resins have the potential to
isolate IgGs from various complex samples [14], and have been commercialized, such as
captureSelectTM resins.

Despite their extensive use in antibody purification, biospecific ligands suffer from high
cost, low stability, low binding capacities, ligand leakage, and limited life cycles [11,14]. To
overcome these limitations, many different types of alternative ligands have been developed.

3.1.2. Alternative Scaffold Proteins

Alternative scaffold proteins, a type of tailor-made protein, are generally built from
smaller and structurally simpler frameworks. These frameworks usually contain altered
amino acids or insertions, producing large variant libraries. Among these variants, specific
ones with desired features can be isolated by selection techniques based on phage, ribosome,
or bacterial or yeast display [68]. Several alternative scaffold proteins to act as affinity
ligands for antibody purification have been developed, such as affibody, affitin, repebody,
and monobody.

Affibody is developed from the B-domain of protein A, which antibodies bind to [73].
To enhance chemical stability, the B-domain is mutated early at key positions, and the
obtained variant is denoted as the Z-domain, which represents the molecular origin of all
affibodies [68,73]. The Z-domain retains its higher affinity for the Fc region of antibodies,
while it almost completely loses its weaker affinity for the Fab region [68]. With the help of
display techniques, Z-domain mutants are selected from vast combinatorial libraries, yield-
ing many affibodies which exhibit specificity for antibodies of different classes [74,75]. For
example, novel ligands for murine IgG1 were successfully acquired from a combinatorial
ribosome display library of 1011 affibody molecules. One of the selected affibodies, termed
Zmab25, showed high specificity for mouse IgG1 and was able to successfully capture mouse
IgG1 from complex samples [75].
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The other alternative scaffold proteins are not discussed in this review, and a detailed
description can be found in other review articles [68,76].

3.1.3. Synthetic Ligands

Generally, synthetic ligands are a type of low-molecular-weight compounds with
properties of high chemical stability, robustness to sterilization, low cost, high versatil-
ity, and environmental friendliness [77]. Synthetic ligands mainly include three broad
categories: peptidyl ligands, non-peptidyl ligands, and aptamers. In addition, synthetic
polymer nanoparticles with a high affinity for antibodies are also included in this section.

Peptidyl Ligands

Peptidyl ligands refer to small peptides composed of a limited number of residues.
They offer higher stability, cheapness, lower immunogenicity, and a moderate affinity for
the target [68,78]. Peptidyl ligands include linear, cyclic, and dendrimeric peptides, based
on their structures.

The linear peptidyl ligands of antibodies can be generated by synthetic solid-phase
random peptide library screening. Typically, a family of linear hexapeptides are identified
through this approach, which share a common sequence homology of histidine on the
N-terminus followed by aromatic amino acid(s) and positively charged amino acids on the
C-terminus. Three hexapeptides, HWRGWV, HYFKFD, and HFRRHL, can bind to IgG [79].
Particularly, HWRGWV possesses the ability to bind to different IgG subclasses from vari-
ous species and has been successfully utilized in antibody purification [80–82]. Furthermore,
HWRGWV was modified by replacing some residues with non-natural analogs to enhance
its biochemical stability, while maintaining its target affinity and selectivity [83]. Moreover,
linear peptidyl ligands of antibodies can also be efficiently developed by a biomimetic
design strategy based on the structure of the receptor–ligand complex, which is commonly
protein A-IgG. A group of octapeptide ligands were developed from a biomimetic design
strategy that was based on the affinity motif of protein A in binding with human IgG and
combined docking and molecular dynamics simulations [84]. A total of five octapeptides,
FYWHCLDE, FYCHTIDE, FYCHWALE, FYCHNQDE, and FYCHWQDE, were identified
as the affinity ligands of human IgG, and all of them were able to successfully capture
high-purity and high-yield IgG from human serum [85,86].

Cyclic peptides possess attractive properties, such as a higher affinity and specificity
towards targets, an increased resistance to enzymatic degradation, and the ability to act
as the affinity ligands of antibodies [87]. Dendrimeric protein A mimetic (PAM), a typical
dendrimeric peptidyl ligand, is a tripeptide tetramer and displays a broad specificity
towards antibodies from different species [88]. Detailed descriptions of the cyclic and
dendrimeric peptides can refer to reported reviews [68,89].

Non-Peptidyl Ligands

To overcome the weakness of peptidyl ligands that are susceptible to enzymatic
degradation, non-peptidyl ligands have been developed either through the screening of
chemical combinatorial libraries based on non-peptide backbones or through the rational
design of small functional mimetics of natural Ig-binding proteins [14,68]. Commonly,
non-peptidyl ligands show a high affinity and specificity, high durability, and a high
binding capacity.

Ligands that mimic the binding mode of protein A or protein L and contain a triazine
ring scaffold are the typical non-peptidyl synthetic ligands of antibodies. Artificial protein A
(ApA) is the first fully synthetic non-peptidyl affinity ligand of IgGs based on triazine. It was
generated by coupling Phe-Tyr, an essential dipeptide motif on protein A for IgG-protein A
interaction, to a triazine scaffold [90,91]. Ligand 8/7 is another typical non-peptidyl affinity
ligand, a synthetic mimic of protein L [92], and could selectively recognize and bind to
both κ and λ light chains of IgG from different classes and sources [93].
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Aptamers

Aptamers are short single-stranded nucleic acids (DNAs, RNAs, or combinations of
these with non-natural nucleotides) that can adopt three-dimensional structures to bind to
target molecules with high affinity and specificity [68,94]. Aptamers, with the properties of
an increased stability, a mild elution, and a low cost, have been used as the affinity ligands
of antibodies [68,94,95]. For example, Miyakawa et al. [95] developed a 23-nucleotide
aptamer (Apt8-2) against a human IgG-Fc fragment, and Apt8-2 bound to the human IgG
with high specificity and affinity. The interaction between Apt8-2 and IgG was stable
under extreme conditions and vulnerable to neutral buffers, allowing for a gentle elution.
Apt8-2-based affinity matrix supported IgG purification from human serum with a nearly
equivalent purity and yield to protein A resin. Additionally, aptamers have the potential to
monitor antibody production and control quality [96].

Polymer Nanoparticles

Polymer nanoparticles (NPs) can also act as the affinity ligands of antibodies [97–99].
For example, the polymer hydrogel NPs (50–65 nm) showed high affinity for IgG, while
little affinity for other proteins [97]. Their binding domain on IgG overlapped with that
of protein A. In addition, synthetic nanogel particles that bound to the IgG-Fc fragment
could be immobilized on a matrix to reversibly capture IgG [98]. The inexpensive and
stable polymer NPs with the capacity of selectively binding to antibodies are significant
alternatives to natural protein ligands for applications in antibody affinity purification.

3.1.4. Pseudobiospecific Ligands

Pseudobiospecific ligands are a type of alternative ligands that take advantage of the
intrinsic properties of antibodies at the molecular level, and they are developed based
on multiple non-covalent forces that involve the interaction of antibodies with affinity
ligands [1,14]. The affinity of the pseudobiospecific ligands is relatively lower, but sufficient
to ensure their specificity towards target antibodies [1]. Various pseudobiospecific ligands,
such as hydrophobic [100], thiophillic [101], chelating metal ions, hydroxyapatite [102], and
mixed mode ligands [1,14], have been developed and used in antibody purification. In
addition, some amino acids, such as L-histidine [29] and L-tryptophan [103], are also able
to capture antibodies. A detailed introduction can be found in previous reviews [1,14].

Table 1. Affinity ligands of antibody used in affinity chromatography and their main characteristics.

Category Example (Ref) Main Characteristic

Advantage Disadvantage

Biospecific ligand

Bacterially derived protein
[1,68,69] Bacterially derived protein:

Common ligands for full-length
antibodies from various species Biospecific ligand:

1. High cost;
2. Low binding capacities;

3. Ligand leakage;
4. Limited life cycles

Staphylococcal protein A
Streptococcal protein G

Peptostreptococcal protein L

Lectin [1] Specifically recognize and bind to the
glycosylation sites on antibodies

Antigen [1] For specific antibody purification

Nanobody [72]

Nanobody:
1. Single-domain nature;
2. Smaller size (~15 kDa);

3. High stability and solubility;
4. Refoldability and pH tolerance.
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Table 1. Cont.

Category Example (Ref) Main Characteristic

Advantage Disadvantage

Alternative
scaffold protein

Affibody [74,75]
Affibody:

Alternative
scaffold protein:
Susceptibility to

enzymatic degradation

1. Tailor-made protein;
2. High chemical and thermal stability

Affitin [68]
Tailor-made proteinRepebody [68]

Monobody [68]

Synthetic ligand

Peptidyl ligand [79,85–88]

Peptidyl ligand: Peptidyl ligand:
Susceptibility to

enzymatic degradation

1. Higher stability;
2. Lower immunogenicity and

cheapness;
3. Gentle elution.

Non-peptidyl ligand [90–93]
Non-peptidyl ligand:

1. High affinity and specificity;
2. High durability and

binding capacity.

Aptamer [94,95]

Aptamer:
1. Increased stability;

2. Mild elution;
3. Low cost.

Polymer nanoparticle [97–99]

Pseudobiospecific
ligand

Hydrophobic ligand [100] Pseudobiospecific ligand:
1. Affinity: relatively lower but

sufficient to ensure their specificity and
selectivity towards target antibodies;

2. Affinity: relatively lower but
sufficient to ensure their specificity and

selectivity towards target antibodies;

Utilization commonly in
combination with

other antibody
purification methods

Thiophillic ligand [101]
Chelating metal ions

Mixed mode ligand [1,14]
Single amino acid

L-histidine [29]
L-tryptophan [103]

Affinity tag His6-tag [14] For recombinant antibody purification

3.1.5. Concluding Remarks

To date, protein A is still one of the most commonly used affinity ligands in antibody
production. New engineered protein A variants with excellent properties, such as higher
binding capacity, stronger alkaline tolerance, and a milder elution condition, have been
developed [69]. On the other hand, many alternative ligands have also been developed.
Pseudobiospecific ligands are expected to be cost-effective and robust alternatives, but they
are often used in combination with other purification methods. Developments in combina-
torial libraries, in vitro selection techniques, and protein engineering have promoted the
emergence of alternative scaffold proteins, while these proteins are susceptible to enzymatic
degradation. The rational designing and high-throughput screening of ligands have facili-
tated the generation of synthetic ligands, which have presented substantial growth [68].
Synthetic ligands, mainly including peptides, non-peptidyl ligands, and aptamers that
represent cheapness, scalability, and stability, are highly desirable.

3.2. Applications of Affinity Molecules in Targeted Radiotherapy

High affinity and specificity towards targets are two of the most prominent charac-
teristics of affinity ligands. The two properties are the pivotal requirements of ligands
for targeted radiotherapy, a strategy to address the non-selectivity of radiation, thereby
improving the selectivity of radiotherapy and its minimizing side effects [104]. Some of the
aforementioned affinity ligands, such as antibody fragments, alternative scaffold proteins,
peptides, and aptamers, can also be used as targeting moieties for ligand-based targeted
radiotherapy. These molecules can either directly target tumors or be conjugated with
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suitable carriers to act as targeting moieties. Therapeutic radionuclides or radiosensitizers
can be carried by the targeted delivery systems to enhance radiotherapy efficacy, as shown
in Figure 3. In this section, different affinity molecules used in targeted radiotherapy are
discussed, and their classification criteria keep consistent with those in Section 3.1.
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3.2.1. Biospecific Molecules: Mainly Nanobody

The biospecific molecules used as targeting moieties for ligand-based targeted radiother-
apy mainly involve antibodies and antibody derivatives. They can target specific markers
on cancer cells to deliver either therapeutic radionuclides [105] or radiosensitizers [106–108],
and a detailed description can be found in the following articles [106,109].

Nanobodies, the smallest functional antigen-specific fragments from the heavy-chain-
only antibodies [110], have been used as targeting carriers to specifically deliver therapeutic
radionuclides to cancer cells. As targeting agents, nanobodies offer high stability and solu-
bility, rapid blood clearance and low immunogenicity, particular suitability for penetrating
tumor tissue, and an excellent specificity against all possible targets due to their ability
to detect the hidden and inaccessible epitopes of target antigens [105,110]. Nanobodies
labeled with therapeutic radionuclides have been investigated in preclinical models. For
instance, 177Lu-labeled anti-human epidermal growth factor receptor 2 (HER2) nanobody
was demonstrated to efficiently target HER2pos xenografts, all while maintaining a low
level of radioactivity in normal organs. The treatment of mice with small HER2pos tu-
mors by weekly intravenous injections of 177Lu-labeled anti-HER2 nanobody could lead
to an almost complete blockade of tumor growth. On the contrary, tumors grew exponen-
tially in untreated mice or in mice treated with a non-targeting nanobody [111]. Many
other radiolabeled nanobodies, such as 177Lu-labeled anti-epidermal growth factor re-
ceptor nanobody [112], 89Zr-labeled anti-hepatocyte growth factor nanobody [113], and
211At-labeled [114] or 225Ac-labeled [115] anti-HER2 nanobodies, could enhance target-
ing in vivo and could potentially be used as targeting vehicles in targeted radionuclide
therapy (TRNT).

In addition, radiolabeled nanobodies have also been applied in diagnostics for non-
invasive molecular imaging to determine the biodistribution of radiopharmaceuticals in
the body [109,110,116]. Using them for both diagnosis and therapy may be a promising
strategy for guiding TRNT towards a successful outcome [109,116].
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3.2.2. Alternative Scaffold Proteins: Mainly Affibody

Among the above alternative scaffold proteins, affibody molecules have been applied
in targeted radiotherapy. Their small size endows them with the advantages of effective tis-
sue penetration and an ease of chemical synthesis. They are capable of being used as ‘naked’
proteins or as conjugates to deliver therapeutic radionuclides or radiosensitizers [105], and
the affibody ZHER2 with a high affinity for HER2 receptors is the most widely used affibody
in targeted radiotherapy.

Affibody molecules labeled with therapeutic radionuclides have been applied in tar-
geted radiotherapy. For example, 125I-labeled affibody (ZHER2:4) could be internalized
specifically in HER2 overexpressing cells [117]. However, the application of radiolabeled af-
fibody to TRNT is prevented by a high renal reabsorption [105]. To overcome this limitation,
one attempt was to fuse an affibody with an albumin-binding domain (ABD) [73,105,118].
For instance, the dimeric affibody molecule (ZHER2:342)2 was fused with ABD and labeled
with 177Lu. The radiolabeled conjugate could bind specifically to HER2-expressing cells
and tumors and enabled a 25-fold reduction of renal uptake, completely preventing tumor
formation [118].

Affibody molecules can also deliver radiosensitizers in targeted radiotherapy. For
example, ZHER2:342 molecules were coupled to gold nanoparticles, an X-ray radiosensi-
tizer, and the conjugate could improve the ablation effect of X-ray radiation on HER2-
overexpressing cancer cells [119]. Inorganic nanoparticles as radiosensitizers were also
successfully delivered by a ZHER2-modified carrier to a target tumor, exhibiting an antitu-
mor effect in combination with X-ray irradiation [120].

3.2.3. Synthetic Ligands: Peptidyl Ligands and Aptamers

Peptidyl Ligands

Peptidyl ligands, which demonstrate the abilities of easily penetrating tissues, a rapid
clearance from the blood, and a low antigenicity, have been used as targeting vectors for ther-
apeutic radionuclides or radiosensitizers in targeted radiotherapy [121]. Their selectivity
primarily depends on non-immunogenic mechanisms like receptor–ligand binding [122].

Radiolabeled peptides that can bind to receptors on tumor cells with high specificity
and affinity hold great potential for targeted radiotherapy [121]. For example, 90Y labeled
Arg-Gly-Asp (RGD) peptides, the most common peptide used for targeting, were used to
target the αvβ3 integrin on the neovasculature of OVCAR-3 ovarian carcinoma xenografts
and could delay tumor growth [123]. 90Y- and 177Lu-labeled E.coli heat-stable enterotoxin
analogs could specifically target the guanylate cyclase C receptor that was highly expressed
on the surface of human colorectal cancer cells, and were applied in peptide receptor
radiotherapy [124]. On the other hand, radiosensitizers, such as nanoparticles, have also
been carried by peptidyl ligands to decrease cell viability and inhibit the invasive activity
of cancer cells [104], enhancing the treatment efficacy of targeted radiotherapy.

Aptamers

Aptamers are DNA or RNA sequences with a secondary structure endowing them
with the capacity for binding to target molecules with high affinity and specificity [94,125].
Aptamers offer many advantages, such as a small molecular weight, lack of immunogenicity,
an ease of chemical synthesis, and superior tissue penetration [125]. Aptamers have a
potential to act as targeting ligands for cell surface receptors, and they have been applied
in targeted radiotherapy.

Aptamers could deliver therapeutic radionuclides to enhance antitumor effects. A DNA
aptamer U2, targeting U87 cells overexpressing epidermal growth factor receptor variant
III (EGFRvIII), could enhance the radiosensitivity of U87-EGFRvIII cells in vitro, and 188Re-
labeled U2 was able to effectively inhibit the growth of U87-EGFRvIII xenografts in nude
mice [126]. Aptamers are also excellent potential candidates for the targeted delivery of
radiosensitizers, such as nanoparticles, to tumor antigens on the surface of cancer cells.
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For example, As1411 is a guanine-rich DNA aptamer with high specificity and affinity to
nucleolin receptors which are only overexpressed on the plasma membrane of cancer cells.
The specific interaction between As1411 and nucleolin has been used to mediate the highly
specific targeting of radiosensitizers to cancer cells [126–129]. As1411-conjugated gold
nanoparticles [128], gold nanoclusters [126], or silver nanoparticles [127,129] have been
proved to be capable of acting as efficient radiosensitizers for cancer targeting treatment.

3.2.4. Concluding Remarks

Targeting molecules are vital components in ligand-based targeted radiotherapy, and
their selection is mainly determined by receptors on the surfaces of target cells [126].
Nanobodies, affibodies, peptides, and aptamers can carry therapeutic radionuclides and
radiosensitizers to effectively inhibit or even eradicate tumors and minimize side effects.
These affinity molecules of relatively small size show prominent advantages in radiother-
apy, such as low immunogenicity, superior tissue penetration, and rapid blood clearance.
Moreover, affibodies, peptides and aptamers are easy to chemically synthesize, allowing
stable and repeatable production.

4. Discussion and Conclusions

In the past few decades, affinity chromatography has been the main technique em-
ployed for antibody purification, and protein A chromatography has been the predominant
standard method [14]. Nonetheless, this method could not provide a solution to the stability
and cost issues related to antibody purification, resulting in the need for further research to
develop improved or alternative approaches to isolating antibodies.

Extensive research has been done to develop more advanced or novel matrices for
antibody affinity chromatography. Microparticles are the most commonly used resins
in packed-column chromatography. The optimization of pore size, structure, and vol-
ume has enhanced the mass transfer and dynamic binding capacity of antibodies in the
microparticles [7]. An extended lifetime and an improved stability towards the strong
cleaning and sanitizing chemicals of resins has been achieved. Moreover, the non-porous
structure of nanometer-size particles permits a faster mass transfer of protein. Nanopar-
ticles, especially magnetic nanoparticles, have been employed in antibody separation in
a non-column form. Affinity magnetic separation can help alleviate concerns over speed,
production, and affordability in antibody purification [4]. In addition, chromatographic
membrane and monolith are promising alternative formats to the packed columns applied
in antibody affinity purification.

Great efforts have also been made to improve the performance of protein A or develop
novel affinity ligands for antibody affinity chromatography. Improved engineered protein
A variants with excellent properties, such as higher binding capacity and stability, have
been used in commercial resins. With the advancement of rational design methods and
the screening technology of combination libraries, novel and effective affinity ligands
with desired properties have been successfully developed for application to antibody
purification [77]. These ligands mainly contain alternative scaffold proteins, peptides,
non-peptidyl ligands, and aptamers. Among them, the peptides binding to the Fc-region
of antibodies are attractive ligands for antibody purification. Linear short peptides have
been widely studied, and cyclic peptides are also considered as feasible options due
to their enhanced specificity, conformation rigidity, and superior enzymatic stability in
comparison with linear peptides [89]. In addition, aptamers with unique features like high
chemical stability, high shelf life, and low immunogenicity have also been explored as
non-proteinaceous affinity ligands of antibodies.

Among the chromatographic components used for antibody affinity chromatography,
some matrices and affinity ligands can also play a vital role in improving the therapeutic
efficiency of radiotherapy. Microparticles and nanoparticles can act as radiosensitizers,
deliver radionuclides and radioprotectors, and synergize with other treatments for can-
cer. In particular, nanoparticles (<50 nm in size) are able to easily enter most cells and
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(<20 nm in size) pass through blood vessel endothelium [130], which is beneficial to increas-
ing the efficacy of radiotherapy. Regarding affinity molecules, nanobodies and molecules of
non-antibody fragments can enhance the selectivity of radiotherapy and minimize its side
effects. These molecules can deliver therapeutic radionuclides or radiosensitizers to target
tumors. In particular, the affinity molecules of relatively small size, like affibodies, peptides,
and aptamers, are attractive targeting moieties for ligand-based targeted radiotherapy,
due to their ease of chemical synthesis, low immunogenicity, rapid blood clearance, and
superior tissue penetration.

Although some chromatographic components can be used in radiotherapy, they might
not be completely suitable for direct usage in radiotherapy, on account of their different
intended applications determining the corresponding properties. When nanoparticles are
used in radiotherapy, their biosafety is the vital issue. At present, most nanoparticles
are undegradable, and their long-term accumulation in the body would cause biosafety
concerns [109]. Therefore, before clinical applications, nanoparticles must be systemat-
ically evaluated based on their biocompatibility, biodistribution, biodegradability, and
clearance. Developing biodegradable nanoparticles with an improved tumor-specific
accumulation is a promising strategy for improving the efficacy of radiotherapy and
decreasing radio-toxicity.

Notably, affinity molecules that may be used for both antibody purification and
as a part of radiotherapy differ in that immobilized ligands (used in chromatography)
cannot be directly used in radiotherapy—only in their soluble form. Of course, their high
specificity and affinity are not the only requirements. They also should withstand several
tough regeneration procedures in affinity chromatography, while also possessing suitable
in vivo kinetic parameters in radiotherapy [73,105]. Nevertheless, the size and chemical
stability of affinity molecules, as well as the manufacturing cost, shelf life, and intellectual
property restrictions, are important for applications of both affinity chromatography and
radiotherapy. Moreover, the approaches to generating novel ligands, such as peptidyl
ligands and aptamers, for antibody affinity purification are efficient for designing and
screening new ligand molecules for targeted radiotherapy [108]. The overexpression of
cancer cell surface receptors and surface bound antigens represents the molecular basis for
the rational design of targeted radiotherapy, and some of the receptors or antigens may
serve the individualized design of cancer treatment. The ligand molecules can be rationally
designed by improving the performance of natural affinity ligands or by being discovered
through combinatorial libraries [77]. Considerable efforts have been directed towards
ligand development for targeted radiotherapy. For instance, some radiolabeled peptides
have emerged as promising novel molecules for targeting cancers over the past few years,
but only few of them could reached clinical trials [108]. The rapid development of big
data and artificial intelligence will promote the discovery of novel ligands for targeted
radiotherapy and may even improve the precision of radiation treatments.

Additionally, advances in radiation treatments made using new technologies, such
as intensity-modulated radiotherapy, stereotactic body radiotherapy, and MRI-guided
radiotherapy, have significantly improved the efficacy of radiotherapy and reduced its toxi-
cities [131–133]. In particular, metabolic radiotherapy is a type of radiotherapy treatment
that is carried out by introducing radioactive compounds into the body. The radioactive
compounds are metabolized only at the target location to destroy the malignant cells
without affecting healthy tissues [134,135]. Moreover, the applications of chromatographic
matrices and affinity ligands in radiotherapy may be limited and do not represent a ther-
apeutic opportunity for all cancers at present. However, this paper provides the first
overview of the applications of affinity chromatographic components in radiotherapy,
and can significantly enrich the potential available methods for improving the efficacy of
radiotherapy and decreasing radio-toxicity.
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