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Abstract

Emerging evidence suggests white matter network abnormalities in patients with

schizophrenia (SZ) and bipolar disorder (BD), but the alterations in dynamics of the

white matter network in patients with SZ and BD are largely unknown. The white

matter network of patients with SZ (n = 45) and BD (n = 47) and that of healthy con-

trols (HC, n = 105) were constructed. We used dynamics network control theory to

quantify the dynamics metrics of the network, including controllability and

synchronizability, to measure the ability to transfer between different states. Experi-

ments show that the patients with SZ and BD showed decreasing modal controllabil-

ity and synchronizability and increasing average controllability. The correlations

between the average controllability and synchronizability of patients were broken,

especially for those with SZ. The patients also showed alterations in brain regions

with supercontroller roles and their distribution in the cognitive system. Finally, we

were able to accurately discriminate and predict patients with SZ and BD. Our find-

ings provide novel dynamic metrics evidence that patients with SZ and BD are char-

acterized by a selective disruption of brain network controllability, potentially leading

to reduced brain state transfer capacity, and offer new guidance for the clinical diag-

nosis of mental illness.
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1 | INTRODUCTION

The brain's white matter tracts form a large-scale wiring diagram or

network that has an impact on cognitive functions (Filley &

Fields, 2016), development (Imperati et al., 2011), disease (Lenka

et al., 2020), and rehabilitation (Izadi-Najafabadi & Zwicker, 2021).

Despite the intuitive relationship between network topology and

brain function (Sporns, 2013), understanding the complex patterns of

white matter network dynamics could inform cognitive dysfunction

that accompany altered wiring patterns (Jeganathan et al., 2018; Lee

et al., 2019; Medaglia, 2019).

Schizophrenia (SZ) and bipolar disorder (BD) are characterized by

symptoms in a range of behavioral, cognitive, and affective dysfunc-

tion (Baker et al., 2019; Keshavan et al., 2011; Schretlen et al., 2007),

and may relate to disconnectivity among brain regions (Cui

et al., 2011; Klauser et al., 2017; Schneiderman et al., 2011; Skudlarski
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et al., 2013; Yan et al., 2018). Emerging evidence suggests that the

brain's wiring organization is disrupted in SZ (for review see Bassett

et al., 2008; Kelly et al., 2018) and BD (Roberts et al., 2018; Wang

et al., 2019). Braun suggest these mental disease may involve anatom-

ical network dynamics disruption, involving the control ability of dif-

ferent dynamic state transitions (Braun et al., 2021). The network

dynamics disruption might be the primary cause of the disease (Braun

et al., 2021; Zöller et al., 2021).

The research of network dynamics is one of the frontiers in neu-

roscience. Recent studies have demonstrated that the structural con-

nection determines network dynamics configuration of human brain

(Betzel et al., 2016; Patankar et al., 2020). Network dynamics can be

used to study how the connection mode between elements restricts

the complex physiological activities of the nervous system. The net-

work dynamics characteristics can be captured by two inverted met-

rics: controllability (Gu et al., 2015) and synchronizability (Tang

et al., 2017). These two concepts can be used to examine how brains

might be optimized for different types of dynamics. Controllability is

a structural predictor that predicts the ability to switch from one

dynamic state to another (Gu et al., 2015). The average controllability

and modal controllability, respectively, describe the ability to drive

brain states to easy-to-reach or difficult-to-reach states, where the

ease or difficulty is determined by the amount of energy input.

Synchronizability describes the ability of regions in the network to

support the same temporal dynamical pattern (Tang et al., 2017).

These dynamic measures of the white matter network have provided

a robust and biologically plausible mechanism for determining how

damage to the brain structural organization may diminish brain cogni-

tion (Kang et al., 2019; Lee et al., 2019). Network controllability mea-

surement can provide characteristic attributes for different cognitive

brain systems (Gu et al., 2015). These characteristics change with

development (Cui et al., 2020; Tang et al., 2017). They are reliable

and heritable attributes of structural connectors (Lee et al., 2019),

and can track individual characteristics in cognitive function (Lee

et al., 2019), executive function (Cui et al., 2020) and impulse

(Cornblath et al., 2019). Moderate synchronizability has been shown

to be conducive to the transformation of neural activity (Tang

et al., 2017; Vuksanovi�c & Hövel, 2015). Zhu et.al found SZ involves

a disruption of neural synchronizability from the perspective of net-

work properties (Zhu et al., 2020) Controllability characteristic

research methods have proved particularly useful in detecting brain

function in health and disease (Bernhardt et al., 2019; Tang

et al., 2017). However, whether dynamic abnormalities of the white

matter network are present in SZ and BD patients remains to be

determined.

Here, we capitalize on recent theoretical advances in dynamic

network control theory to investigate alterations in changes and con-

strain patterns of dynamics in the brain of patients with SZ and

BD. Using neuroimaging data in the SZ, BD, and normal control

groups, we examined how white matter network abnormalities lead to

abnormal dynamic network characteristics in patients. The average

controllability, modal controllability, and synchronizability of the white

matter network were analyzed at the global and regional levels. In

addition, the relationship between controllability and synchronizability

and dysfunction in clinical symptoms were further studied.

2 | MATERIALS AND METHODS

2.1 | Participants

All imaging and psychiatric symptom data were acquired from the

UCLA Consortium for Neuropsychiatric Phenomics LA5c Study, and

the data set is hosted on OpenfMRI (www.openfmri.org) (Poldrack

et al., 2016) under the accession number ds000030. The current study

included 105 healthy controls (male/female: 58/47, 21–49 years),

45 patients with SZ (male/female: 34/11, 22–49 years), and

47 patients with BD (male/female: 28/19, 21–50 years).

2.2 | Imaging data preprocessing

MRI data were acquired on one of 3 T Siemens Trio scanners,

located at UCLA. Structural MRI data were acquired on one of two

3 T Siemens Trio scanners located at UCLA. Diffusion-weighted

imaging (DWI) data were obtained using echo-plane sequence, and

the parameters were as follows: 64 directions, 2 mm slices,

TR/TE = 9000/93 ms, 1 average, 90 degree flip angle, 96 � 96

matrix, axial slices, and b = 1000 s/mm2. In addition to diffusion

scans, T2-weighted sagittal sequence images of the whole brain were

obtained by a magnetization-prepared rapid acquisition gradient-echo

sequence, and the parameters were as follows: TR = 1.9 s,

TE = 2.26 ms, matrix = 256 � 256, FOV = 250 mm, sagittal plane,

slice thickness = 1 mm, and 176 slices.

The image preprocessing steps were performed using the PANDA

toolbox and FSL 5.0 (https://fsl.fmrib.ox.ac.uk/fsl/). First, the frac-

tional anisotropy (FA) was calculated for each voxel. The FA images in

the native space were coregistered to T1-weighted images by an

affine transformation. Then, structural images were nonlinearly regis-

tered to the ICBM152 template. An inverse warping transformation

from the standard space to the native MRI space was obtained. Based

on this inverse transformation, the BN atlas in the standard space

could be inversely warped back to the individual native space. In the

end, the deterministic fiber tracking algorithm is used to reconstruct

the fiber path. The fiber tracking procedure started from the deep

WM regions and terminated when the intersection Angle of two con-

tinuous moving directions was >35� or the FA exceeded the threshold

range (0.1–1) (Cui et al., 2013). The number of streamlines between

two regions was defined as the network edge based on the human

Brainnetome Atlas (BN) parcellation scheme (Fan et al., 2016).

2.3 | Connectome construction

In this study, network construction was based on deterministic

fiber tracking of the white matter network. The Structure
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connection matrix for each subject was constructed using the

PANDA in MATLAB R2015b. First, the whole brain was

parcellated into 246 regions (nodes) based on the human

Brainnetome Atlas (BN) parcellation scheme (Fan et al., 2016),

which contains cortical and subcortical regions. A linear transfor-

mation was applied locally within each subject's DTI image corre-

lated with the T1-weighted image to coregister them to the b0

image with DTI space, and then a nonlinear transformation was

applied to map to the ICBM152 T1 template (Montreal Neurolog-

ical Institute [MNI]). Then, the subject-specific BN mask was

weaved from the MNI space to the DTI native space with the

corresponding inverse transformation. Each brain region was

defined as one node. The edge weight Aij in the adjacency matrix A

were defined by the number of streamlines connecting each pair of

nodes end-to-end.

Brain regions within the 246-region parcellation were mapped to

seven functional networks defined by Yeo et al.(Yeo et al., 2011):

visual, somatomotor, dorsal attention, ventral attention, limbic,

frontal–parietal and default mode.

2.4 | Dynamics model

To better understand the dynamic characteristics of neural networks,

we combine network control theory with brain dynamics and use a

linear dynamic model to simulate the nonlinear dynamic process of

brain neural activities. Previous studies have proved that this

model can predict the differences in neural network dynamics (Gu

et al., 2015).

Then, we introduce a simplified noise-free linear discrete-time

and time-invariant network model:

x tþ1ð Þ¼Ax tð ÞþBKuK tð Þ, ð1Þ

where x: R≥0 !RN describes the state of brain regions over time, and

each state is the intensity of neurophysiological activity across brain

regions at a single time point. A�RN�N is the symmetric adjacency

matrix, in which elements aij indicate the number of white matter

streamlines connecting two different brain regions. The size of vector

x is determined by the number of brain regions divided. In my study,

this template is 246 partitions, and the value of the vector x is the

intensity of activity across brain regions of the BOLD signal. The

values of the diagonal elements of matrix A are all 0, that is Aii ¼0.

Note that to ensure stability, we divide the matrix by 1þδ0 Að Þ, where

δ0 Að Þ is the largest singular value of A. The input matrix BK identifies

the control points K in the brain, where K = {k1, …, km}:

BK ¼ ek1 ,…,ekm½ �, ð2Þ

and ei denotes the ith canonical vector of dimension N. The input uK :

R≥0 !Rm denotes the control strategy. We use the invertibility of the

Gramia matrix WK to guarantee the controllability of the results of

Equation (1) (Basile, 1971), where:

WK ¼
X∞

τ¼0
AτBKB

T
KA

τ: ð3Þ

We control one node at a time through the matrix B.

2.5 | Network controllability and synchronizability
metrics

In terms of network controllability, we study two control diagnoses:

controllability and synchronizability, that describe the magnitude of

the ability to drive brain states to different states in a particular fash-

ion (Gu et al., 2015). Average controllability refers to the ability of a

brain region to transfer brain states to easily reachable states. In other

words, average controllability of a network equals the average input

energy applied to a set of control nodes required to reach all possible

target states. Average input energy is proportional to Trace W�1
K

� �
,

the trace of the inverse of the controllability Gramian, and we adopt

Trace (WK ) as a measure of average controllability (Gu et al., 2015),

due to the Trace W�1
K

� �
tends to be very ill-conditioned. And modal

controllability refers to the ability of a brain region to transfer brain

states to difficult-to-reach states. Modal controllability refers to the

ability of nodes to control the transformation of dynamic network to

various evolution modes (Hamdan & Nayfeh, 1989), and modal con-

trollability is computed from the eigenvector matrix V¼ vij
� �

of the

network adjacency matrix A. If vij is small, then the j-th evolutionary

mode of the input-independent form is poorly controllable from node

i. Modal controllability was defined as ;i ¼
PN

j¼1 1�λ2j Að Þ
� �

v2ij as a

scaled measure of all N modes λ1 Að Þ,…λN Að Þ of the brain region i

(Pasqualetti et al., 2014).

Synchronizability measures the ability of a network to persist in a

single synchronous state. Following Tang et al., (2017), linear stability

depends on the positive eigenvalues {λi}, i = 1, …, N � 1, of the

Laplacian matrix L defined by Lij ¼ δij
P

kAik�Aij. The condition for sta-

bility depends on whether these eigenvalues fall into the stable region

and the shape of MSF. Hence, we can use the normalized spread of

the eigenvalues to quantify how synchronizable the network will gen-

erally be (Nishikawa & Motter, 2010; Tang et al., 2017). We therefore

quantify network synchronizability as:

1
σ2

¼ d2 N�1ð Þ
PN�1

i¼1 λi�λ
�� ��2

, where λ¼ 1
N�1

XN�1

i¼1
λi, ð4Þ

and d¼ 1
N

P
i

P
j≠ iAij, the average coupling strength per node, which

normalizes for the overall network strength. We calculate the

synchronizability of each region according to the split of Equation (4).

2.6 | Experimental design

This experiment tested the dynamics indexes of three experimental

groups: controllability and synchronizability. T-test was used to com-

pare the significance of differences between the SZ and HC groups,

BD and HC groups, SZ and BD groups in these three indicators. The
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difference of the correlation between the three groups was analyzed

by linear fitting. After selecting the three brain regions with higher

indexes as super control brain regions, the differences of super con-

trol brain regions in the three experimental groups were compared.

The t-test was used to compare the brain regions with significant dif-

ferences in controllability and synchronizability among the three

groups, calculate their Spearman correlation with clinical symptoms,

and control age and sex. Finally, the ability to classify patients and

healthy people and predict clinical scores are analyzed through the

indicators of controllability and synchronizability.

2.7 | Classification of participants

In the final analyses, we used multivariate metrics to identify the dis-

tinctions between the HC and SZ, HC and BD, and SZ and BD groups,

enabling subject-specific group assignment based on three types of

data as features: average controllability, modal controllability and

synchronizability. We employed linear kernel-based support vector

machine of LIBSVM software library for classification, and the param-

eter boundary is (0,1). (https://www.csie.ntu.edu.tw/�cjlin/libsvm/).

Then, the support vector machine is trained by knowing the value of

the classification results.

Before classification, we extracted individual data and data with

significant differences between group features to improve perfor-

mance. We applied k cross-validations, iteratively dividing the data

into separate training and testing sets. Finally, ROC curve is used to

evaluate the performance of the classifier.

2.8 | Prediction model based on dynamic metrics

To determine whether the dynamic metrics can predict the scale

scores, we used the improved connectome-based predictive model-

ing (CPM) method. In this model, we used leave-one-subject-out

cross-validation, and the model was trained on the controllability

and synchronizability values and scale scores of n � 1 participants

and tested on the left-out participant. This MATLAB script is

available from https://www.nitrc.org/projects/bioimagesuite/ (Shen

et al., 2017).

We briefly describe the process of the improved CPM method

here. In the first step, in each person's node-controllability matrix

and node-synchronizability matrix (M*N), M is the number of nodes,

and N is the number of subjects. The scale vector (N*1) was associ-

ated with the controllability value and synchronizability value of

each node by a Spearman correlation in the above matrix. Next, only

nodes that were significantly positively and negatively correlated

with scale were retained (p < .05), and then the new matrix was nor-

malized by the Z-score. Then, the multiple linear regression model

was used to estimate the relationship between the score of the pre-

diction scale and the real scale by combining the positive and nega-

tive correlation characteristics. Finally, the predictive power of the

model was measured by the Spearman correlation coefficient

between the predicted scale score and the real scale score. All statis-

tical tests were two-tailed.

2.9 | Statistical analysis

All statistical analyses were performed using the Statistical Package

for Social Science (SPSS, v19.0). All the metrics are calculated by

MATLAB. We conducted ANOVA tests to compare patients with SZ,

those with BD, and healthy controls (HC) on the dynamic metrics:

average controllability, modal controllability and synchronizability. We

calculated the correlation between the three metrics and analyzed the

correlation of metrics. To study the significant differences between

groups, a two-tailed t-test was conducted to control for age and sex.

The problem of multiple comparisons at the nodal level was addressed

using Bonferroni correction method (Bonferroni p < .05). The Spear-

man correlation analysis was used to explore the relationship between

the metrics and clinical symptoms in patients, with age and sex as

covariates. The area under the curve (AUC) is used to evaluate the

classification performance of vector machines.

3 | RESULTS

3.1 | The global dynamic metrics of white matter
networks

As shown in Figure 1, significant group differences were observed in

the average controllability, modal controllability and synchronizability

(F = 11.821, p = .0001). Compared with the HC group, there was sig-

nificantly higher average controllability in patients with SZ and BD

(Figure 1a) (t = 5.828, p = .0001). The modal controllability

(Figure 1b) and synchronizability (Figure 1c) were significantly lower

in patients with SZ and BD (t = 2.459, p = .0151).

3.2 | Relationship among the global dynamic
metrics

Modal controllability was significantly positively correlated with aver-

age controllability (r = .412, p = .015) and negatively correlated with

synchronizability (r = �0.434, p = .009) in the HC and BD groups and

weaker in the BD group (Figure 1d,f). There was no significant correla-

tion in the SZ group (r = .145, p = .111). No significant correlation

between synchronizability and average controllability was found in

the three groups (Figure 1e).

3.3 | Comparison of the brain regions with
supercontroller roles

We determined the brain regions with supercontroller roles in the

brain network (Figure 2), which also implies alteration of the control
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strategy for the cognitive system. The brain regions with the super-

controller regarding the average controllability varied greatly among

patients with SZ and BD (Figure 2a,b,c) in the default, visual, limbic,

frontal parietal, somatomotor networks. Compared with SZ, BD had

more supercontroller regions in the somatomotor and dorsal attention

systems but fewer supercontroller regions in the frontal parietal sys-

tem. For modal controllability, the brain regions with the super-

controller role of patients with SZ and BD were distributed in the

visual, ventral attention, and subcortical nuclei systems (Figure 2d,e,f).

Compared with SZ, BD had more regions in the visual and subcortical

nuclei system but fewer regions in the somatomotor systems.

The brain regions with the supercontroller role in terms of

synchronizability were widely distributed in all cognitive systems and

altered slightly in patients with SZ and BD (Figure 2g,h,i).

3.4 | Abnormal regional controllability and
synchronizability in patients

Given the global trends of increasing average controllability and

decreasing modal controllability and synchronizability in patients, it is

necessary to ask whether patients with mental illness are driven by

specific regions of the brain, or whether all regions have different

driving effects. Compared with the HC group, patients with SZ and

BD showed significantly larger average controllability and

synchronizability in the parietal lobe and significantly lower modal

controllability (Figure 3). The regions with decreased modal

controllability and increased synchronizability were broadly distrib-

uted in the frontal lobe, temporal lobe, parietal lobe, and occipital

lobe. In most of the regions in the subcortical nucleus with signifi-

cant differences, the modal controllability increased significantly,

and the synchronizability decreased significantly. There was no sig-

nificant difference after correction between patients with BD and

those with SZ (Figure 3). Although we found that several nodes were

different in controllability and synchronizability, without correction

(Figure 4).

3.5 | The correlation with clinical symptoms

We identified the regions with a significant correlation between aver-

age controllability, modal controllability, and synchronizability with

the clinical symptoms in the frontal lobe, temporal lobe, and insular

lobe. For the SZ patients (Table 1), the modal controllability and the

BDRS scores exhibited significant negative correlations in the inferior

frontal gyrus (r = �.375, p = .017) and a positive correlation in the

fusiform gyrus (r = .335, p = .034). The SANS scores exhibited a sig-

nificant positive correlation with modal controllability in the left insu-

lar gyrus (r = .383, p = .015) and a negative correlation with modal

controllability posterior to the right superior temporal sulcus

(r = �.414, p = .008) and left insular gyrus (r = �.449, p = .004). For

BD patients (Table 2), the YMRS showed a significant positive correla-

tion with modal controllability in the left thalamus (r = .349, p = .016),

right inferior temporal gyrus (r = .323, p = .027) and left

F IGURE 1 The average controllability, modal controllability and synchronizability and their correlation. (a, b, c) average controllability, modal
controllability and synchronizability in HC, SZ and BD. The dotted lines represent the median and the quartile, and * indicates a significant
difference between groups (*p < .05, ****p < .0001). (d, e, f) The correlation between controllability and synchronizability. The r values and p
values are obtained by controlling for age and sex, and the p values are corrected by multiple testing. BD, bipolar disorder (purple); HC, healthy
controls (blue); SZ, schizophrenia (orange).
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parahippocampal gyrus (r = .371, p = .010) and exhibited a significant

negative correlation with synchronizability in the left inferior parietal

lobule (r = �0.294, p = .045) and left parahippocampal gyrus

(r = �.315, p = .031). The HAMD revealed a significant negative cor-

relation with average controllability (r = �.318, p = .029) in the left

thalamus and exhibited significant positive correlations with modal

controllability in the left basal ganglia (r = .335, p = .021) and with

synchronizability in the right basal ganglia (r = .302, p = .039).

3.6 | The classification

We observed the best classification performance in terms of the

support vector machine between patients and the control group

(Figure 5a,b). SZ and HC were classified with 94% accuracy and

an area under the receiver operating characteristic curve (AUC) of

0.9354. BD and HC were classified with 99% accuracy and

0.9921 AUC. The above-chance lower classification rate (accu-

racy: 72% and AUC: 0.7329) was found between the BD and SZ

groups.

3.7 | Prediction of the clinical scale

We found that controllability and synchronizability could be used to pre-

dict the scale scores in novel individuals with SZ (BDRS: r = .4024,

p = .0100; SANS: r = .4177, p = .0073; SAPS: r = .3250, p = .0407) and

BD (HAMD: r = .5389, p = .0001; YMRS: r = .4015, p = .0052), and the

true and predicted scale scoreswere significantly correlated (Figure 5c–g).

4 | DISCUSSION

Here, we showed abnormal white matter network dynamics in

patients with SZ and BD, including impaired modal controllability and

synchronizability but higher average controllability. The tradeoff deci-

sions between controllability and synchronizability have changed. The

supercontroller region and the control strategy of the cognitive sys-

tem changed in patients with SZ and BD. We further found regional

abnormities in the frontal, parietal, occipital lobe and subcortex, espe-

cially for modal controllability and synchronizability. The SZ and BD

also showed differences mainly in controllability and synchronizability

F IGURE 2 The values of the average controllability, modal controllability and synchronizability are higher than the mean plus the standard
deviation in the HC, SZ, and BD groups. (a, b, c) Brain regions with high average controllability in the three groups; (d, e, f) brain regions with
higher modal controllability in the three groups; and (g, h, i) brain regions with higher synchronizability in the three groups.
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subcortex and parietal lobes. These abnormal controllability and

synchronizability can classify patients and were significantly corre-

lated with clinical symptoms.

4.1 | Controllability and synchronizability of the
white matter network in mental illness

We found that patients with SZ and BD showed abnormal white matter

network dynamics, which indicated brain state changes (Cui

et al., 2020). Our results implied that the network of patient groups

required less energy to achieve easy-to-reach states and was easier to

activate and required more energy to achieve difficult-to-reach states.

There was an increase in average controllability in regions that involved

auditory processing, language production and monitoring, and sensory

information filtering, which might be associated with auditory verbal

hallucinations in patients with SZ (Cui et al., 2017; Cui et al., 2020). The

decrease in modal controllability implied an increase in driving energy

for driving the brain to difficult-to-reach states in patients, which

suggested that disruption to key control structures may represent a

common biological substrate central to the pathophysiology of psycho-

sis (Baker et al., 2014). The significant decreased synchronizability in

the white matter network of patient groups means less ability to main-

tain a single state. Consistent with previous studies, SZ involves a dis-

ruption of neural synchronizability from the perspective of network

properties (Zhu et al., 2020). Our results suggest that significant

changes in controllability and synchronizability in patients with SZ and

BDmay be the cause of physiological dysfunction.

4.2 | Relationship with controllability and
synchronizability

We observed that modal controllability was positively

correlated with average controllability and negatively correlated with

synchronizability, which was consistent with previous studies (Tang

F IGURE 3 Brain regions with significant differences in controllability and synchronizability in patients with SZ and BD compared with the HC
group. (a, b, c) Brain regions with significant differences in average controllability, modal controllability, and synchronizability between the SZ
group and HC group; (d, e, f) brain regions with significant differences in average controllability, modal controllability and synchronizability
between the BD group and HC group. p < .05 after the Bonferroni correction. (g, h, i) Brain regions with significant differences in average
controllability, modal controllability and synchronizability between the SZ group and BD group. Warm colors indicate high controllability or
synchronizability of patients with mental illness, while cool colors indicate low controllability or synchronizability of patients with mental
disorders. BD, bipolar disorder; HC, healthy controls; SZ, schizophrenia.
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F IGURE 4 Brain region with differences in average controllability, modal controllability, and synchronizability between SZ and BD
(no corrected). (a) Average controllability; (b) Modal controllability; and (c) Synchronizability. BG, basal ganglia; CG, cingulate gyrus; Hipp,
hippocampus; INS, insular gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; L, left; MTG, middle temporal gyrus; OrG, orbital gyrus;
PoG, postcentral gyrus; PPT, posterior parietal thalamus; R, right; ST, sensory thalamus.

TABLE 1 Spearman rank correlation coefficient (p value) of schizophrenia.

Brain region

Correlation coefficient (p value)

BDRS SANS SAPS

Modal controllability Inferior frontal gyrus _L_6_3 �0.375* (.017) �0.055 (.736) �0.148 (.363)

Fusiform gyrus _R_3_2 0.335* (.034) �0.055 (.737) 0.257 (.109)

Posterior superior temporal sulcus _ R_2_2 0.015 (.927) �0.414** (.008) 0.026 (.873)

Insular gyrus _L _6_6 0.188 (.244) 0.383* (.015) 0.223 (.168)

Synchronizability Parahippocampal gyrus _R _6_2 �0.146 (.370) �0.419** (.008) 0.087 (.593)

Insular gyrus _L _6_6 �0.130 (.422) �0.449** (.004) �0.177 (.275)

*p < .05, **p < .01

TABLE 2 Spearman rank correlation
coefficient (p-value) of bipolar disorder.

Brain region

Correlation coefficient (p value)

YMRS HAMD

Average controllability Thalamus _L _8_4 �0.264 (.073) �0.318* (.029)

Modal controllability Basal Ganglia _L _6_6 0.180 (.225) 0.335* (.021)

Thalamus _L _8_8 0.349* (.016) 0.216 (.145)

Inferior Temporal Gyrus _R _7_3 0.323* (.027) 0.245 (.097)

Parahippocampal Gyrus _L _6_4 0.371* (.010) 0.179 (.228)

Basal Ganglia _R _6_2 0.008 (.956) 0.302* (.039)

Synchronizability Inferior Parietal Lobule _R _6_5 �0.294* (.045) �0.167 (.263)

Parahippocampal Gyrus _R _6_2 �0.315* (.031) 0.017 (.910)

*p < .05
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et al., 2017). A person who is good at the state transition of one task is

also good at the state transition of other tasks, while a person who is

good at difficult-to-reach state transitions is not good at maintaining a

single state (Tang et al., 2017). In patients with SZ and BD, the correc-

tion indices for controllability and synchronizability were altered. These

correlations disappeared in the SZ group, indicating that the ability or

flexibility to transition was decoupled in the SZ group. Although

patients with BD showed a similar relationship with controllability and

synchronizability, the correlation strength became weaker, which was

quite different from the patterns of the HC group. Our results showed

that the mutual patterns of controllability and synchronizability

between the SZ group and BD group changed. In the present study,

the findings implied that SZ and BD patients lost the optimal trajectory

of state transfer (Gu et al., 2017) and changed the patterns in the ability

of the brain to switch between different states.

4.3 | Alteration of the supercontroller and control
strategy

The patient groups showed additional supercontrollers of aver-

age controllability in the visual system, suggesting that the func-

tional states are more easily activated in the occipital lobe

(Muldoon et al., 2016). The regions could function to facilitate

transitions to diverse states associated with these cognitive sys-

tems (Lee et al., 2019). In line with this, stronger activation of

the occipital lobe has been proven to be associated with

abnormal visual processing or positive symptoms in patients with

SZ (Pirnia et al., 2015). The supercontroller with average control-

lability was preferentially located in the frontoparietal system

and somatomotor system in the SZ group and BD group,

respectively.

F IGURE 5 Classification performance and prediction of scale scores. (a) Accuracy, sensitivity and specificity. (b) Classification performance of
classifiers with controllability and synchronization as factors. Scatter plots show correlations between the true scale scores and predictions made
by a single linear model combining both positive and negative node sets of controllability and synchronizability. (c, d, e): The predicted score of
the scale of SZ. (f, g): The predicted score of the scale of BD.
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Patients with SZ and BD lose the supercontroller of modal con-

trollability in the cingulate gyrus, especially patients with SZ. The cin-

gulate gyrus is important for state transitions in the brain that require

much cognitive work and higher executive functions (Cui et al., 2020),

which are structurally and functionally deficient in the SZ and BD

groups (Dufour et al., 2008; Fountoulakis et al., 2008; Knable

et al., 2002). In addition, the thalamus became a supercontroller in

patients, and modal supercontrollers that are mainly concentrated in

the subcortical nuclei may be detrimental to higher-order cognition

(Tang et al., 2017).

Last, we observed more extensive synchronizability supercontrol

areas in the patient groups, such as more extensive brain regions act-

ing as controllers in the default system and fewer brain regions acting

as controllers in the subcortical nuclei. Extensive synchronizability

may inhibit the flexibility of different brain states (Tang et al., 2017),

which is considered to be related to abnormal complex executive

function (Medaglia et al., 2018). Cognitive systems play different con-

trol roles to achieve functional diversity (Anderson et al., 2013;

Crossley et al., 2013). Our findings suggest that changing brain con-

trollability strategies in a wide variety of ways, which may be the main

cause of the abnormal function of mental illness.

4.4 | Differences in regional metrics

The patients with both SZ and BD showed decreased modal controlla-

bility and increased synchronizability in the dorsal frontal lobe, temporal

lobe, lobe parietal lobe, and occipital lobe. These brain regions associ-

ated with a lower ability drive their brains to difficult-to-reach functional

states. Supporting our results, previous results showed a lower density

of connectivity in the frontal, temporal and parietal cortex (Wheeler &

Voineskos, 2014). A large number of studies have shown that abnormal-

ities of the occipital lobe are related to SZ (Tohid et al., 2015), and

the modal controllability reduction of the occipital lobe may affect the

state transition ability beyond the occipital lobe functional states; Exten-

sive synchronizability may cause abnormal control strategies (Tang

et al., 2017), which is related to individual cognitive differences.

We also found that modal controllability increased and

synchronizability reduced in the inferior parietal lobule, subcortical

nuclei and insular lobe. The interruption of controllability and

synchronizability indicated that the white matter network in parietal

lobes was destroyed, which affected the local information communica-

tion among neurons (Li et al., 2019) and the optimal trajectory of brain

state transitions (Gu et al., 2017). The relative strength of controllabil-

ity between the subcortical and cortical regions is considered to be

crucial for understanding individual differences in overall cognitive

function (Tang et al., 2017), and the high modal controllability of the

subcortical nucleus may be related to cognitive impairment. The insula

plays an important role in sensory function and emotional processing

(Pang et al., 2017), and the decrease in functional connectivity of the

insula has been proven to be related to the severity of mental illness

symptoms (Pang et al., 2017) and may also be the result of weakened

structural connectivity and enhanced modal controllability.

We found that several nodes were different in controllability and

synchronizability, between SZ and BD without correction. The aver-

age controllability of the right orbital gyrus and the synchronizability

of the limbic system in SZ patients were lower than those in BD

patients. In contrast, the modal controllability of the left temporal lobe

and limbic system and the synchronizability of the inferior parietal lob-

ule were higher than those in BD patients. Dysfunctions of the right

orbital gyrus have been shown to be associated with emotional regu-

lation (Zhao et al., 2020). Orbital gyrus and limbic system play a signif-

icant role in memory and emotion regulation (Rolls, 2015).

Hyperactivation in inferior parietal lobule and temporal gyri might

could imply as the potential state marker of schizophrenia (Soni

et al., 2018). The abnormalities in the control ability of these brain

regions we found may provide new directions for clinical diagnosis of

disease types.

4.5 | Relationships with the clinical symptoms

The severity of SZ was correlated with controllability and

synchronizability in several regions. Modal controllability in the left

inferior frontal gyrus showed negative correction with BDRS, which

may affect the driving activities of the related brain in the cognitive

process, resulting in mental disorder. There was a positive correlation

between BDRS and the modal controllability of the right fusiform

gyrus, which might be related to structural abnormalities and defects

in the early stages of face perception in SZ (Onitsuka et al., 2003;

Onitsuka et al., 2006). The SANS of patients with SZ positively corre-

lated with modal controllability and negatively correlated with the

synchronizability of the left insular gyrus. The insula plays an impor-

tant role in sensory function and emotional processing (Pirnia

et al., 2015), which may be associated with negative symptoms.

The severity of BD positively correlated with the modal

controllability of the left thalamus, right inferior temporal gyrus and

left parahippocampal gyrus and negatively correlated with the

synchronizability of the right inferior parietal lobule and para-

hippocampal gyrus. The thalamus is the key structure for relaying and

integrating information between the cortex and subcortical regions

(Betzel et al., 2016), the increased modal controllability inhibited the

ability of information exchange, which may be one of the reasons for

the severity of BD. The severity of depressive symptoms of BD

inversely correlated with the average controllability of the left thala-

mus and positively correlated with the modal controllability of the left

basal ganglia, which might be involved in mood regulation (Lacerda

et al., 2003). Abnormal average and modal controllability of the thala-

mus may affect the state activation of the neural pathway between

the basal ganglia and thalamus, showing abnormal emotion regulation.

4.6 | Classification and predictor performance

The average controllability, modal controllability and synchronizability

could be used to classify patients from healthy controls with 94%
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accuracy, which higher than the recent neuroimage and brain network

studies (Kambeitz et al., 2015; Lee et al., 2018; Schnack et al., 2014).

Importantly, the SZ patients were also separated from BD patients

with an accuracy of 72%, which meant that white matter network

dynamic were different, especially for average controllability and

synchronizability in the subcortex, parietal lobe and insular lobe. In

addition, using improved CPM (Shen et al., 2017), we further demon-

strated that controllability and synchronizability are powerful predic-

tors of the clinical phenotype of mental illness. Our findings

supported that controllability and synchronizability of the white mat-

ter network can serve as important metrics to judge the severity of

mental illness.

5 | LIMITATIONS

This study has potential limitations that should be considered when

interpreting its conclusions. First, the sample size of this study was

small, creating challenges for the interpretation and generalizability

of results. Second, we use a time-invariant, linear model of brain

dynamics. However, the brain is highly non-linear and explained well

by models incorporating noise, although research has proved that the

linear model can well simulate the dynamics of the brain(Gu

et al., 2015). It remains an important and interesting direction to

understand the control of brain dynamics based on nonlinear control

methods.

6 | CONCLUSION

We used network dynamics theory and control theory to analyze

brain control strategies and found that the ability to drive brain state

transitions was abnormal in patients with SZ and BD. The ability to

drive the brain state to difficult-to-reach states was impaired, and it

was easier to move to easy-to-reach states. The tradeoff decisions

between controllability and synchronizability have changed. The brain

regions that play a key role in driving the brain state shift and their

distribution in the cognitive system were altered, and these changes

in control strategies may be the reason for the difference in individual

control ability. We were able to accurately discriminate patients

with SZ and BD from HCs using abnormal controllability and

synchronizability. This abnormal controllability or synchronizability

was significantly associated with clinical symptoms and predicted the

clinical symptoms. Our findings suggest that understanding the

dynamic changes of white matter network is helpful to understand

the physiological mechanism of mental illness and provide new guid-

ance for the judgment and clinical intervention of mental illness.
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