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Abstract

The EFSA Panel on Food Additives and Flavourings was requested to evaluate the genotoxic potential
of flavouring substances from subgroup 2.2 of FGE.19 in the Flavouring Group Evaluation 208 Revision
3 (FGE.208Rev3). In FGE.208Rev1, the Panel on Food Contact Materials, Enzymes, Flavourings and
Processing Aids (CEF) evaluated genotoxicity studies on the representative substance p-mentha-1,8-
dien-7-al [FL-no: 05.117], which was found to be genotoxic in vivo. The Panel concluded that there
was a potential safety concern for the nine substances in this FGE that were all represented by [FL-no:
05.177]. Consequently, substance [FL-no: 05.117], as well as four substances ([FL-no: 05.121, 09.272,
09.899 and 09.900]), no longer supported by industry were deleted from the Union List. In
FGE.208Rev2, the Panel assessed genotoxicity studies submitted on five flavouring substances [FL-no:
02.060, 02.091, 05.106, 09.278 and 09.302] and concluded that the concern for genotoxicity could be
ruled out for these substances, except from myrtenal [FL-no: 05.106] for which the available data
were considered equivocal. Thus, industry provided additional genotoxicity studies (a bacterial reverse
mutation assay and a combined in vivo bone marrow erythrocytes micronucleus test and Comet assay
in liver and duodenum) for this substance which were evaluated in the present opinion, FGE.208Rev3.
Based on these new data, the Panel concluded that the concern for genotoxicity could be ruled out for
myrtenal [FL-no: 05.106]. Subsequently, this substance can be evaluated through the Procedure.
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1. Introduction

1.1. Background and Terms of Reference as provided by the European
Commission

1.1.1. Background

The use of flavourings is regulated under Regulation (EC) No 1334/20081 of the European
Parliament and Council of 16 December 2008 on flavourings and certain food ingredients with
flavouring properties for use in and on foods. On the basis of Article 9(a) of this Regulation, an
evaluation and approval are required for flavouring substances.

The Union list of flavourings and source materials was established by Commission Implementing
Regulation (EC) No 872/20122. The list contains flavouring substances for which the scientific
evaluation should be completed in accordance with Commission Regulation (EC) No 1565/20003.

On 27 July 2015, the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing
Aids (CEF) adopted an opinion on Flavouring Group Evaluation 208 Revision 1 (FGE.208Rev1):
Consideration of genotoxicity data on representatives for 10 alicyclic aldehydes with the a,b-
unsaturation in ring/side-chain and precursors from chemical subgroup 2.2 of FGE.19. This opinion was
a revision of the earlier opinion on this group of substances on the basis of additional data.

The Panel concluded that p-mentha-1,8-dien-7-al [FL-no: 05.117] is genotoxic in vivo and as that
substance was regarded as the representative of the group, there is a potential safety concern for the
other substances in this group. Following this opinion, the Commission withdrew from the Union List of
flavourings the representative substance FL-no: 05.1174 with an urgent procedure and also the non-
supported substances 2,6,6-trimethyl-1-cyclohexen-1-carboxaldehyde [FL-no: 05.121], myrtenyl
formate [FL-no: 09.272], myrtenyl-2-methylbutyrate [FL-no: 09.899] and myrtenyl-3-methylbutyrate
[FL-no: 09.900].5

Also, following the EFSA opinion of 2015 FGE.208Rev1, the Commission amended the conditions of
use of these five substances of this group in another Regulation,6 pending the evaluation of the
additional data.

The applicant submitted individual in vitro studies on the substances myrtenol [FL-no: 02.091], p-
mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenal [FL-no: 05.106], p-mentha-1,8-dien-7-yl acetate [FL-
no: 09.278] and myrtenyl acetate [FL-no: 09.302].

EFSA evaluated these studies and related scientific data in its Scientific Opinion on Flavouring
Group Evaluation 208 Revision 2 (FGE.208Rev2): Consideration of genotoxicity data on alicyclic
aldehydes with a,b-unsaturation in ring/side-chain and precursors from chemical subgroup 2.2 of
FGE.19. The Panel considered as regards myrtenal [FL-no: 05.106] assessing in particular the studies
on this substance submitted by industry (a bacterial reverse mutation assay, Mc Garry, 2016a, and two
micronucleus assays in human peripheral blood lymphocytes, Mc Garry, 2016b and Lloyd, 2017). The
Panel concluded that myrtenal ‘did not induce gene mutations in a bacterial reverse mutation assay.
The first in vitro micronucleus assay provided was equivocal and had several weaknesses, therefore a
repetition of the study was requested. The second study is considered more reliable than the first one,
but the result is still not fully adequate to rule out the concern for genotoxicity. In this second study,

1 Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain
food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91,
Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJ L 354, 31.12.2008, p. 34–50.

2 Commission implementing Regulation (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided
for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC)
No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and
Commission Decision 1999/217/EC. OJ L 267, 2.10.2012, p. 1–161.

3 Commission Regulation No 1565/2000 of 18 July 2000 laying down the measures necessary for the adoption of an evaluation
programme in application of Regulation (EC) No 2232/96. OJ L 180, 19.7.2000, p. 8–16.

4 Commission Regulation (EU) 2015/1760 of 1 October 2015 amending Annex I to Regulation (EC) No 1334/2008 of the
European Parliament and of the Council as regards removal from the Union list of the flavouring substance p-mentha-1,8-dien-
7-al. OJ L 257, 2.10.2015, p. 27–29.

5 Commission Regulation (EU) 2016/637 of 22 April 2016 amending Annex I to Regulation (EC) No 1334/2008 of the European
Parliament and of the Council as regards removal from the Union list of certain flavouring substances. OJ L 108, 23.4.2016,
p. 24–27.

6 Commission Regulation (EU) 2016/1244 of 28 July 2016 amending Annex I to Regulation (EC) No 1334/2008 of the European
Parliament and of the Council as regards certain flavouring substances from a group related with an alpha, beta unsaturation
structure. OJ L 204, 29.7.2016, p. 7–10.
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weak statistically significant increases of the micronuclei frequency were observed at the lowest and
highest concentrations (without statistically significant trend) in the absence of S9-mix after long
treatment, while after short treatment, there was a statistically significant trend (without statistically
significant differences between single concentrations tested and the concurrent control). The
Panel considered that the result of this second study was also equivocal and that this was not
adequately investigated by the applicant. Therefore, myrtenal cannot be evaluated through the [EFSA]
Procedure [for evaluating existing flavouring substances of the program of Regulation 1565/2000],
presentlyˊ.

In July 2018 JECFA has assessed myrtenal [FL-no: 05.106] (JECFA no. 980). The substance
p-mentha-1,8-dien-7-al [FL-no: 05.117] (JECFA no. 973) was also evaluated by JECFA at this same
time. In addition, also other substances included in this FGE were as well evaluated by JECFA at the
same time.

1.1.2. Terms of Reference

The European Commission requests the European Food Safety Authority (EFSA) to evaluate the
additional available studies on myrtenal [FL-no: 05.106] and in particular the in vivo studies. This
substance is part of the FGE.208 (FGE.19 subgroup 2.2).

Depending on the outcome, the Authority is asked to indicate if its current assessment regarding
genotoxicity of myrtenal remains or if it can proceed to the full evaluation of this flavouring substance,
taking into account the requirements of the Commission Regulation (EC) No 1565/2000 and also those
of Regulation (EU) No 1334/2008.

The Authority is also asked to consider if it is appropriate to revise the section regarding the
characterization of the hazard concerning myrtenal and also the quantification of the exposure.

The evaluation should be carried out in 6 months.
In case the EFSA Procedure of evaluation of existing flavouring substances can be applied the

Authority is asked to deliver its opinion about the application of the Procedure within 9 months from
the date of publication of the first opinion mentioned above.

2. Data and methodologies

2.1. History of the evaluation of FGE.19 substances

Flavouring Group Evaluation 19 (FGE.19) contains 360 flavouring substances from the EU Register
being a,b-unsaturated aldehydes or ketones and precursors which could give rise to such carbonyl
substances via hydrolysis and/or oxidation (EFSA, 2008a).

The a,b-unsaturated aldehyde and ketone structures are structural alerts for genotoxicity (EFSA,
2008a). The Panel noted that there were limited genotoxicity data on these flavouring substances but
that positive genotoxicity studies were identified for some substances in the group.

The a,b-unsaturated carbonyls were subdivided into subgroups on the basis of structural similarity
(EFSA, 2008a). In an attempt to decide which of the substances could go through the Procedure, a
(quantitative) structure–activity relationship (Q)SAR prediction of the genotoxicity of these substances
was undertaken considering a number of models that were available at that time (DEREKfW, TOPKAT,
DTU-NFI-MultiCASE Models and ISS-Local Models, (Gry et al., 2007)).

The Panel noted that for most of these models internal and external validation has been performed,
but considered that the outcome of these validations was not always extensive enough to appreciate
the validity of the predictions of these models for these a,b-unsaturated carbonyls. Therefore, the
Panel considered it inappropriate to totally rely on (Q)SAR predictions at this point in time and decided
not to take substances through the Procedure based on negative (Q)SAR predictions only.

The Panel took note of the (Q)SAR predictions by using two ISS Local Models (Benigni and
Netzeva, 2007a,b) and four DTU-NFI MultiCASE Models (Gry et al., 2007; Nikolov et al., 2007) and the
fact that there are available data on genotoxicity, in vitro and in vivo, as well as data on
carcinogenicity for several substances. Based on these data, the Panel decided that 15 subgroups
(1.1.1, 1.2.1, 1.2.2, 1.2.3, 2.1, 2.2, 2.3, 2.5, 3.2, 4.3, 4.5, 4.6, 5.1, 5.2 and 5.3) (EFSA, 2008a) could
not be evaluated through the Procedure due to concern with respect to genotoxicity. Corresponding to
these subgroups, 15 Flavouring Group Evaluations (FGEs) were established: FGE.200, 204, 205, 206,
207, 208, 209, 211, 215, 219, 221, 222, 223, 224 and 225.

For 11 subgroups, the Panel decided, based on the available genotoxicity data and (Q)SAR
predictions, that a further scrutiny of the data should take place before requesting additional data
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from the Flavouring Industry on genotoxicity. These subgroups were evaluated in FGE.201, 202, 203,
210, 212, 213, 214, 216, 217, 218 and 220. For the substances in FGE.202, 214 and 218, it was
concluded that a genotoxic potential could be ruled out and accordingly these substances were
evaluated using the Procedure. For all or some of the substances in the remaining FGEs, FGE.201,
203, 210, 212, 213, 216, 217 and 220 the genotoxic potential could not be ruled out.

To ease the data retrieval of the large number of structurally related a,b-unsaturated substances in
the different subgroups for which additional data are requested, EFSA worked out a list of
representative substances for each subgroup (EFSA, 2008c). In selecting the representative
substances, expert judgement was applied. In each subgroup, the representative substances were
selected taking into account chain length, chain branching, lipophilicity and additional functional
groups. Likewise, an EFSA genotoxicity expert group has worked out a test strategy to be followed in
the data retrieval for these substances (EFSA, 2008b).

The Flavouring Industry has been requested to submit additional genotoxicity data according to the
list of representative substances and test strategy for each subgroup.

2.2. History of the evaluation of the substances in subgroup 2.2

Subgroup 2.2 was one of the FGE.19 subgroups for which the Panel concluded that, based on the
available data, additional genotoxicity data were necessary to perform the risk assessment for these
substances (EFSA, 2008a).

The Panel identified one substance in subgroup 2.2 of FGE.19, p-mentha-1,8-dien-7-al [FL-no:
05.117], which represents the other nine substances in this subgroup (EFSA, 2008c). For this
substance, genotoxicity data according to the test strategy (EFSA, 2008b) have been requested. The
representative substance is shown in Table 1.

In 2012, the industry submitted new genotoxicity data: a bacterial gene mutation assay (Ames
test), a gene mutation assay in mammalian cells (hypoxanthine-guanine phosphoribosyl transferase
(HPRT) assay and an in vitro micronucleus assay. These data were evaluated in FGE.208 (EFSA CEF
Panel, 2013), where the Panel concluded that the available data still gave rise to concern for the
genotoxic potential of p-mentha-1,8-dien-7-al [FL-no: 05.117]. Therefore, the Panel asked to provide
an in vivo Comet assay performed on the first site of contact (e.g. stomach or duodenum) and on liver.

Revision 1 of FGE.208 (FGE.208Rev1), concerned the evaluation of a combined bone marrow
micronucleus test and Comet assay in the liver and duodenum of rats. These data have been
submitted by industry (Beevers, 2014a,b) in response to the requested genotoxicity data in FGE.208
on the representative substance for subgroup 2.2, p-mentha-1,8-dien-7-al [FL-no: 05.117]. The
Panel concluded that p-mentha-1,8-dien-7-al [FL-no: 05.117] is genotoxic in vivo and that, accordingly,
there is a safety concern for its use as flavouring substance. Since p-mentha-1,8-dien-7-al [FL-no:
05.117] is representative for the nine remaining substances of this subgroup 2.2 (p-mentha-1,8-dien-
7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], myrtenal [FL-no: 05.106], 2,6,6-trimethyl-1-
cyclohexen-1-carboxaldehyde [FL-no: 05.121], myrtenyl formate [FL-no: 09.272], p-mentha-1,8-dien-7-
yl acetate [FL-no: 09.278], myrtenyl acetate [FL-no: 09.302], myrtenyl-2-methylbutyrate [FL-no:
09.899] and myrtenyl-3-methylbutyrate [FL-no: 09.900]), the Panel concluded in revision 1 of FGE.208
that there is a potential safety concern for these substances (EFSA CEF Panel, 2015).

Industry submitted genotoxicity data for the five remaining substances of subgroup 2.2.
Genotoxicity studies on p-mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], myrtenal

Table 1: Representative substance for subgroup 2.2 of FGE.19 (EFSA, 2008c)

FL-no JECFA-no Subgroup EU Register name
Structural
formula

FEMA no
CoE no
CAS no

05.117
973

2.2 p-Mentha-1,8-dien-7-al O 3557
11788
2111-75-3

FGE: Flavouring Group Evaluation; FL-no: FLAVIS number; JECFA: The Joint FAO/WHO Expert Committee on Food Additives;
FEMA: Flavor and Extract Manufacturers Association; CoE: Council of Europe; CAS: Chemical Abstract Service.
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[FL-no: 05.106], p-mentha-1,8-dien-7-yl acetate [FL-no: 09.278] and myrtenyl acetate [FL-no: 09.302]
were evaluated in the revision 2 of FGE.208 (FGE.208Rev2, EFSA CEF Panel, 2017a).

During the evaluation process, the industry sent to EFSA two publications on the genotoxicity
evaluation of p-mentha-1,8-dien-7-al [FL-no: 05.117] which has been evaluated in FGE.208Rev1 and
these two recent publications have been discussed in FGE.208Rev2 (see Appendix G of the present
opinion.

In FGE.208Rev2, the Panel concluded that the concern for genotoxicity could be ruled out for p-
mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], p-mentha-1,8-dien-7-yl acetate [FL-
no: 09.278] and myrtenyl acetate [FL-no: 09.302], which have been evaluated through the Procedure
in FGE.73Rev.4 as of no safety concern at the estimated levels of intake, based on the maximised
survey-derived daily intake (MSDI). Results of the in vitro micronucleus studies on myrtenal [FL-no:
05.106] were considered equivocal, therefore the Panel concluded that for myrtenal the data were
insufficient to rule out genotoxicity and consequently its evaluation through the Procedure would not
be possible (EFSA CEF Panel, 2017a,b).

Exposure data on myrtenal for which the concern for genotoxicity could not be ruled out in
FGE.208 Rev.2 are reported in Appendix F of the present opinion.

p-Mentha-1,8-dien-7-al [FL-no: 05.117] and four substances not supported by industry (2,6,6-
trimethyl-1-cyclohexen-1-carboxaldehyde [FL-no: 05.121], myrtenyl formate [FL-no: 09.272], myrtenyl-
2-methylbutyrate [FL-no: 09.899] and myrtenyl-3-methylbutyrate [FL-no: 09.900]) have been deleted
from the Union List (Commission Regulation (EU) 2015/17604, Commission Regulation (EU) 2016/6375).

FGE
Adopted by
the Panel

Link
No. of

substances

FGE.208 19 March 2013 http://www.efsa.europa.eu/en/efsajournal/pub/3151.htm 10
FGE.208Rev1 24 June 2015 http://www.efsa.europa.eu/en/efsajournal/pub/4173.htm 10

FGE.208Rev2 22 March 2017 http://www.efsa.europa.eu/en/efsajournal/pub/4766.htm 5

FGE.208Rev3 11 December
2018

http://www.efsa.europa.eu/en/efsajournal/pub/5569.htm 5

FGE: Flavouring Group Evaluation.

Industry has submitted additional genotoxicity data for myrtenal [FL-no: 05.106] that are evaluated
in the present revision 3 of FGE.208 (FGE.208Rev3).

The parts of this document that have been included in previous revisions of this FGE are not
revaluated by the Panel in the present revision.

2.3. Presentation of the substances belonging to FGE.208

The Flavouring Group Evaluation 208, corresponding to subgroup 2.2 of FGE.19, concerned three
alicyclic aldehydes with a,b-unsaturation in ring/side-chain and seven precursors for such aldehydes.
The 10 substances evaluated in FGE.208, FGE.208Rev1, and FGE.208Rev2 are listed in Table 2.

Eight of the flavouring substances have been previously evaluated by the JECFA (2002a). A
summary of their current evaluation status by the JECFA and the outcome of this consideration are
presented in Appendix A, Table A.1.

The a,b-unsaturated aldehyde structure is a structural alert for genotoxicity (EFSA, 2008a) and data
on genotoxicity previously available did not rule out the concern for genotoxicity for these 10
flavouring substances.

In FGE.208Rev1 (EFSA CEF Panel, 2015), the Panel concluded that p-mentha-1,8-dien-7-al [FL-no:
05.117] is genotoxic in vivo and that, accordingly, there is a safety concern for the use of p-mentha-
1,8-dien-7-al [FL-no: 05.117] as a flavouring substance. Since p-mentha-1,8-dien-7-al [FL-no: 05.117]
is representative for the nine remaining substances of this subgroup 2.2 (p-mentha-1,8-dien-7-ol [FL-
no: 02.060], myrtenol [FL-no: 02.091], myrtenal [FL-no: 05.106], 2,6,6-trimethyl-1-cyclohexen-1-
carboxaldehyde [FL-no: 05.121], myrtenyl formate [FL-no: 09.272], p-mentha-1,8-dien-7-yl acetate
[FL-no: 09.278], myrtenyl acetate [FL-no: 09.302], myrtenyl-2-methylbutyrate [FL-no: 09.899] and
myrtenyl-3-methylbutyrate [FL-no: 09.900]), the Panel concluded in revision 1 of FGE.208 that there is
a potential safety concern for these substances (EFSA CEF Panel, 2015). After publication of
FGE.208.Rev1, EFSA received information that four of these substances (2,6,6-trimethyl-1-cyclohexen-
1-carboxaldehyde [FL-no: 05.121], myrtenyl formate [FL-no: 09.272], myrtenyl-2-methylbutyrate [FL-
no: 09.899] and myrtenyl-3-methylbutyrate [FL-no: 09.900]) are no longer supported for use as
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flavouring substances in the EU, and have been removed from the Union List5 (see Section 1.1.1).
Therefore, these four substances were not further discussed in FGE.208Rev2. New in vitro genotoxicity
data were submitted for p-mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], myrtenal
[FL-no: 05.106], p-mentha-1,8-dien-7-yl acetate [FL-no: 09.278] and myrtenyl acetate [FL-no: 09.302],
these five substances were considered in FGE.208Rev2.

Since only myrtenal [FL-no: 05.106] presented equivocal results in the in vitro micronucleus assay,
the industry has submitted additional data in 2018 (Documentation provided to EFSA n. 10; 24; 27)
that are evaluated in the present revision 3 of FGE.208 (FGE.208Rev3).

Sections 2.4, 2.5 and 2.6 of this opinion report the same information that was presented in
FGE.208, FGE.208Rev1, and FGE.208Rev2, respectively. Section 3 reports the evaluation of the new
genotoxicity data submitted by industry on myrtenal [FL-no: 05.106].
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Table 2: Summary of specifications for the substances in the Flavouring Group Evaluation 208 (JECFA, 2002b, 2018)

FL-no
JECFA-no

EU Register name Structural formula
FEMA no
CoE no
CAS no

Phys. form
Mol. formula
Mol. weight

Solubility(a)

Solubility in
ethanol(b)

Boiling point, °C(c)

Melting point, °C
ID test
Assay minimum

Refrac. Index(d)

Spec. gravity(e)

02.060
974

p-Mentha-1,8-dien-7-ol HO 2664
2024
536-59-4

Liquid
C10H16O
152.24

Slightly soluble
Miscible

119 (14 hPa)
–
NMR
96%

1.495–1.505
0.956–0.963

02.091
981

Myrtenol OH 3439
10285
515-00-4

Liquid
C10H16O
152.24

Insoluble
Miscible

221
–
IR NMR
95%

1.490–1.500
0.976–0.983

05.106
980

Myrtenal O 3395
10379
564-94-3

Liquid
C10H14O
150.22

Insoluble
Miscible

220
–
NMR
98%

1.496–1.507
0.984–0.990

05.117
973

p-Mentha-1,8-dien-7-al(f)
O

3557
11788
2111-75-3

Liquid
C10H14O
150.22

Insoluble
Miscible

104 (13 hPa)
–
NMR
97%

1.504–1.513
0.948–0.956

05.121
979

2,6,6-Trimethyl-1-
cyclohexen-1-
carboxaldehyde(g),(h)

O O 3639
2133
432-25-7

Liquid
C10H16O
152.23

Insoluble
Miscible

62 (4 hPa)
–
IR
99%

1.476–1.483
0.950–0.957

09.272
983

Myrtenyl formate(g)
O O

3405
10858
72928-52-0

Liquid
C11H16O2

180.25

Insoluble
Miscible

127–130 (52 hPa)
–
NMR
96%

1.477–1.483
1.004–1.010 (20°C)

09.278
975

p-Mentha-1,8-dien-7-yl
acetate O

O 3561
10742
15111-96-3

Liquid
C12H18O2

194.27

Insoluble
Miscible

218–223
–
NMR
97%

1.476–1.487
0.972–0.980

09.302
982

Myrtenyl acetate O

O

3765
10887
1079-01-2

Liquid
C12H18O2

194.28

Practically
insoluble or
insoluble(i)

Miscible

134 (49 hPa)
–
IR NMR MS
98%

1.470–1.477
0.987–0.996
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FL-no
JECFA-no

EU Register name Structural formula
FEMA no
CoE no
CAS no

Phys. form
Mol. formula
Mol. weight

Solubility(a)

Solubility in
ethanol(b)

Boiling point, °C(c)

Melting point, °C
ID test
Assay minimum

Refrac. Index(d)

Spec. gravity(e)

09.899 Myrtenyl-2-methylbutyrate(g)
O

O –
–
138530-44-6

Liquid
C15H24O2

236.35

Practically insoluble or
insoluble
Freely soluble

345
–
MS
95%

1.466–1.470
0.964–0.970

09.900 Myrtenyl-3-methylbutyrate(g) O

O

–
–
33900-84-4

Liquid
C15H24O2

236.35

Practically insoluble or
insoluble
Freely soluble

98 (1 hPa)
–
MS
95%

1.470–1.476
0.967–0.973

CAS no: Chemical Abstract Service register number; CoE: Council of Europe; CoE no: CoE number; FEMA: Flavor and Extract Manufacturers Association; FEMA no: FEMA number; FLAVIS: Flavour
Information System (database); FL-no: FLAVIS number; ID: Identity; IR: infrared spectroscopy; JECFA: The Joint FAO/WHO Expert Committee on Food Additives; JECFA no: JECFA number; Mol.
formula: Molecular formula; Mol. weight: Molecular weight; MS: mass spectrometry; –: not reported; NMR: nuclear magnetic resonance; Phys. form: Physical form; Refract. index: Refractive index;
Spec. gravity: Specific gravity.
(a): Solubility in water, if not otherwise stated.
(b): Solubility in 95% ethanol, if not otherwise stated.
(c): At 1,013.25 hPa, if not otherwise stated.
(d): At 20°C, if not otherwise stated.
(e): At 25°C, if not otherwise stated.
(f): Deleted from the Union List by Commission Regulation (EU) 2015/17604.
(g): Deleted from the Union List by Commission Regulation (EU) 2016/6375.
(h): It is not clear which substance was evaluated by JECFA, the CAS number applies to 2,6,6-trimethyl-1-cyclohexen-1-carboxaldehyde only. Since [FL-no: 05.121] has been withdrawn from the

Union List by Commission Regulation (EU) 2016/6375, its identification will be no longer necessary.
(i): No available JECFA specification on solubility in water – see http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-flav/details/en/c/915/
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2.4. Additional genotoxicity data evaluated by the Panel in FGE.2087

The industry has submitted additional data concerning genotoxicity studies for the representative
substance p-mentha-1,8-dien-7-al [FL-no: 05.117] for this subgroup (EFFA, 2012). The data for p-
mentha-1,8-dien-7-al are one in vitro test in bacteria and two in vitro tests in mammalian cell systems.

2.4.1. In vitro data

2.4.1.1. Bacterial reverse mutation assay

An Ames assay was conducted in Salmonella Typhimurium strains TA98, TA100, TA1535, TA1537
and TA102 to assess the mutagenicity of p-mentha-1,8-dien-7-al, both in the absence and in the
presence of metabolic activation by an Aroclor 1254-induced rat liver post mitochondrial fraction (S9-
mix) in three experiments (Bowen, 2011). A batch of 93.1% purity was used for the first and second
experiment, while a batch of 91.9% purity was used for the third experiment. An initial toxicity range-
finding experiment was carried out using the plate incorporation method in the presence and absence
of S9-mix for the TA100 strain only at concentrations of 1.6, 8, 40, 200, 1,000 and 5,000 lg/plate,
plus negative (solvent) and positive controls. Evidence of toxicity in the form of complete killing of the
background lawn was observed at 5,000 lg/plate in the absence and presence of S9-mix. Precipitation
was also seen at this concentration. As valid mutation data were available from five different test
concentrations, the data from these treatments were considered to be acceptable for mutation analysis
as part of the first main experiment. This study complies with Good Laboratory Practice (GLP) and
OECD Test Guideline 471 (OECD, 1997a).

In the first experiment, treatments of all the remaining tester strains were performed in the
absence and presence of S9-mix at concentrations of 0.32, 1.6, 8, 40, 200, 1,000 and 5,000 lg/plate,
plus negative (solvent) and positive controls. Evidence of toxicity was observed in all strains in the
absence and presence of S9-mix at 5,000 lg/plate, and in some strains also at 1,000 lg/plate.
Precipitation was also seen at 5,000 lg/plate. Valid mutation data were obtained from five or six
different test concentrations in each strain. Following experiment 1 treatments, a statistically significant
and concentration related increase in revertant numbers was observed in strain TA98 at 200 lg/plate
(1.8-fold increase) and 1,000 lg/plate (3.2-fold increase) in the absence of S9-mix, when data were
analysed at the 1% level using Dunnett’s test.

In a second experiment, treatments of the strains assayed in experiment 1 were performed in the
absence and presence of S9-mix at 8.192, 20.48, 51.2, 128, 320, 800, 2,000 and 5,000 lg/plate.
Treatments in the presence of S9-mix were further modified by the inclusion of a pre-incubation step
(60 min). Evidence of toxicity ranging from a marked reduction in revertant numbers and/or slight
thinning of the bacterial lawn to a complete killing of the test bacteria was observed at 320, 800, and/
or 2,000 lg/plate and above in most of the strains in the absence and presence of S9-mix.
Precipitation was again seen at 5,000 lg/plate, particularly in the presence of S9-mix. However, valid
mutation data were obtained from at least five test concentrations in each strain. Following experiment
2 treatments, a statistically significant and concentration-related increase in revertant numbers was
again observed in strain TA98 in the absence of S9-mix at 320 lg/plate (2.3-fold increase) and 800
lg/plate (2.9-fold increase), when data were analysed at 1% level using Dunnett’s test.

Following the treatments in experiments 1 and 2, p-mentha-1,8-dien-7-al increased the frequency
of revertants in strain TA98 by at least twofold in the absence of S9-mix activation. These results were
in contrast with what had been observed for p-mentha-1,8-dien-7-al in previous Ames assays
described further below. One possible explanation for the varying pattern of behaviour was that the
material tested (93.1% purity) in experiments 1 and 2, due to impurities, gave positive results. A third
experiment was conducted in strain TA98, with a different batch of the test article (91.9% purity), but
with the same treatment conditions as in experiment 1. In the absence of S9-mix, toxicity was
observed at 5,000 lg/plate, while in the presence of S9-mix toxicity was observed at all concentrations
tested. Additionally, while precipitation was observed on all test plates at 5,000 lg/plate in
experiments 1 and 2, no precipitation was observed at this concentration in experiment 3. Following
the treatments in experiment 3, statistically significant and concentration-related increases in revertant
numbers for strain TA98 in the absence of S9-mix were observed at 8 lg/plate and above when the
data were analysed at 1% level using Dunnett’s test. Therefore, the increases observed in strain TA98

7 The data presented in Section 2.4 are cited from the first version of FGE.208. These data are the basis for the conclusions in
FGE.208 requesting additional genotoxicity data.
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were reproduced and are considered to be evidence of mutagenic activity in this strain. No other
statistically significant increases in revertant numbers were observed in all other strains when the data
were analysed at the 1% level using Dunnett’s test (Appendix B, Table B.1).

2.4.1.2. Hypoxanthine-guanine phosphoribosyl transferase (HPRT) assay

To assess mutagenic potential in a mammalian system, mouse lymphoma L5178Y cells were treated
with p-mentha-1,8-dien-7-al in the absence and presence of S9-mix to study the induction of forward
mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus (Lloyd, 2012). A batch
of 92.5% purity was used. Across three different experiments, treatments were carried out for 3 h in
the absence of S9-mix, 3 h in the presence of S9-mix and 24 h in the absence of S9-mix, and each
treatment regime was independently repeated. Concentrations for the main experiments were
established in preliminary range-finding cytotoxicity experiments. This GLP study complies with OECD
Test Guideline 476 (OECD, 1997b).

In the first mutation experiment, cells were treated with p-mentha-1,8-dien-7-al for 3 h at 10, 20,
40, 60, 70, 80, 90 and 100 lg/mL in the absence of S9-mix and at 40, 60, 80, 100, 120, 140, 160 and
180 lg/mL in the presence of S9-mix. Per cent relative survival (% RS) decreased to 13% at 100 lg/
mL in the absence of S9-mix and to 16% at 180 lg/mL in the presence of S9-mix. Negative control
mutant frequencies were normal, and were significantly increased by treatment with the positive
control. No significant increases in mutation frequency were observed at any concentration analysed in
the presence or absence of S9-mix in this experiment, and no statistically significant linear trends were
observed.

In a second experiment, cultures were treated with p-mentha-1,8-dien-7-al for 3 h at 20, 40, 50,
60, 70, 80, 90, 100 and 120 lg/mL in the absence of S9-mix and at 25, 50, 75, 100, 120, 140, 160,
170 and 180 lg/mL in the presence of S9-mix. Per cent RS decreased to 7% at 120 lg/mL in the
absence and to 10% at 180 lg/mL in the presence of S9-mix. Also, in this experiment, 24-h
treatments were carried out with p-mentha-1,8-dien-7-al in the absence of S9-mix at 4, 8, 12, 15, 18
and 21 lg/mL of p-mentha-1,8-dien-7-al. Per cent RS decreased to 9% at the highest concentration.
Negative control mutant frequencies were normal and were significantly increased by treatment with
the positive control. In the absence and presence of S9-mix, there were no statistically significant
increases in mutant frequency relative to control at any concentration analysed, although in the
absence of S9-mix (both 3- and 24-h treatments), there were statistically significant linear trends.

In a third experiment, cultures were treated with p-mentha-1,8-dien-7-al for 24 h at 4, 8, 12, 14,
16, 18 and 20 lg/mL in the absence of S9-mix. Per cent RS decreased to 14% at the highest
concentration. Negative control mutant frequencies were normal, and were significantly increased by
treatment with the positive control. There were no significant or concentration-related increases in
mutant frequency following p-mentha-1,8-dien-7-al treatments. The observations made with the 24-h
treatments in the second experiment were not reproduced at similar concentrations and extents of
toxicity and were considered not to be biologically relevant by the authors (Lloyd, 2012).

However, it is not clear why the 3-h treatment was not repeated. Overall, the results in the HPRT
assay in the absence of S9-mix should be considered, differently from the authors’ opinion, as
equivocal instead of negative, based on the statistically significant trends in both 3- and 24-h
treatments in the second experiment (Appendix B, Table B.1).

2.4.1.3. In vitro micronucleus assays

p-Mentha-1,8-dien-7-al (94.9% purity) was assayed for the induction of chromosome damage in
mammalian cells in vitro by examining its effect on the frequency of micronuclei in cultured human
peripheral blood lymphocytes (whole blood cultures pooled from 2 healthy male volunteers) treated in
the absence and presence of S9-mix (Lloyd, 2009). p-Mentha-1,8-dien-7-al was added at 48 h
following culture initiation (stimulation by phytohaemagglutinin (PHA)) either for 3 h in the absence or
presence of S9-mix followed by 21 h recovery, or for 24 h in the absence of S9-mix. Cytochalasin B (6
lg/mL) was added either at the start of treatment (24-h treatment) or at the start of recovery
(following 3-h treatment) in order to block cytokinesis and generate binucleate cells for analysis. It
remained in the cultures until they were harvested 24 h after the start of treatment. A range-finding
experiment had been conducted with and without S9-mix treatment in order to provide toxicity
information (reduction in replication index, RI) that could be used as a basis for choosing a range of
concentrations to be evaluated in the main micronucleus analysis (Appendix B, Table B.1).

In the main assay, micronuclei were analysed from at least three concentrations for each treatment
condition. For the 3-h treatment without S9-mix the concentrations were 80, 100, 110 and 120 lg/mL,
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for the 3-h treatment with S9-mix the concentrations were 100, 120 and 140 lg/mL, and for the 24-h
treatment without S9-mix the concentrations were 20, 25 and 35 lg/mL. The levels of cytotoxicity
(reduction in RI) at the top concentrations reached 58 and 45% in the 3-h treatment in the absence
and presence of S9-mix, and 58% in the 24-h treatment in the absence of S9-mix, respectively. These
levels of cytotoxicity therefore reached, or were very close to, the recommended (50–60%) range of
cytotoxicity. One thousand binucleate cells per culture from two replicate cultures per concentration
were scored for micronuclei. This GLP study complies with OECD Test Guideline 487.

The frequencies of micronucleated binucleate (MNBN) cells in negative control cultures were
normal, and were significantly increased by treatment with positive control chemicals. Treatment of
cells with p-mentha-1,8-dien-7-al in the absence and presence of S9-mix under all treatment
conditions resulted in frequencies of MNBN cells that were similar to and not significantly different
from those observed in concurrent vehicle controls for all concentrations analysed. The MNBN cell
frequency of all p-mentha-1,8-dien-7-al treated cultures fell within (or slightly below) normal ranges. It
was concluded that p-mentha-1,8-dien-7-al did not induce micronuclei in cultured human peripheral
blood lymphocytes when tested at toxic concentrations in both the absence and presence of S9-mix
(Lloyd, 2009).

2.4.2. Previously available data

2.4.2.1. In vitro data

Several in vitro mutagenicity/genotoxicity tests have been performed on the FGE.19 subgroup 2.2
representative substance p-mentha-1,8-dien-7-al [FL-no: 05.117]. The quality of most of them could
not be adequately evaluated, either because they are in Japanese and therefore details are difficult to
obtain or because of limitations in the experimental design. Negative results were reported by Ishidate
et al. (1984) for an Ames test in which S. Typhimurium strains TA92, TA1535, TA100, TA1537, TA94
and TA98 were used. Duplicate plates were used for each of the six concentrations up to 1,000 lg/
plate with S9-mix. The sample used had the same purity (93.1%) of the batch used by Bowen (2011).
The results were only reported as – or + (a + would be given if revertant numbers exceeded 29
concurrent control) and therefore weaker responses may have been observed but cannot be verified.
Fujita et al. (1994) also reported negative results for an Ames assay in strains TA97 and TA102
performed both with and without S9-mix. The top concentration of p-mentha-1,8-dien-7-al was less
than in the Ishidate study, namely 100 lg/plate. Negative results were reported in mutation tests in
which p-mentha-1,8-dien-7-al was incubated with Escherichia coli WP2 cells at 50–400 lg/plate (Yoo,
1986). Few details can be obtained from the paper, but it appears that the maximum increase in
revertants was 1.3-fold, which is considered negative. However, only one result was given, so the test
was probably only conducted in the absence of S9-mix.

p-Mentha-1,8-dien-7-al was considered to be weakly positive in the rec-assay with Bacillus subtilis
strains M45 and H17 at a concentration of 2.5 lL p-mentha-1,8-dien-7-al/disk, probably equivalent to
2,500 lg/disk (Yoo, 1986). This study is a very short paper, with very few details. Another study using
the same strains reported negative results for p-mentha-1,8-dien-7-al at concentrations between 0.16
and 0.63 lL/plate (corresponding to 0.15 and 0.6 lg/plate) and positive results at higher
concentrations of 1.25 and 2.5 lL/plate (1.2 and 2.4 lg/plate) (Kuroda et al., 1984). It should be
noted that these DNA damage assays in bacteria do not detect mutation, are non-standard and not
requested by regulatory agencies. The results cannot therefore be considered to carry as much weight
as results from recommended, standard assays.

In a study by Eder et al. (1993), p-mentha-1,8-dien-7-al gave negative results in a SOS-Chromotest
with genetically engineered E. coli. The maximum induction factor (Imax) with p-mentha-1,8-dien-7-al
was calculated to be 1.0. Positive results are considered to be significant if the Imax is at least 1.5.
The SOS-Chromotest is also not a mutation test. It measures induction of the SOS repair system, and
this is interpreted as indicating DNA damage. The results cannot therefore be considered to carry as
much weight as results from recommended standard assays.

Standard chromosomal aberration (CA) assays for p-mentha-1,8-dien-7-al have yielded positive
results. In a CA study by Ishidate et al. (1984), Chinese hamster lung fibroblasts (CHL) were only
treated in the absence of S9-mix for 24 or 48 h with a batch of 93.1% purity. There were no
treatments in the presence of S9-mix. Concentrations for the main CA test were selected from a
preliminary experiment in which cell density (a crude and subjective measure) on the culture dishes
was assessed, but there was no concurrent measure of cytotoxicity in the CA test. Only single cultures
of CHL cells were treated with each of three concentrations, and therefore only 100 cells/concentration
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were scored for CA. CA (including gaps) frequencies of 4.9% or less were considered negative, 5.0–
9.9% were equivocal, and 10% or higher were considered positive. p-Mentha-1,8-dien-7-al gave a
strong positive response (39% cells with CA, and also an increase in polyploid cells to 31%) at 50 lg/
mL. In particular, structural chromosome aberrations were detected at 40 lg/mL at 24 h (20.0%) and
at 48 h (28.0%); the strongest effect was observed at 50 lg/mL at 24 h. An increase in polyploidy
cells was also detected at 40 lg/mL (15%) and 50 lg/mL (31%) after 48 h. As there was no
concurrent measure of cytotoxicity, and the results at the other concentrations tested were not given,
these results should be considered with caution; however, they cannot be completely dismissed. In the
CA study of Tayama et al. (1990) in CHO-K1 cells, a significant increase in CA at 150 lg/mL in the
absence of S9-mix was associated with no detectable cell division. This result can probably be
dismissed as likely to be an artefact of high levels of cell killing. However, a significant increase in CA
at 300 lg/mL in the presence of S9-mix was associated with 62% proliferating cells, which does not
indicate excessive toxicity. Most of the chromosome aberrations were chromatid exchanges. These
results are clearly in contrast to the negative micronucleus results obtained in human lymphocytes in
the recent GLP study (Lloyd, 2009). The reasons of such discrepancy are unclear.

A sister chromatid exchange (SCE) assay was performed with and without metabolic activation in
CHO-K1 cells at concentrations up to 300 lg p-mentha-1,8-dien-7-al/mL (Tayama et al., 1990).
Cytotoxicity was determined by the percentage of cells that showed differentially stained chromatids,
i.e. had divided. A doubling of SCE/cell would usually be considered biologically relevant, and in the
absence of S9-mix, there was a doubling of SCE/cell at 150 lg/mL, where there was little toxicity,
whereas in the presence of S9-mix, there was a doubling of SCE/cell at all concentrations from 100 to
300 lg/mL, where there was low or moderate toxicity. However, SCE assays also only provide limited
information for assessment of genotoxicity. The mechanism of induction of SCE, and its relevance for
mutation and cancer is not understood.

Studies for induction of ouabain resistant mutants conducted in human fetus cells (Rsa) at
concentrations of 0, 0.010, 0.015, 0.020 or 0.025 lg/mL gave negative results for p-mentha-1,8-dien-
7-al at the lowest concentration, positive results (8- to 16-fold increases) for concentrations ranging
from 0.015 to 0.02 lg/mL (where toxicity was slight to moderate), and showed p-mentha-1,8-dien-7-al
to be cytotoxic at the highest concentration (Suzuki et al., 1990). In another mutagenicity study with
Rsa cells (Suzuki and Suzuki, 1994), induction of ouabain resistance was reported at concentrations
above 10 ng p-mentha-1,8-dien-7-al/mL with apparent cytotoxicity at 20 ng/mL or higher. Also in this
study, mutagenicity was detected (K-ras codons) at concentrations of 2–200 ng/mL. Human fetal (Rsa)
cells are not routinely used for genotoxicity testing, so evaluation of the quality of the data is difficult.
The concentrations used in these tests are much lower than in other mammalian cell tests, and
possible reasons for the discrepancy are not clear. Sasaki et al. (1990) tested p-mentha-1,8-dien-7-al
for induction of ouabain-resistant mutants in CHO-K1 cells. The mutant frequency at the only
concentration of p-mentha-1,8-dien-7-al tested (10 lg/mL, which reduced survival to 83.5% of
controls) appears to be low (0.7 mutants/106 cells, compared to zero in controls) and the result would
probably be considered negative. The study of ouabain resistance in all of these studies makes
interpretation difficult. Ouabain resistance is generally considered not to be a sensitive mutagenic
target (spontaneous frequencies very low; frame-shift mutations not detected), and it is difficult to
conclude negative results when there is a zero incidence of effects in controls. The biological
significance of large increase in ouabain resistant mutants at very low concentrations is equally difficult
to interpret. This endpoint is no longer used in regulatory testing.

The in vitro studies described above are listed in Appendix B, Table B.1.

2.4.2.2. In vivo data

In vivo mutagenicity/genotoxicity testing has been performed on the FGE.19 subgroup 2.2
representative substance p-mentha-1,8-dien-7-al (Appendix B, Table B.2). Eight-week-old male ddY
mice were administered a single intraperitoneal injection of p-mentha-1,8-dien-7-al [FL-no: 05.117] at
doses of 75, 150, 300, or 600 mg/kg body weight (bw) for a mouse micronucleus assay (six mice/group).
The dosing regimen and the maximum dose was based on a pilot experiment with 2 mice/group. In the
main experiment, after 24 h the mice were killed and femoral bone marrow cells were collected, fixed and
stained with Giemsa. One thousand polychromatic erythrocytes (PCE) were scored per mouse. No
indication of micronucleus induction was reported at any dose level (Hayashi et al., 1988). However, the
study does not comply with current guidelines, because, after a single administration, groups of animals
should be sacrificed 24 and 48 h later. Also, only 1,000 PCE were scored per animal, whereas the current
recommendation is for 2,000 PCE/animal.
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2.4.3. Discussion

The European Flavour and Fragrance Association (EFFA) has submitted three valid, new in vitro
studies, one in bacteria (Ames test) and two in mammalian cells (micronucleus (MN) in human
lymphocytes, HPRT in mouse lymphoma cells). The Ames test resulted positive, in the absence of
metabolic activation with strain TA98, able to detect gene mutations of frameshift type (insertions/
deletions). Equivocal results were reported in the HPRT assay (negative according to the authors) and
negative results were reported in the MN test. Equivocal or negative results in the HPRT assay cannot
dismiss the positive findings in the new Ames test, positive in the TA98 strain. The different results
may be due to a different sensitivity of the two tests to detect frameshift mutations. In this respect,
the Panel noted that the molecular analysis of mutational spectra at the hprt locus show a prevalence
of guanidine-cytosine (GC) to adenosine-thymidine (AT) transitions and AT to CG transversions among
spontaneous mutants, with less than 10% of frameshifts (Chen et al., 2002). Thus, given the
prevailing contribution of mutations different from frameshift to the baseline incidence of hprt mutant
colonies, it is expected that a many-fold increase in frameshift mutations is needed to give raise to an
overall increase in mutation frequency which is detectable and significant on statistical grounds. The
Ames test is generally considered as the most sensitive in vitro test for the prediction of genotoxic
carcinogens and ˋfalse positive resultsˊ are rare; in this case, the positivity in the TA98 cannot be
considered as a ˋfalse positiveˊ without any explanation.

Negativity in mammalian cells ˋper seˊ cannot be considered more relevant than positivity in
bacteria, simply on the basis of the complexity of cells. Among the previously supplied data, several
in vitro and one in vivo mutagenicity/genotoxicity published studies are available. For most of them,
performed not in compliance with current guidelines, the quality of data was limited. Negative results
were reported in a study with the Ames test; however, the results were only reported as + or �, and
therefore could not be verified. Both positive and negative results were reported for induction of
ouabain gene mutations in mammalian cells, in limited studies. Ouabain resistance is generally
considered of low sensitivity, compared with other gene mutation assays and is unable to detect
mutations of frameshift type; it is no longer routinely used for regulatory purposes. Strong clastogenic
effects in the absence of S9-mix were reported in Chinese hamster cell lines in two papers.
Notwithstanding some limitations of the study, these positive results cannot be completely dismissed
by the negative results in the new in vitro MN assay. The different types of cells used (Chinese
hamster cell lines and human lymphocytes) and the different concentrations used can only partially
explain the different results, which remain unclear. Negative results were reported in a mouse MN
assay, in a study of limited validity for inadequate experimental design and insufficient presentation of
data. Other published results, both positive and negative for DNA-damage/repair (rec-assay) in
bacteria, negative for SOS and positive for SCE in mammalian cells, are not considered as relevant for
the assessment of the genotoxic potential of p-mentha-1,8-dien-7-al.

2.4.4. Conclusion

Overall, the presently available data raise some concern for the genotoxic potential of p-mentha-
1,8-dien-7-al [FL-no: 05.117]. In order to clarify the genotoxic potential of this substance, the
Panel considered that further in vivo testing should be performed. To address this, an in vivo Comet
assay, considering the first site of contact (e.g. stomach or duodenum) and liver, should be carried out
according to the Scientific Report of EFSA on Minimum Criteria for the acceptance of in vivo alkaline
Comet Assay Reports (EFSA, 2012).

2.5. Additional genotoxicity data evaluated by the Panel in
FGE.208Rev18

In response to the EFSA request, in FGE.208, to provide in vivo genotoxicity data for the
representative substance p-mentha-1,8-dien-7-al [FL-no: 05.117], industry has submitted a combined
in vivo bone marrow micronucleus test and Comet assay with scoring in the liver and duodenum
(Appendix C, Table C.1).

p-Mentha-1,8-dien-7-al [FL-no: 05.117] (purity 94.2%) was tested for its ability to induce
micronuclei in the PCE of the bone marrow of treated rats and the potential to induce DNA damage in

8 The data presented in Section 2.5 are cited from the Scientific Opinion FGE.208Rev1.

Flavouring Group Evaluation 208 Revision 3

www.efsa.europa.eu/efsajournal 15 EFSA Journal 2019;17(1):5569



the liver and duodenum of the same animals in a combined in vivo micronucleus and Comet assay
(Beevers, 2014a,b).

Based on results from a range-finding study, where no substantial inter-sex differences in toxicity
were observed in rats, a dose of 700 mg/kg bw per day was considered as the maximum tolerated
dose (MTD). Groups of six male out-bred Han Wistar rats were administered doses of 175, 350 and
700 mg/kg bw per day of p-mentha-1,8-dien-7-al by oral gavage at time 0, 24 and 45 h. All doses
were administered at a dose volume of 10 mL/kg. Rats were sacrificed and sampled at 48 h post the
initial dose. Negative (corn oil) and positive control groups (ethyl methanesulfonate (EMS) 150 mg/kg,
dosed at 0, 24 and 45 h) were included in the main study.

Clinical signs of toxicity were limited to animals dosed at 700 mg/kg bw per day, where reduced
levels of activity were observed in 5/6 animals dosed with p-mentha-1,8-dien-7-al. In addition, one
animal displayed symptoms of ataxia and one animal had piloerection. Dose-related decreases in body
weight gain, or weight loss were observed at all dose levels. No clinical signs of toxicity were seen in
the vehicle or the positive control (EMS).

During clinical chemistry assessment of blood samples, it was noted that a high number of samples
were lipaemic. This was attributed to the corn oil used as a vehicle control and for test article
formulation, which was administered just 3 h prior to blood sampling. As a consequence, many
samples were deemed unsuitable for the analysis of certain parameters and the data were interpreted
with caution. There was a slight increase in aspartate aminotransferase and alanine aminotransferase
at the 700 mg/kg bw per day dose.

The anatomical pathology examination showed that there were no gross lesions in tissues of
exposed animals related to administration of p-mentha-1,8-dien-7-al; however, histopathology revealed
hepatocyte vacuolation at the dose of 700 mg/kg bw per day.

In line with the requirement of the OECD test guideline 474 (OECD, 1997c), the plasma samples
were collected. However, analysis of these samples was not conducted since in this case, this is not
relevant for the interpretation of the study.

2.5.1. Micronucleus assay

An in vitro micronucleus assay in human peripheral blood lymphocytes (Lloyd, 2009) was evaluated
by the Panel as negative in FGE.208. Although not requested, the applicant has submitted an in vivo
micronucleus assay in bone marrow of rats (Beevers, 2014a). In this in vivo study, the proportion of
immature among total (immature + mature) erythrocytes was determined for each animal by counting
a total of at least 500 cells and then at least 2,000 immature erythrocytes per animal were scored for
the incidence of micronucleated polychromatic erythrocytes (MNPCE). Rats treated with p-mentha-1,8-
dien-7-al exhibited % PCE values that were similar to the concurrent vehicle control group and which
were within the laboratory0s historical negative control data, thus indicating that the test substance
was not toxic to the bone marrow. Rats treated with p-mentha-1,8-dien-7-al exhibited group mean
frequencies of MNPCE that were similar to and not statistically different (chi-square calculation) from
those observed in concurrent vehicle controls for all dose groups and were also within the historical
control values (Beevers, 2014a).

The Panel concluded that in this study p-mentha-1,8-dien-7-al did not induce micronucleated
erythrocytes in rat bone-marrow cells following administration by oral gavage at the test conditions
performed. There was no indication that the test substance reached the target organ. Negative results
were observed in an in vitro micronucleus test (Lloyd, 2009). Therefore, there is no need to validate
the negative result of the in vivo micronucleus assay and to investigate the target tissue exposure.

2.5.2. Comet assay

2.5.2.1. Duodenum analysis

There was no dose-related increase in % clouds in duodenum cells following treatment with p-
mentha-1,8-dien-7-al, thus demonstrating that treatment did not cause excessive DNA damage that
could have interfered with Comet analysis. Measurements of tail intensity (% DNA in tail) and tail
moment were obtained from 150 cells/animal.

Group mean tail intensity and tail moment values for all groups of animals treated with p-mentha-
1,8-dien-7-al at 175, 350 and 700 mg/kg bw per day were comparable with the group mean vehicle
control data. There were no marked differences in tail intensity between treated and control groups.
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All individual animal data at all dose levels were consistent with the vehicle control animal data
(Beevers, 2014b).

The Panel concluded that p-mentha-1,8-dien-7-al did not induce DNA damage in the duodenum of
treated male rats under the test conditions performed.

2.5.2.2. Liver analysis

There was no dose-related increase in % clouds or % cells with halos in liver cells following
treatment with p-mentha-1,8-dien-7-al, thus demonstrating that treatment did not cause excessive
DNA damage that could have interfered with Comet analysis. However, clinical chemistry of blood
showed a slight increase in aspartate aminotransferase and alanine aminotransferase at the highest
dose tested, indicating that the liver was exposed to the test substance.

Measurements of tail intensity (% DNA in tail) and tail moment were obtained from 150 cells/
animal.

Group mean % tail intensity and tail moment values for animals treated with p-mentha-1,8-dien-7-
al at the low and medium dose (175 and 350 mg/kg bw per day, respectively) were comparable with
the group mean vehicle control data and there were no statistically significant differences in % tail
intensity between treated and control groups. In groups treated with the low and medium dose, all
individual animal data were consistent with the values of the vehicle control animals and fell within the
laboratory’s historical control data.

At the highest dose (animals exposed to 700 mg/kg bw per day), a 3.4-fold and statistically
significant increase in tail intensity was observed. A statistically significant linear trend was also
apparent. Five out of the six animals treated with the highest dose had tail intensities that exceeded
the values observed in the concurrent vehicle control animals, however, the tail intensity values for all
animals fell within the laboratory’s historical vehicle control values (Beevers, 2014a).

The Panel noted that the range for both the negative and positive historical control values were
extremely wide for this test laboratory. In addition, there was an overlap of the negative (95% range:
0.02–11.39) and positive (95% range: 7.15–65.07) control values.

The Comet arm of this study indicates that p-mentha-1,8-dien-7-al induces DNA damage in liver.

2.5.3. Conclusion

The data submitted by the applicant were considered to be in accordance with the data requested
by the Panel in FGE.208. Industry submitted a Comet assay on the liver and duodenum and in addition
(although not requested) a micronucleus assay in the bone marrow of the same animals (combined
bone marrow micronucleus test and Comet assay).

p-Mentha-1,8-dien-7-al [FL-no: 05.117] did not induce any increase in MNPCE of the bone marrow
of male rats following oral gavage administration up to 700 mg/kg bw per day (an estimate of the
maximum tolerated dose for this study). There was no indication in the study that the test substance
reached the bone marrow. Negative results were observed in an in vitro micronucleus assay on human
peripheral blood lymphocytes performed according to OECD test guideline 487. Therefore, there is no
need to validate the negative result of the in vivo micronucleus assay and to investigate the target
tissue exposure.

p-Mentha-1,8-dien-7-al did not induce DNA damage in the duodenum of the same animals as
analysed by the Comet assay.

In the same animals, a statistically significant increase in DNA strand breaks was observed in the
liver at the highest tested dose (700 mg/kg bw per day). The observed values for tail intensity
(2.20 � 0.6) and tail moment (0.24 � 0.07) fell within the test laboratories historical vehicle control
range values for tail intensity (0.02–11.39) and tail moment (0.01–1.45); however, five of the six high
dose animals had tail intensities that exceeded the values of the concurrent vehicle control animals.

The Panel noted that the results observed at the highest dose were more than threefold higher
than the concurrent negative control value and statistically significant different from the negative
control value. In addition, a statistically significant positive linear trend was observed. The
Panel considered that, since there was a wide range of historical control data with an overlap of the
positive and negative historical control values, the historical control data could not be used as a
criterion to interpret the data.

Overall, the Panel concluded that p-mentha-1,8-dien-7-al [FL-no: 05.117] is genotoxic in vivo and
that, accordingly, there is a safety concern for the use of p-mentha-1,8-dien-7-al [FL-no: 05.117] as a
flavouring substance.
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Since p-mentha-1,8-dien-7-al [FL-no: 05.117] is representative for the nine remaining substances of
this subgroup 2.2 (p-mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], myrtenal [FL-no:
05.106], 2,6,6-trimethyl-1-cyclohexen-1-carboxaldehyde [FL-no: 05.121], myrtenyl formate [FL-no:
09.272], p-mentha-1,8-dien-7-yl acetate [FL-no: 09.278], myrtenyl acetate [FL-no: 09.302], myrtenyl-
2-methylbutyrate [FL-no: 09.899] and myrtenyl-3-methylbutyrate [FL-no: 09.900]), there is a potential
safety concern for these substances.

2.6. Additional genotoxicity data evaluated by the Panel in
FGE.208Rev29

The applicant has submitted in vitro genotoxicity studies for p-mentha-1,8-dien-7-ol [FL-no:
02.060], myrtenol [FL-no: 02.091], myrtenal [FL-no: 05.106], myrtenyl acetate [FL-no: 09.302] and
p-mentha-1,8-dien-7-yl acetate [FL-no: 09.278] listed in Table 3. These studies are evaluated in the
present revision of FGE.208 (FGE.208 Rev2). A summary of results is reported in Appendix D,
Table D.1.

2.6.1. p-Mentha-1,8-dien-7-ol [FL-no: 02.060]

2.6.1.1. Bacterial reverse mutation assay

In order to investigate the potential of p-mentha-1,8-dien-7-ol [FL-no: 02.060] (purity ≥ 90.3%)
and/or its metabolites to induce gene mutations in bacteria, an Ames test was performed according to
OECD Test Guideline 471 (OECD, 1997a) and following GLP in four strains of S. Typhimurium (TA98,
TA100, TA1535 and TA1537) and E. coli WP2uvrA, in the presence or absence of metabolic activation
in two separate experiments. The test article was evaluated in the initial mutagenicity assay at
concentrations of 10, 33.3, 100, 333, 1,000, 3,333 lg/plate with and without S9-mix, applying the
plate incorporation method. Toxicity was observed at 3,333 lg/plate both in the presence and absence
of S9-mix in most of the strains, except TA100 and TA1535, showing slightly reduced background at
≥ 1,000 lg/plate, with and without S9-mix. In the confirmatory assay, p-mentha-1,8-dien-7-ol was
tested at concentrations of 1, 3.33, 10, 33.3, 100, 333, 1,000, 3,333 lg/plate with and without S9-
mix, applying the pre-incubation method. Toxicity was observed at concentrations ≥ 333 lg/plate
without S9 activation and at concentrations ≥ 1,000 lg/plate in the presence of S9 activation. No
precipitate was observed at any tested concentration in any tester strain with or without S9-mix.
Appropriate positive control chemicals and dimethyl sulfoxide (DMSO), as a vehicle control were
evaluated concurrently and all test and control articles were evaluated in triplicate plates. All positive

Table 3: List of in vitro genotoxicity studies evaluated in FGE.208Rev2

Substance name FL-no: Study

p-Mentha-1,8-dien-7-ol 02.060 Bacterial reverse mutation assay (Wagner, 2016)

Micronucleus assay in human peripheral blood lymphocytes
(Roy, 2016)

Myrtenol 02.091 Bacterial reverse mutation assay (Bhalli and Phil, 2015a)

Micronucleus assay in human peripheral blood lymphocytes
(Bhalli and Phil, 2015b)
BlueScreenTM HC assay (Birrell, 2013a)

Myrtenal 05.106 Bacterial reverse mutation assay (Mc Garry, 2016a)
Micronucleus assay in human peripheral blood lymphocytes
(Mc Garry, 2016b; Lloyd, 2017)

p-Mentha-1,8-dien-7-yl acetate 09.278 Bacterial reverse mutation assay (Lloyd, 2016a)
Micronucleus assay in human peripheral blood lymphocytes
(Lloyd, 2016b)

Myrtenyl acetate 09.302 Bacterial reverse mutation assay (Mc Garry, 2016c)
Micronucleus assay in human peripheral blood lymphocytes
(Mc Garry, 2016d)

BlueScreenTM HC assay (Birrell, 2013b)

FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number.

9 The data presented in Section 2.6 are cited from the Scientific Opinion FGE.208Rev2.
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control chemicals induced significant increases in revertant colony numbers, confirming the sensitivity
of the tests and the efficacy of the S9-mix, while negative controls were within the historical control
ranges. No increase in the mean number of revertant colonies was observed at any tested
concentration in any tester strains with or without S9-mix (Wagner, 2016).

The Panel considered the results of this assay as negative.

2.6.1.2. In vitro micronucleus assay

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD,
2014) and following GLP. Human peripheral blood lymphocytes from healthy donors, stimulated with
PHA, were treated with p-mentha-1,8-dien-7-ol [FL-no: 02.060] (purity ≥ 90.3%) (Roy, 2016) in a dose
range-finding assay performed at concentrations ranging from 1 to 1,520 lg/mL for 4 h with and
without S9-mix and 24 h without S9-mix. At the termination of the treatment period, precipitate and
haemolysis were observed at concentrations ≥ 1,000 lg/mL and ≥ 400 lg/mL, respectively, in all three
treatment conditions.

Based on the dose range-finding results, duplicate cultures of lymphocytes were treated with the
test article 44–48 h after culture initiation at concentrations ranging from 100 to 375 lg/mL for 4 h
with and without S9-mix.

Cytochalasin B (final concentration of 6 lg/mL) was added to each culture after the 4-h treatment
period, while in the 24-h treatment cultures were treated with the test article in the presence of
cytochalasin B.

Appropriate vehicle (DMSO) and positive controls were used (mitomycin C and vinblastine in the
absence of S9-mix, cyclophosphamide in the presence of S9-mix). All positive control compounds
induced a statistically significant increase of micronucleus (MN) frequency and the system was
considered sensitive and valid.

Two thousand cells were scored per concentration. Based on the level of cytotoxicity observed, three
concentration levels were selected for MN analysis in each experimental condition: (i) 25, 50 and
100 lg/mL, 24 h treatment (16%, 31% and 58% cytotoxicity, respectively); (ii) 100, 250 and 325 lg/mL,
4 h treatment without S9-mix (16%, 24% and 58% cytotoxicity, respectively); and (iii) 100, 225 and
275 lg/mL, 4 h treatment with S9-mix (3%, 18% and 51% cytotoxicity, respectively). No statistically
significant increase in the frequency of micronuclei was observed after treatment with the test article at
any concentration analysed (Roy, 2016).

The Panel considered the results of this assay as negative.

2.6.2. Myrtenol [FL-no: 02.091]

2.6.2.1. Bacterial reverse mutation assay

In order to investigate the potential of myrtenol (purity ≥ 97%) and/or its metabolites to induce
gene mutations in bacteria, an Ames test was performed according to OECD Test Guideline 471 (OECD,
1997a) and following GLP in four strains of S. Typhimurium (TA98, TA100, TA1535 and TA1537) and
E. coli WP2uvrA, in the presence or absence of metabolic activation applying the plate incorporation
method. The test article was evaluated in the initial mutagenicity assay at concentrations of 5, 16, 50,
160, 500, 1,600 and 5,000 lg/plate with and without S9-mix. A confirmatory assay was subsequently
performed at concentrations of 16, 50, 160, 500, 1,600 and 5,000 lg/plate with and without S9-mix.
Appropriate positive control chemicals and DMSO (as vehicle control) were evaluated concurrently, and
all test and control articles were evaluated in triplicate plates. All positive control chemicals induced
significant increases in revertant colony numbers, confirming the sensitivity of the tests and the efficacy
of the S9-mix, while negative controls were within the historical control ranges. No precipitate was
observed at any tested concentration in any tester strain with or without S9-mix. Toxicity, as evident by
the absence or reduction in the mean number of revertant colonies and the absence or reduction in the
background bacterial lawn, was observed in both experiments at 5,000 lg/plate in all tester strains with
and without S9-mix, except WP2uvrA, where toxicity was observed at concentrations ≥ 1,600 lg/plate
without S9-mix. No increase in the mean number of revertant colonies was observed at any tested
concentration in any tester strains with or without S9-mix (Bhalli and Phil, 2015a).

The Panel considered the results of this assay as negative.

2.6.2.2. In vitro micronucleus assay

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD, 2010)
and following GLP. Human peripheral blood lymphocytes from healthy donors, stimulated with PHA,
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were treated with myrtenol (purity ≥ 97%) in a dose range-finding assay performed in single cultures at
concentrations ranging from 28.2 to 1,000 lg/mL for 3 h with and without S9-mix and 24 h without
S9-mix. No precipitate was observed at the end of treatment and/or harvest at any tested concentration
in any treatment condition. In the 3-h treatment, haemolysis was observed at 1,000 lg/mL at the end
of treatment.

Based on the dose range-finding results, duplicate cultures of lymphocytes were treated with the
test article 48 h after culture initiation at concentrations ranging from 15.3 to 80.0 lg/mL in the 24-h
treatment. The test article was also evaluated in the 3 h treatments at 224–500 lg/mL with and
without S9-mix.

Cytochalasin B (final concentration of 6 lg/mL) was added to each culture after the 3-h treatment
period, while in the 24-h treatment cultures were treated with the test article in the presence of
cytochalasin B. Appropriate vehicle (DMSO) and positive controls were used (mitomycin C in the
absence of S9-mix, cyclophosphamide in the presence of S9-mix). All positive control compounds
induced a statistically significant increase of MN frequency and the system was considered sensitive
and valid.

Two thousand cells were scored per concentration. Based on the level of cytotoxicity observed, at
least three concentration levels were selected for MN analysis in each experimental condition: (i) 30.6,
47.2 and 52.5 lg/mL with the 24-h treatment (26%, 41% and 54% cytotoxicity, respectively); (ii) 407,
451 and 475 lg/mL with the 3-h treatment with S9-mix (15%, 34% and 46% cytotoxicity,
respectively); (iii) 368, 387, 451 and 475 lg/mL with the 3-h treatment without S9-mix (19%, 35%,
43% and 64% cytotoxicity, respectively). No statistically significant increase in the frequency of
micronuclei was observed after treatment with the test article at any concentration analysed compared
to the respective concurrent vehicle controls (Bhalli and Phil, 2015b).

2.6.2.3. The Panel considered the results of this assay as negative.BlueScreenTM HC assay

Myrtenol [FL-no: 02.091] was tested in a BlueScreenTM HC assay for cytotoxicity and genotoxicity
using a genetically modified strain of cultured human lymphoblastoid TK6 cells, both in the presence
and absence of metabolic activation. The study authors concluded that myrtenol did not induce
genotoxicity at the concentrations tested (Birrell, 2013a).

2.6.3. Myrtenal [FL-no: 05.106]

2.6.3.1. Bacterial reverse mutation assay

In order to investigate the potential of myrtenal (purity 97.7%) and/or its metabolites to induce
gene mutations in bacteria, an Ames test was performed according to OECD Test Guideline 471 (OECD,
1997a) and following GLP in five strains of S. Typhimurium (TA98, TA100, TA1535, TA1537 and TA102),
in the presence or absence of metabolic activation, in two separate experiments. In the first
experiment, myrtenal was tested at concentrations of 5, 16, 50, 160, 500, 1,600, and 5,000 lg/plate
with and without S9-mix, applying the plate incorporation assay. In the second experiment, myrtenal
was tested at concentrations of 80, 160, 300, 625, 1,250, 2,500 and 5,000 lg/plate with and without
S9-mix, applying the pre-incubation method. Appropriate positive control chemicals and DMSO (as
vehicle control) were evaluated concurrently. All test and positive control articles were evaluated in
triplicate plates; the vehicle control was evaluated in quintuplicate.

All positive control chemicals induced significant increases in revertant colony numbers, confirming
the sensitivity of the tests and the efficacy of the S9-mix, while negative controls were within the
historical control ranges.

No precipitate was observed at any tested concentration in any tester strain with or without
S9-mix.

In the first experiment, toxicity, as evident by the absence or reduction in the mean number of
revertant colonies and the absence or reduction in the background bacterial lawn, was observed at
1,600 and/or 5,000 lg/plate in all tester strains in the absence and in the presence of S9-mix.

In the second experiment, toxicity was observed at concentrations of 1,250 and/or 2,500 lg/plate
and above in all strains in the absence of S9-mix. Toxicity was observed at 300 and/or 625 lg/plate
and above for all strains in the presence of S9-mix.

No increase in the mean number of revertant colonies was observed at any tested concentration in
any tester strains with or without S9-mix (Mc Garry, 2016a).

The Panel considered the results of this assay as negative.
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2.6.3.2. In vitro micronucleus assay (Mc Garry, 2016b)

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD,
2014) and following GLP. Human peripheral blood lymphocytes from healthy donors, stimulated with
PHA, were treated with myrtenal (purity 97.7%). Based on the level of cytotoxicity observed in a
preliminary dose range-finding assay, at least three concentration levels were selected for MN analysis
in each experimental condition: (i) for the 24-h treatment with no recovery period (24 + 0 h) the
concentrations of 15, 25 and 34 lg/mL (0%, 25% and 55% cytotoxicity, respectively) were selected;
(ii) for the 3-h treatment with 21 h recovery period (3 + 21 h) with S9-mix, the concentrations of 25,
200 and 350 lg/mL (0%, 26% and 53% cytotoxicity, respectively) were selected; (iii) for the 3-h
treatment with 21 h recovery period (3 + 21 h) without S9-mix, the concentrations of 50, 130 and 180
lg/mL (8%, 25% and 51% cytotoxicity, respectively) were selected. In the treatment of 3 + 21 h with
S9-mix, precipitate was observed at 350 lg/mL.

Cytochalasin B (final concentration of 6 lg/mL) was added to each culture after the 3-h treatment
period, while in the 24-h treatment cultures were treated with the test article in the presence of
cytochalasin B. Appropriate vehicle (DMSO) and positive controls were used (mitomycin C and
noscapine in the absence of S9-mix, cyclophosphamide in the presence of S9-mix). Two thousand cells
were scored per concentration.

In the absence of S9-mix, the positive control compounds induced a statistically significant increase
of MN frequency and the authors of the study report considered the system as sensitive and valid.
However, the Panel noted that the positive control cyclophosphamide used for the experiment
performed in the presence of S9-mix resulted in a mean frequency of 1.50% MNBN cells (1.60% on
slide A and 1.40% on slide B). The authors of the study report considered that both replicate cultures
demonstrated MNBN cell frequencies that were statistically significantly different from the concurrent
vehicle control and clearly exceeded the normal range of negative control data. The Panel, however,
noted that the effects observed with the two replicate cultures of the positive control did not clearly
exceed the normal range (observed range 0.00–1.40%, 95th percentile range 0.10–0.90%) which
raises some concern about the validity of the study. In addition, the Panel observed that the historical
negative control data given in the study report were from August 2012 to August 2013, while the
experiments were performed from October to December 2015. The Panel considered that historical
control data covering the time preceding the current experiments would be more appropriate and
noted that historical data for positive control substances were not reported.

After short treatment (3 + 21 h) in the presence of S9-mix at 350 lg/mL of myrtenal, an elevated
MNBN cells frequency (4.9%) was observed in one replicate culture. According to the study authors,
bacterial contamination was reported on this slide, which may have affected the frequency of MNBN
cells and, thus, the slide was excluded from the analysis. The Panel, however, noted that a bacterial
contamination in only one slide from the same culture was unlikely. In addition, the MNBN cell
frequency in a vehicle replicate culture fell outside the historical negative control range.

After continuous treatment (24 + 0 h) without metabolic activation at 15 lg/mL of myrtenal, a
statistically significant increase in the frequency of micronuclei was observed but not at 25 and 34 lg/
mL. The MNBN cell frequency of one replicate culture (1.8%) was outside the historical negative
control range (95% range from 0.1% to 1.5%). Based on data on cytotoxicity and MNBN cells, the
Panel noted that a cell cycle delay influencing the appearance of MNBN cells might have occurred.

In any other treatment conditions and concentrations analysed, myrtenal did not induce a
statistically significant increase of MNBN cells.

As described above, the Panel noted that the in vitro micronucleus assay presented some
limitations; therefore it was requested to repeat the study changing experimental conditions and
concentrations tested (in particular for the continuous treatment (24 h) in the absence of metabolic
activation, to treat cells for 24 h with no recovery period (24 + 0 h) and for 24 h with 24 h recovery
period (24 + 24 h); the concentrations analysed should include a lower range with narrower spacing).
Appropriate historical negative and positive control data should also be included in the study report.
Following the request from the Panel, industry submitted new data on historical controls. However,
also considering these data, the outcome of this study is still equivocal. In addition, industry submitted
a new in vitro MN assay (Lloyd, 2017) that is described below.

2.6.3.3. In vitro micronucleus assay (Lloyd, 2017)

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD,
2014) and following GLP. Whole blood cultures from healthy donors were treated with myrtenal (purity
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98.1%) 48 h after culture initiation following two experimental conditions: a short treatment with and
without S9-mix (3 + 21 h recovery) and a continuous treatment without S9-mix (24 + 0 and 24 + 24 h
recovery). Cytochalasin B (final concentration of 6 lg/mL) was added to each culture after treatment
periods, while in the 24-h treatment without recovery cultures were treated with the test article in the
presence of cytochalasin B (Lloyd, 2017). Appropriate vehicle (DMSO) and positive controls were used
(mitomycin C, noscapine and vinblastine in the absence of S9-mix, in the short and continuous
treatments (24 + 0 h and 24 + 24 h), respectively; cyclophosphamide in the short treatment in the
presence of S9-mix). All positive control compounds induced a statistically significant increase of MN
frequency and the system was considered sensitive and valid. Two thousand cells were scored per
concentration and, at least, three concentration levels were selected for MN analysis in each
experimental condition: (i) 100, 160 and 200 lg/mL at 3 + 21 h treatment without S9-mix (10, 34 and
52% cytotoxicity, respectively); (ii) 100, 200, 300 and 350 lg/mL at 3 + 21 h treatment with S9-mix
(4%, 17%, 31% and 54% cytotoxicity, respectively); (iii) 10, 20, 30 and 32 lg/mL at 24 + 0 h
treatment without S9-mix (0, 15%, 48% and 60% cytotoxicity, respectively); and (iv) 30, 45, 65 and
75 lg/mL at 24 + 24 h treatment without S9-mix (9%, 29%, 35% and 50% cytotoxicity, respectively).
Following the 3 + 21 h treatment with S9-mix, precipitation was observed at 300 lg/mL and above. No
statistically significant increase in the frequency of MNBN cells was observed at any concentration and
treatment condition except at the 24 + 0 h treatment, where a statistically significant increase in the
frequency of MNBN cells was observed at 10 and 32 lg/mL (p < 0.05), but not at 20 and 30 lg/mL.
The MNBN cell frequency of one replicate culture at 32 lg/mL (1.3%) exceeded the 95% historical
vehicle control range (0.1–1.19%), however, there was 60% cytotoxicity and these increases were
weak (up to 2.1-fold compared to control). In addition, the effects were not concentration related and
at some concentrations the effects observed between the two replicate cultures were not fully
consistent. Since such deviations between replicate cultures have been observed in both studies and
since the effects obtained with single cultures exceeded the historical 95% vehicle control range in
both studies, it is not fully clear if this is due to normal variability. The mean of MNBN cell frequencies
were, however, within the 95% historical vehicle control range at all concentrations analysed.

The second study (Lloyd, 2017) is considered more reliable than the first one (Mc Garry, 2016b),
but also this one is not fully adequate to rule out the concern for genotoxicity. The Panel considered
that generally only one of the three criteria for a positive result was fulfilled. In the experiment in the
absence of S9-mix after short treatment, there was a statistically significant trend test, but there were
no statistically significant differences between single concentrations tested and the concurrent control,
while in the experiment in the absence of S9-mix after long treatment, there was no statistically
significant trend; however, two concentrations were statistically significantly different from the
concurrent control.

The Panel considered that the results of the two in vitro studies (Mc Garry, 2016b; Lloyd, 2017) are
equivocal and require further clarification.

2.6.4. p-Mentha-1,8-dien-7-yl acetate [FL-no: 09.278]

2.6.4.1. Bacterial reverse mutation assay

In order to investigate the potential of p-mentha-1,8-dien-7-yl acetate (purity 96.5%) and/or its
metabolites to induce gene mutations in bacteria, an Ames test was performed according to OECD
Test Guideline 471 (OECD, 1997a) and following GLP in five strains of Salmonella Typhimurium (TA98,
TA100, TA1535, TA1537 and TA102), in the presence or absence of metabolic activation, in two
separate experiments. In the first experiment, p-mentha-1,8-dien-7-yl acetate was tested at
concentrations of 5, 16, 50, 160, 500, 1,600 and 5,000 lg/plate with and without S9-mix, applying the
plate incorporation assay. In the second experiment, p-mentha-1,8-dien-7-yl acetate was tested at
concentrations of 1.6, 5, 16, 50, 160, 500 and 1,600 lg/plate with and without S9-mix, applying the
pre-incubation method. Appropriate positive control chemicals and DMSO (as vehicle control) were
evaluated concurrently. All test and positive control articles were evaluated in triplicate plates; the
vehicle control was evaluated in quintuplicate.

All positive control chemicals induced significant increases in revertant colony numbers, confirming
the sensitivity of the tests and the efficacy of the S9-mix, while negative controls were within the
historical control ranges.

No precipitate was observed at any tested concentration in any tester strain with or without
S9-mix.
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In the first experiment, toxicity, as evident by the absence or reduction in the mean number of
revertant colonies and absence or reduction in the background bacterial lawn, was observed at 500
lg/plate and above in all tester strains in the absence of S9-mix and for strain TA1537 in the presence
of S9-mix. For all other strains, in the presence of S9-mix, toxicity was observed at concentrations
above 1,600 lg/plate.

In the second experiment, toxicity was observed at 500 lg/plate and above in all strains in the
absence of S9-mix and in strain TA1535 and TA102 in the presence of S9-mix. Toxicity was observed
at 160 lg/plate and above in strains TA98, TA100 and TA1537 in the presence of S9-mix.

No increase in the mean number of revertant colonies was observed at any tested concentration in
any tester strains with or without S9-mix (Lloyd, 2016a).

The Panel considered the results of this assay as negative.

2.6.4.2. In vitro micronucleus assay

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD,
2014) and following GLP. Human peripheral blood lymphocytes from healthy donors, stimulated with
PHA, were treated with p-mentha-1,8-dien-7-yl acetate (purity 96.5%) in a dose range finding assay
performed in single cultures at concentrations ranging from 7.05 to 1,943 lg/mL for 3 h with and
without S9-mix and 24 h without S9-mix. At the time of treatment, precipitate was observed at
concentrations ≥ 151.1 lg/mL in all three treatment conditions.

Based on the dose range-finding results, duplicate cultures of lymphocytes were treated with the
test article 48 h after culture initiation at concentrations ranging from 25 to 250 lg/mL for treatments
at 3 + 21 h without metabolic activation. Concentrations ranging from 50 to 500 lg/mL were tested in
the treatment at 3 + 21 h with metabolic activation. Concentrations ranging from 10 to 150 lg/mL
were tested in the treatment at 24 h without metabolic activation. Cytochalasin B (final concentration
of 6 lg/mL) was added to each culture at the time of treatment. Appropriate vehicle (DMSO) and
positive controls were used (mitomycin C and noscapine in the absence of S9-mix, cyclophosphamide
in the presence of S9-mix). All positive control compounds induced a statistically significant increase of
MN frequency and the system was considered sensitive and valid. Two thousand cells were
scored per concentration. Based on the level of cytotoxicity observed, at least three concentration
levels were selected for MN analysis in each experimental condition: (i) 30, 60 and 80 lg/mL with the
24-h treatment (12%, 39% and 55% cytotoxicity, respectively); (ii) 150, 240 and 280 lg/mL with
the 3-h treatment with S9-mix (11%, 41% and 55% cytotoxicity, respectively); and (iii) 100, 120 and
130 lg/mL with the 3-h treatment without S9-mix (9%, 44% and 67% cytotoxicity, respectively). In
the treatment of 3 + 21 h with S9-mix, precipitate was observed at 150 lg/mL and above. In the
treatment of 3 + 21 h without S9-mix, precipitate was observed at 120 and 130 lg/mL. p-Mentha-1,8-
dien-7-yl acetate did not induce a statistically significant increase of MNBN cells at any concentration
analysed (Lloyd, 2016b).

The Panel considered the results of this assay as negative.

2.6.5. Myrtenyl acetate [FL-no: 09.302]

2.6.5.1. Bacterial reverse mutation assay

In order to investigate the potential of myrtenyl acetate (purity 97.6%) and/or its metabolites to
induce gene mutations in bacteria, an Ames test was performed according to OECD Test Guideline 471
(OECD, 1997a) and GLP in five strains of S. Typhimurium (TA98, TA100, TA1535, TA1537 and TA102), in
the presence or absence of metabolic activation, in two separate experiments. In the first experiment,
myrtenyl acetate was tested at concentrations of 5, 16, 50, 160, 500, 1,600 and 5,000 lg/plate with and
without S9-mix, applying the plate incorporation assay. In the second experiment, myrtenyl acetate was
tested at concentrations of 3.28, 8.2, 20.5, 51.2, 128, 320, 800 and 2,000 lg/plate with and without
S9-mix, applying the pre-incubation method. Appropriate positive control chemicals and DMSO (as
vehicle control) were evaluated concurrently. All test and positive control articles were evaluated in
triplicate plates; the vehicle control was evaluated in quintuplicate.

All positive control chemicals induced significant increases in revertant colony numbers, confirming
the sensitivity of the tests and the efficacy of the S9-mix, while negative controls were within the
historical control ranges.

No precipitate was observed at any tested concentration in any tester strain with or without
S9-mix.
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In the first experiment, toxicity, as evident by the absence or reduction in the mean number of
revertant colonies and absence or reduction in the background bacterial lawn, was observed in both
experiments at 500 lg/plate and above in all tester strains in the absence of S9-mix and strain TA1535
in the presence of S9-mix. For the other four strains, in the presence of metabolic activation, toxicity
was observed at 1,600 lg/plate and above.

In the second experiment, toxicity was observed at 320 lg/plate and above in strains TA98, TA100,
TA1535 and TA1537 in the presence and absence of S9-mix. In strain TA102, toxicity was observed at
2,000 lg/plate in the presence and absence of S9-mix.

No increase in the mean number of revertant colonies was observed at any tested concentration in
any tester strains with or without S9-mix (Mc Garry, 2016c).

The Panel considered the results of this assay as negative.

2.6.5.2. In vitro micronucleus assay

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD,
2014) and following GLP. Human peripheral blood lymphocytes from healthy donors, stimulated with
PHA, were treated with myrtenyl acetate (purity 97.6%) in a dose range finding assay performed in
single cultures at concentrations ranging from 7.05 to 1,943 lg/mL for 3 h with and without S9-mix
and 24 h without S9-mix. At the time of treatment, precipitate was observed at concentrations
≥ 250 lg/mL.

Based on the dose range-finding results, duplicate cultures of lymphocytes were treated with the
test article 48 h after culture initiation at concentrations ranging from 5 to 200 lg/mL for treatments
without metabolic activation. Concentrations ranging from 25 to 500 lg/mL were tested in the
treatment at 3 + 21 h with metabolic activation. Cytochalasin B (final concentration of 6 lg/mL) was
added to each culture after the 3-h treatment period, while in the 24-h treatment cultures were
treated with the test article in the presence of cytochalasin B. Appropriate vehicle (DMSO) and positive
controls were used (mitomycin C and noscapine in the absence of S9-mix, cyclophosphamide in the
presence of S9-mix). All positive control compounds induced a statistically significant increase of MN
frequency and the system was considered sensitive and valid. Two thousand cells were scored per
concentration. Based on the level of cytotoxicity observed, at least three concentration levels were
selected for MN analysis in each experimental condition: (i) 10, 20 and 40 lg/mL with the 24-h
treatment (2%, 21% and 52% cytotoxicity, respectively); (ii) 150, 250 and 325 lg/mL with the 3-h
treatment with S9-mix (7%, 36% and 53% cytotoxicity, respectively); and (iii) 20, 60, 80 and
90 lg/mL with the 3-h treatment without S9-mix (0%, 12%, 45% and 48% cytotoxicity, respectively).
No statistically significant increase in the frequency of micronuclei was observed after treatment with
the test article at any concentration analysed (Mc Garry, 2016d).

The Panel considered the results of this assay as negative.

2.6.5.3. BlueScreenTM HC assay

Myrtenyl acetate [FL-no: 09.302] was tested in a BlueScreenTM HC assay for cytotoxicity and
genotoxicity using a genetically modified strain of cultured human lymphoblastoid TK6 cells, both in
the presence and absence of metabolic activation. The study authors concluded that myrtenyl acetate
did not induce genotoxicity at the concentrations tested (Birrell, 2013b).

2.6.6. Conclusions

The Panel considered that the newly submitted bacterial reverse mutation assays and the in vitro
micronucleus assays on p-mentha-1,8-dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], p-mentha-
1,8-dien-7-yl acetate [FL-no: 09.278] and myrtenyl acetate [FL-no: 09.302] were adequately
performed and that the results were negative. Therefore, the concern for genotoxicity could be ruled
out for these four substances. Accordingly, they could be evaluated through the Procedure.

Myrtenal [FL-no: 05.106] did not induce gene mutations in a bacterial reverse mutation assay. The
first in vitro micronucleus assay provided was equivocal and had several weaknesses; therefore, a
repetition of the study was requested. The second study is considered more reliable than the first one,
but the result is still not fully adequate to rule out the concern for genotoxicity. In this second study,
weak statistically significant increases of the micronuclei frequency were observed at the lowest and
highest concentrations (without statistically significant trend) in the absence of S9-mix after long
treatment, while after short treatment, there was a statistically significant trend (without statistically
significant differences between single concentrations tested and the concurrent control). The
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Panel considered that the result of this second study was also equivocal and that this was not
adequately investigated by the applicant. Therefore, myrtenal cannot be evaluated through the
Procedure, presently.

The Panel also considered two publications on the evaluation of genotoxicity studies on p-mentha-
1,8-dien-7-al [FL-no: 05.117] (Cohen et al., 2016; Hobbs et al., 2016) which were published after the
publication of the scientific opinion on Flavouring Group Evaluation 208 Revision 1 (FGE.208Rev1). The
authors presented the same data as those reported in FGE.208Rev1, but reached different conclusions
compared to the CEF Panel in relation to the evaluation of the in vivo Comet assay in liver. The
Panel considered the reasons provided by the authors to substantiate their conclusions as not
convincing and concluded that these two publications do not give reason to modify the conclusion
drawn on the genotoxicity of p-mentha-1,8-dien-7-al [FL-no: 05.117] in FGE.208Rev1.

3. Assessment

In FGE.208Rev2, the CEF Panel concluded that myrtenal [FL-no: 05.106] did not induce gene
mutations in a bacterial reverse mutation assay, but it showed equivocal results in two in vitro
micronucleus assays. Therefore, the Panel concluded that for myrtenal the data were insufficient to
rule out genotoxicity, and consequently, its evaluation through the Procedure would not be possible
(EFSA CEF Panel, 2017a,b).

Industry has submitted new in vitro and in vivo genotoxicity studies for myrtenal [FL-no: 05.106]
(Documentation provided to EFSA n. 10; 24; 27). These studies, listed in Table 4, are evaluated in the
present revision of FGE.208 (FGE.208Rev3). A summary of the results is reported in Appendix E,
Table E.1 and E.2.

3.1. Myrtenal [FL-no: 05.106]

3.1.1. Bacterial reverse mutation assay

In order to investigate the potential of myrtenal (purity 84.7%) and/or its metabolites to induce
gene mutations in bacteria, an Ames test was performed according to OECD Test Guideline 471
(OECD, 1997a) and following GLP in tester strains of S. Typhimurium (TA98, TA100, TA1535, TA1537)
and E. coli WP2uvrA, in the presence or absence of metabolic activation (Aroclor-induced rat liver S9),
in two separate experiments.

In the first experiment, myrtenal was tested at concentrations of 1.5, 5, 15, 50, 150, 500, 1,500
and 5,000 lg/plate with and without S9-mix. In the second experiment, myrtenal was tested at
concentrations of 15, 50, 150, 500, 1,500 and 5,000 lg/plate with and without S9-mix, applying the
plate incorporation assay. Positive control chemicals and DMSO (as vehicle control) were evaluated
concurrently. All test and positive control articles were evaluated in duplicate (first experiment) or
triplicate plates (second experiment).

All positive control chemicals induced significant increases in revertant colony numbers, confirming
the sensitivity of the tests, while negative controls were within the historical control ranges. Precipitate
was observed at 5,000 lg/plate with all conditions. Toxicity was observed at 5,000 lg/plate in both
experiments. No increase in the mean number of revertant colonies was observed at any tested
concentration in any tester strains in the absence or presence of metabolic activation (BioReliance,
2017). This study outcome is consistent with previously evaluated bacterial reverse mutation assay
(i.e. McGarry 2016a). Study results are summarised in Appendix E – Table E.1.

In conclusion, the Panel considered myrtenal negative in bacterial reverse mutation assay.

Table 4: List of genotoxicity studies evaluated in FGE.208Rev3

Substance name FL-no: Study

Myrtenal 05.106 Bacterial reverse mutation assay (BioReliance, 2017)

In vivo combined micronucleus and comet assay (BioReliance,
2018)

FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number.

Flavouring Group Evaluation 208 Revision 3

www.efsa.europa.eu/efsajournal 25 EFSA Journal 2019;17(1):5569



3.1.2. Combined in vivo mammalian bone marrow erythrocyte micronucleus test
and Comet assay

The genotoxic potential of myrtenal [FL-no: 05.106] (purity > 97%) was assessed in vivo using the
bone marrow erythrocyte micronucleus assay combined with the Comet assay in liver and duodenum
of rats (BioReliance, 2018). The study was conducted in accordance with GLP, OECD TG 474 (OECD,
2016a) and 489 (OECD, 2016b).

In the first experiment, groups of six or nine (high-dose group only) male Sprague–Dawley (Hsd:
SD) rats were given three administrations (at 0, 24 and 45 h) of myrtenal, at 0, 500, 1,000 and 2,000
mg/kg bw per day by oral gavage (at a volume of 10 mL/kg). Corn oil was used as a solvent control.
Mortality at 1,000 and 2,000 mg/kg bw per day (4/6 and 9/9 animals, respectively), piloerection
(control group), piloerection and lethargy (at 500 mg/kg bw per day), piloerection, lethargy, hunched
position, prostration, irregular breathing (at 1,000 and 2,000 mg/kg bw per day), and crusty nose and
ataxia (at 2,000 mg/kg bw per day) were observed.

Based on this study, a MTD of 500 mg/kg bw per day was established.
In the second experiment, six or eight (high-dose group only) male rats were dosed orally at 0,

125, 250 and 500 mg/kg bw per day for three consecutive days.
In both experiments, as positive control, a group of three animals received a single dose of 200 mg

EMS/kg bw on Day 3, approximately 3–4 h prior to euthanasia.
No mortality or reductions in mean group body weights occurred at any dose level during the

course of the second definitive assay. Piloerection was observed at all doses tested, lethargy and
hunched position were observed at 500 mg/kg bw per day.

Micronucleus assay

Bone marrow was harvested 3–4 h after the last dose.
Bone marrow from the femurs was prepared for micronucleus scoring. A total of at least 500 PCE

and normochromatic erythrocytes (NCE) were scored to calculate the degree of bone marrow toxicity
by the relative decrease in PCE. For micronucleus analysis, 4,000 PCE per animal were scored for the
presence of MN.

As positive control, it was used the scoring of slides from another study where a group of 5 animals
were dosed once with 40 mg cyclophosphamide monohydrate (CP)/kg bw.

A dose-dependent and statistically significant decrease in %PCE was observed: 54.6 � 0.9, 53.2 �
0.9, 52.4 � 0.8, 52.1 � 0.8 for the group of 0, 125, 250 and 500 mg/kg bw per day, respectively.
Although statistically significant, biologically this small decrease in %PCE is not sufficient to indicate
bone marrow toxicity.

Rats treated with myrtenal exhibited group mean frequencies of MNPCE that were similar to and
not statistically different from those observed in the concurrent vehicle control for all dose groups. The
positive control (CP) induced a statistically significant increase in the incidence of MNPCE.

The Panel considered that the clinical signs of toxicity and the weak reduction in %PCE in bone
marrow are not sufficient to indicate bone marrow exposure to myrtenal. Therefore, this micronucleus
study does not allow to conclude on the potential chromosomal damage induced by myrtenal.

Comet assay

Liver analysis

Measurements of tail intensity (% DNA in tail) were obtained from 150 cells/animal. There was no
dose-related increase in % clouds in liver cells following treatment with myrtenal, thus demonstrating
that treatment did not cause excessive DNA damage that could have interfered with Comet analysis.

No statistically significant increase in group mean tail intensity values for animals treated with
myrtenal were observed in any treated group compared to the vehicle control group. For all the dose
groups, the mean tail intensity was in the range of historical negative controls. The positive control
(EMS) induced a statistically significant increase of mean tail intensity that was inside the range of
historical positive control.

Clinical signs of toxicity observed at the highest dose suggest that the substance was absorbed,
indicating that liver was exposed.

The Comet arm of this study indicates that myrtenal did not induce DNA damage in liver.
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Duodenum analysis

Measurements of tail intensity (% DNA in tail) were obtained from 150 cells/animal. There was no
dose-related increase in % clouds in duodenum cells following treatment with myrtenal, thus
demonstrating that treatment did not cause excessive DNA damage that could have interfered with
Comet analysis.

Group mean tail intensity values for all groups of animals treated with myrtenal were comparable
with the group mean vehicle control data and were in the range of historical negative controls. The
positive control (EMS) induced a statistically significant increase of mean tail intensity that was inside
the range of historical positive control.

The Comet arm of this study indicates that myrtenal did not induce DNA damage in duodenum.
The Panel concluded that myrtenal did not induce primary DNA damage in the liver and duodenum

of rats administered via oral gavage, as analysed by the Comet assay.
Study results are summarised in Appendix E, Table E.2.

3.2. Discussion

The Panel was requested to evaluate additional genotoxicity data generated with the flavouring
substance myrtenal [FL-no: 05.106]. In the previous evaluation by the CEF Panel (FGE.208Rev2),
results from in vitro micronucleus assays on myrtenal, were considered as equivocal. At the same time,
the Panel concluded that myrtenal [FL-no: 05.106] did not induce gene mutations in a bacterial
reverse mutation assay (EFSA CEF Panel, 2017a,b).

The in vitro micronucleus test was not repeated, but industry provided a new in vivo study
combining micronucleus assay in bone marrow and comet assay in duodenum and liver. An additional
bacterial reverse mutation assay was also provided, despite the fact that the conclusions of the former
CEF Panel in FGE.208Rev2 did not identify a concern with respect to the induction of gene mutations
(EFSA CEF Panel, 2017a,b).

The Panel considered the newly submitted data on bacterial reverse mutation assay, and noted that
the results were supportive of the previous conclusions.

In addition, when tested in the in vivo micronucleus assay, myrtenal did not increase the frequency
of MNPCE at doses up to the MTD. The reported direct bone marrow toxicity (reduction of %PCE) was
considered by the Panel to be insufficient to conclude that the bone marrow was exposed.

The Comet assay showed that myrtenal did not induce increase in mean tail intensity in both
duodenum and liver. Clinical signs of toxicity observed at the highest dose suggest that the substance
was absorbed, indicating that liver was exposed. Therefore, the Panel concluded that myrtenal is not
clastogenic.

In the light of the newly submitted data, the in vitro MN studies from Mc Garry (2016b) and Lloyd
(2017) were re-examined. The weak increase of MN cells frequency in these studies was inconsistent
between replicates and not concentration-dependent along with a linear concentration-related increase
in cytotoxicity. In particular, the weak MN increase was observed in vitro only at the lowest
concentration in the first study (Mc Garry, 2016b) and at the lowest concentration and highest
concentrations in the second study (Lloyd, 2017). The Panel considered that these results are not
consistent with an aneugenic mechanism. In fact, aneuploidy-inducing substances typically show a
threshold effect, with a steep increase of the MN frequency occurring in a narrow range of
concentrations. Consequently, the Panel concluded that myrtenal is not considered to be aneugenic.

3.3. Conclusions

In FGE.208Rev2, the CEF Panel already concluded that the flavouring substances p-mentha-1,8-
dien-7-ol [FL-no: 02.060], myrtenol [FL-no: 02.091], p-mentha-1,8-dien-7-yl acetate [FL-no: 09.278]
and myrtenyl acetate [FL-no: 09.302] were no longer of concern with respect to genotoxicity.

For the remaining substance myrtenal [FL-no: 05.106], the FAF Panel considers that the newly
submitted bacterial reverse mutation assay and the in vivo combined comet assay and bone marrow
micronucleus assays are sufficient to rule out the concern of the equivocal results from previous
in vitro MN assays. The concern for genotoxicity is ruled out for this flavouring substance. Accordingly,
myrtenal [FL-no: 05.106] can be evaluated through the Procedure.
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ALT alanine aminotransferase
AST aspartate aminotransferase
AT adenosine-thymidine
bw body weight
CA chromosomal aberration
CAS Chemical Abstract Service
CEF Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids
CHL Chinese hamster lung fibroblasts
CHO-K1 cell line from hamster ovary
CoE Council of Europe
CP cyclophosphamide monohydrate
DMSO dimethyl sulfoxide
EFFA European Flavour and Fragrance Association
EMS ethyl methanesulfonate
FAF Panel on Food Additives and Flavourings
FAO Food and Agriculture Organization of the United Nations
FEMA Flavor and Extract Manufacturers Association
FGE Flavouring Group Evaluation
FLAVIS (FL) Flavour Information System (database)
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Fl-no FLAVIS number
GC guanidine-cytosine
GNPD Global New Products Database
GLP Good Laboratory Practice
HPRT hypoxanthine-guanine phosphoribosyl transferase
ID Identity
Imax Maximum Induction factor
IR infrared spectroscopy
JaCVAM the Japanese Center for the Validation of Alternative Methods
JECFA The Joint FAO/WHO Expert Committee on Food Additives
MN micronucleus
MNBN micronucleated binucleated (cells)
MNPCE micronucleated polychromatic erythrocytes
MS mass spectrometry
MSDI maximised survey-derived daily intake
mTAMDI modified theoretical added maximum daily intake
MTD maximum tolerated dose
NCE normochromatic erythrocytes
ND Not determined
NMR nuclear magnetic resonance
No Number
OECD Organisation for Economic Co-operation and Development
PCE polychromatic erythrocytes
PHA phytohaemagglutinin
(Q)SAR (quantitative) structure–activity relationship
RI replication index
RS relative survival
Rsa human fetus cells
SCE sister chromatid exchange
SCF Scientific Committee for Food
WHO World Health Organization
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Appendix A – Summary of safety evaluation applying the procedure

Table A.1: Summary of Safety Evaluation of the JECFA Substances in the Present Group (JECFA, 2002a, 2018)

FL-no
JECFA-no

EU Register name
Structural
formula

EU MSDI(a)

US MSDI (lg/
capita per day)

Class(b)

Evaluation
procedure path(c)

Outcome on
the named
compound
[(d) or (e) or (i)]

EFSA conclusion on the named compound
(genotoxicity)

02.060
974

p-Mentha-1,8-dien-7-ol
HO

1.6
1

Class I
A3: Intake below
threshold

d Evaluated in FGE.208Rev2, as of no genotoxicity
concern. The substance can be evaluated through
the Procedure

02.091
981

Myrtenol OH 0.37
0.03

Class I
A3: Intake below
threshold

d Evaluated in FGE.208Rev2, as of no genotoxicity
concern. The substance can be evaluated through
the Procedure

05.106
980

Myrtenal
O

4
7

Class I
A3: Intake below
threshold

d Evaluated in FGE.208Rev3, as of no genotoxicity
concern.The substance can be evaluated through
the Procedure. Current MSDI for EU is 2.21 lg/
capita per day (EFFA, 2016)

05.117
973

p-Mentha-1,8-dien-7-al(f)
O

2.1
2

Class I
Excluded at Step 1 of
the JECFA Procedure

i Evaluated in FGE.208Rev1, as of genotoxicity
concern

05.121
979

2,6,6-Trimethyl-1-
cyclohexen-1-
carboxaldehyde(g),(h)

O O

0.37
ND

Class I
A3: Intake below
threshold

d No longer supported by Industry

09.272
983

Myrtenyl formate(g)
O O

0.3
ND

Class I
A3: Intake below
threshold

d No longer supported by Industry

09.278
975

p-Mentha-1,8-dien-7-yl
acetate

O

O

0.35
0.07

Class I
A3: Intake below
threshold

d Evaluated in FGE.208Rev2, as of no genotoxicity
concern. The substance can be evaluated through
the Procedure

09.302
982

Myrtenyl acetate O

O

0.37
0.04

Class I
A3: Intake below
threshold

d Evaluated in FGE.208Rev2, as of no genotoxicity
concern. The substance can be evaluated through
the Procedure

09.899 Myrtenyl-2-methylbutyrate(g)
O

O

0.012 Class I
No evaluation

Not evaluated by
JECFA

No longer supported by Industry

09.900 Myrtenyl-3-methylbutyrate(g)
O

O

0.061 Class I
No evaluation

Not evaluated by
JECFA

No longer supported by Industry
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FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; JECFA: The Joint FAO/WHO Expert Committee on Food Additives; JECFA no.: JECFA
number; MSDI: maximised survey-derived daily intake; bw: body weight; ND: not determined.
(a): EU MSDI: Amount added to food as flavour in (kg/year) 9 10E9/(0.1 9 population in Europe (= 375 9 10E6) 9 0.6 9 365) = lg/capita per day.
(b): Thresholds of concern: Class I = 1,800 lg/person per day, Class II = 540 lg/person per day, Class III = 90 lg/person per day.
(c): Procedure path A, substances can be predicted to be metabolised to innocuous products. Procedure path B substances cannot.
(d): No safety concern based on intake calculated by the MSDI approach of the named compound.
(e): Data must be available on the substance or closely related substances to perform a safety evaluation.
(f): Deleted from the Union List by Commission Regulation (EU) 2015/1760.4

(g): Deleted from the Union List by Commission Regulation (EU) 2016/637.5

(h): It is not clear which substance was evaluated by JECFA, the CAS number applies to 2,6,6-trimethyl-1-cyclohexen-1-carboxaldehyde only. Since [FL-no: 05.121] has been withdrawn from the
Union List by Commission Regulation (EU) 2016/637,5 its identification will be no longer necessary.

(i): Safety concern on genotoxicity based on the summary report of the 86th meeting of JECFA (2018).
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Table B.1: Summary of in vitro Genotoxicity Data Evaluated by the Panel in FGE.208

Chemical
name
[FL-no]

Test system Test object Concentration Results Reference Comments

p-Mentha-1,8-
dien-7-al
[05.117]

Bacterial
reverse
mutation assay

S. Typhimurium TA100 1.6, 8, 40, 200, 1,000 and
5,000 lg/plate

Negative(b) Bowen (2011) Reliable without restriction. GLP study in
compliance with OECD Test Guideline 471

S. Typhimurium TA98,
TA102, TA1535, TA1537

0.32, 1.6, 8, 40, 200, 1,000
and 5,000 lg/plate

Positive(b) All strains were negative except TA98 without
S9-mix treatment

S. Typhimurium TA98,
TA102, TA1535, TA1537

8.192, 20.48, 51.2, 128,
320, 800, 2,000 and 5,000
lg/plate

Positive(a),(c) All strains were negative except TA98 without
S9-mix treatment

S. Typhimurium TA98 0.32, 1.6, 8, 40, 200, 1,000
and 5,000 lg/plate

Positive(b) A different batch of test article was used and
positive results in TA98 without S9-mix were
confirmed

Bacterial
reverse
mutation assay

S. Typhimurium TA97,
TA102

Up to 100 lg/plate Negative(a),(b) Fujita et al.
(1994)

Not assignable. Low concentrations; only two
strains used, one of which (TA97) not routinely
used

Bacterial
reverse
mutation assay

S. Typhimurium TA92,
TA1535, TA100, TA1537,
TA94, TA98

Up to 1,000 lg/plate Negative(a) Ishidate et al.
(1984)

Reliable with restriction. Results reported as � or
+

Bacterial
reverse
mutation assay

E. coli WP2 Up to 0.4 mg/plate Negative(c) Yoo (1986) Not assignable. Probably only performed in the
absence of S9-mix. Low concentrations tested;
only few details available

DNA damage B. subtilis M45 and H17 2.5 lL/disk (probably
equivalent to 2,500 lg/disk)

Weak positive Not assignable. Details difficult to obtain.
Endpoint not relevant

DNA damage B. subtilis M45 and H17 0.16–0.63 lL/plate (0.15–0.6
lg/plate

Negative Kuroda et al.
(1984)

Not assignable. Details difficult to obtain.
Endpoint not relevant

1.25 and 2.5 lL/plate (1.2
and 2.4 lg/plate)

Positive

DNA repair E. coli PQ37 Not reported Negative Eder et al.
(1993)

SOS Chromotest. Endpoint not relevant

Sister
chromatid
exchange

Chinese hamster ovary
cells

150 lg/mL Positive(c) Tayama et al.
(1990)

Reliable with restriction; genetic endpoint of
limited relevance

100–300 lg/mL Positive(e)
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Chemical
name
[FL-no]

Test system Test object Concentration Results Reference Comments

Chromosomal
aberration

Chinese hamster
fibroblasts

Up to 50 lg/mL Positive(c) Ishidate et al.
(1984)

Reliable with restriction. No concurrent measure
of cytotoxicity. Performed only in the absence of
S9

Chromosomal
aberration

Chinese hamster ovary
cells

300 lg/mL Positive(e),(f) Tayama et al.
(1990)

Reliable with restriction. Moderate toxicity at
300 lg/mL (+S9)

150 lg/mL Negative(c),
(d),(f)

Reliable with restriction. No detectable cell
division at 150 lg/mL (�S9)

Mutagenicity Chinese hamster ovary
cells

10 lg/mL Negative(c),(g) Sasaki et al.
(1990)

Not assignable. Ouabain resistance measured.
Only one concentration tested without S9;
insufficient details

Mutagenicity Human fetus cells (Rsa) Up to 0.025 lg/mL Positive(h) Suzuki et al.
(1990)

Unreliable; ouabain resistance measured in Rsa
cells not routinely used; insufficient details

0.010 lg/mL Negative(h)

Mutagenicity Human fetus cells (Rsa) > 10 ng/mL Positive(i) Suzuki and
Suzuki (1994)

Japanese paper quoted but not available

Micronucleus
Induction

Primary human
lymphocytes

Up to 140 lg/mL(j) Negative(b) Lloyd (2009) Reliable without restriction. Complies with GLP
and OECD Guideline 487

HPRT assay Mouse lymphoma L5178Y
cells

Up to 180 lg/mL(k) Equivocal(b) Lloyd (2012) Reliable without restriction. Complies with GLP
and OECD Test Guideline 476

B. subtilis: Bacillus subtilis; E. coli: Escherichia coli; FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; GLP: Good Laboratory Practice;
HPRT: hypoxanthine-guanine phosphoribosyl transferase; OECD: Organisation for Economic Co-operation and Development; Rsa: human fetus cells; S. Typhimurium: Salmonella Typhimurium;
S-9 mix: metabolic activation.
(a): Preincubation with exogenous metabolic system from rat liver.
(b): Assay performed with and without metabolic activation.
(c): Assay performed without metabolic activation.
(d): Cytotoxic at 150 lg/mL.
(e): Assay performed with metabolic activation.
(f): Positive only at cytotoxic concentrations.
(g): Cytotoxic at 12 lg/mL.
(h): Cytotoxic at 0.025 lg/mL.
(i): Cytotoxic at > 20 ng/mL.
(j): Cytotoxic ≥ 160 lg/mL.
(k): Cytotoxic ≥ 180 lg/mL (3-h treatment in the presence of S9-mix); cytotoxic ≥ 100 lg/mL (3-h treatment in the absence of S9-mix); cytotoxic ≥ 21 lg/mL (24-h treatment in the absence of

S9-mix).
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Table B.2: Summary of in vivo Genotoxicity Data Evaluated by the Panel in FGE.208

Chemical name
FL-no

Test system
in vivo

Test object Route Dose Result Reference Comments

p-Mentha-1,8-dien-
7-al
[05.117]

Micronucleus
assay

Mouse bone
marrow cells

Intraperitoneal 75, 150, 300 or
600 mg/kg bw

Negative Hayashi et al.
(1988)

Unreliable; sampling time only at 24 h; only
1,000 PCE per animal scored; poor
presentation of data

FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; bw: body weight; PCE: polychromatic erythrocytes.
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Appendix C – Genotoxicity Data Considered by the Panel in FGE.208Rev1

Table C.1: Summary of Additionally In Vivo Genotoxicity Data Submitted for FGE.208Rev1

Chemical name
FL-no

Test system
in vivo

Test object Route Dose Result Reference Comments

p-Mentha-1,8-
dien-7-al
[05.117]

Micronucleus
assay

Male Han Wistar
rats

Gavage 175, 350 and
700 mg/kg bw
per day

Negative Beevers
(2014a, b)

Reliable with restriction. Complies with GLP
and mainly with OECD Test Guideline 474
(not clear if the bone marrow was
exposed)

Comet assay Male Han Wistar
rats

Gavage Positive Reliable without restriction. Complies with
GLP. The study was performed shortly
before publication of OECD Test Guideline
489; however, it is consistent with this
guideline. Positive in liver, negative in
duodenum

bw: body weight; FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; GLP: Good Laboratory Practice; OECD: Organisation for Economic Co-
operation and Development.
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Table D.1: Summary of in vitro genotoxicity data evaluated in FGE.208Rev2

Chemical
name
[FL-no]

Test system Test object Concentration Results Reference Comments

p-mentha-
1,8-dien-7-ol
[FL-no:
02.060]

Bacterial reverse mutation assay S. Typhimurium TA98,
TA100, TA1535,
TA1537, E. coli
WP2uvrA

10, 33.3, 100, 333, 1,000,
3,333 lg/plate(a),(b)

Negative(a),(b) Wagner (2016) Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 471.
Toxicity at concentrations
≥ 3,333 lg/plate

1, 3.33, 10, 33.3, 100, 333,
1,000, 3,333 lg/plate(a),(f)

Negative(a),(f) Toxicity at concentrations
≥ 100 or 333 lg/plate

Micronucleus assay Human peripheral
blood lymphocytes

25, 50 and 100 lg/mL(c) Negative Roy (2016) Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 487

100, 250 and 325 lg/mL(g)

100, 25, 275 lg/mL(h)

Myrtenol
[02.091]

Bacterial reverse mutation assay S. Typhimurium TA98,
TA100, TA1535,
TA1537

5, 16, 50, 160, 500, 1,600,
5,000 lg/plate(a),(b)

Negative(a),(b) Bhalli and Phil
(2015a)

Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 471

E. coli WP2uvrA 5, 16, 50, 160, 500, 1,600,
5,000 lg/plate(a),(b)

Negative(a),(b)

S. Typhimurium TA98,
TA100, TA1535,
TA1537

16, 50, 160, 500, 1,600,
5,000 lg/plate

Negative(a),(b)

E. coli WP2uvrA 16, 50, 160, 500, 1,600,
5,000 lg/plate

Negative(a),(b)

BluScreenTM HC Human lymphoblastoid
TK6 cells

9.77, 19.53, 39.06, 78.13,
156.25, 312.50, 625, 1,250
lM

Negative(a) Birrell (2013a) The reliability was not
evaluated since this assay
does not belong to the
assays recommended by the
Scientific Committee for
regulatory purposes (EFSA
Scientific Committee, 2011)

Micronucleus assay Human peripheral
blood lymphocytes

30.6, 47.2 and 52.5 lg/mL(c)

368, 387, 451 and
475 lg/mL(d)

407, 451 and 475 lg/mL(e)

Negative(c),(d),(e) Bhalli and Phil
(2015b)

Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 487
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Chemical
name
[FL-no]

Test system Test object Concentration Results Reference Comments

Myrtenal
[05.106]

Bacterial reverse mutation assay S. Typhimurium TA98,
TA100, TA102,
TA1535, TA1537

5, 16, 50, 160, 500, 1,600,
and 5,000 lg/plate(a),(b)

Negative(a),(b) Mc Garry
(2016c)

Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 47180, 160, 300, 625, 1,250,

2,500 and 5,000 lg/plate
Negative(a),(b),(f)

Micronucleus assay Human peripheral
blood lymphocytes

15, 25 and 34 lg/mL(c)

50, 130 and 180 lg/mL(d)

25, 200 and 350 lg/mL(e)

Equivocal(c),(d),(e) Mc Garry
(2016d)

Reliable with restriction. GLP
study in compliance with
OECD Test Guideline 487

Micronucleus assay Human peripheral
blood lymphocytes

10, 20, 30 and 32 lg/mL(c)

100, 160 and 200 lg/mL(d)

100, 200, 300 and
350 lg/mL(e)

30, 45, 65 and 75 lg/mL(i)

Equivocal(c),(d),
(e),(i)

Lloyd (2017) Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 487

p-mentha-
1,8-dien-7-yl
acetate [FL-
no: 09.278]

Bacterial reverse mutation assay S. Typhimurium TA98,
TA100, TA102,
TA1535, TA1537

5, 16, 50, 160, 500, 1,600,
and 5,000 lg/plate(a),(b)

Negative(a),(b) Lloyd (2016a) Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 4711.6, 5, 16, 50, 160, 500 and

1,600 lg/plate(a),(b),(f)
Negative(a),(b),(f)

Micronucleus assay Human peripheral
blood lymphocytes

30, 60 and 80 lg/mL(c)

100, 120 and 130 lg/mL(d)

150, 240 and 280 lg/mL(e)

Negative(c),(d),(e) Lloyd (2016b) Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 487
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Chemical
name
[FL-no]

Test system Test object Concentration Results Reference Comments

Myrtenyl
acetate
[09.302]

Bacterial reverse mutation assay S. Typhimurium TA98,
TA100, TA102,
TA1535, TA1537

5, 16, 50, 160, 500, 1,600,
and 5,000 lg/plate(a),(b)

Negative(a),(b) Mc Garry
(2016a)

Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 4713.28, 8.2, 20.5, 51.2, 128,

320, 800 and 2,000 lg/plate
Negative(a),(b),(f)

BluScreenTM HC Human lymphoblastoid
TK6 cells

4.88, 9.77, 19.53, 39.06,
78.13, 156.25, 312.50,
625 lM

Negative(a) Birrell (2013b) The reliability was not
evaluated since this assay
does not belong to the
assays recommended by the
Scientific Committee for
regulatory purposes (EFSA
Scientific Committee, 2011)

Micronucleus assay Human peripheral
blood lymphocytes

10, 20 and 40 lg/mL(c)

20, 60, 80 and 90 lg/mL(d)

150, 250 and 325 lg/mL(e)

Negative(c),(d),(e) Mc Garry
(2016b)

Reliable without restriction.
GLP study in compliance with
OECD Test Guideline 487

E. coli: Escherichia coli; FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; GLP: Good Laboratory Practice; OECD: Organisation for
Economic Co-operation and Development; S. Typhimurium: Salmonella Typhimurium.
(a): Assay performed with and without metabolic activation.
(b): Plate incorporation method.
(c): 24-h treatment without metabolic activation, with no recovery.
(d): 3-h treatment without metabolic activation, with 21-h recovery.
(e): 3-h treatment with metabolic activation, with 21-h recovery.
(f): Pre-incubation method applied in the presence of metabolic activation.
(g): 4-h treatment without metabolic activation, with 20-h recovery.
(h): 4-h treatment with metabolic activation, with 20-h recovery.
(i): 24-h treatment, without metabolic activation, with 24-h recovery.

Flavouring Group Evaluation 208 Revision 3

www.efsa.europa.eu/efsajournal 41 EFSA Journal 2019;17(1):5569



Table E.1: Summary of in vitro genotoxicity data evaluated in FGE.208Rev3

Chemical name
[FL-no]

Test system Test object Concentration Results Reference Comments

Myrtenal
[05.106]

Bacterial reverse
mutation assay

S. Typhimurium
TA98, TA100,
TA1535, TA1537
E. coli WP2uvrA

1.5, 5, 15, 50, 150, 500, 1,500,
and 5,000 lg/plate(a),(b)

Negative BioReliance (2017) Reliable without restriction. GLP
study in compliance with OECD
Test Guideline 47115, 50, 150, 500, 1,500, and

5,000 lg/plate(a),(b)
Negative

E. coli: Escherichia coli; FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; GLP: Good Laboratory Practice; OECD: Organisation for
Economic Co-operation and Development; S. Typhimurium: Salmonella Typhimurium.
(a): Assay performed with and without metabolic activation.
(b): Plate incorporation method.
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Table E.2: Summary of In Vivo Genotoxicity Data evaluated in FGE.208Rev3

Chemical
name
[FL-no]

Test system
in vivo

Test object Route Dose Result Reference Comments

Myrtenal
[05.106]

Micronucleus Assay
in bone marrow

Male Sprague–
Dawley rats

Gavage 125, 250 and
500 mg/kg bw per
day

Negative BioReliance
(2018)

Reliable with restriction, not clear if the bone marrow
was exposed. Complies with GLP and OECD Test
Guideline 474 (acceptable levels of toxicity achieved
at the top dose used)

Comet assay in liver Negative Reliable without restriction. Complies with GLP and
OECD Test Guideline 489 (acceptable levels of
toxicity achieved at the top dose used)

Comet assay in
duodenum

Negative Reliable without restriction. Complies with GLP and
OECD Test Guideline 489 (acceptable levels of
toxicity achieved at the top dose used)

FGE: Flavouring Group Evaluation; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; bw: body weight; GLP: Good Laboratory Practice; OECD: Organisation for Economic
Co-operation and Development.
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Appendix F – Exposure

1. Presence of myrtenal in food and in other sources

In FGE.208Rev2, concerns for genotoxicity could not be ruled out for myrtenal and for this reason
exposure data on myrtenal were collected. These data are maintained in the current revision of
FGE.208 (FGE.208Rev3).

Myrtenal [FL-no: 05.106] is an aromatic constituent of several plant species. Quantitative data are
available for 21 natural sources (including three natural sources, in which myrtenal was found only at
trace level). For further 11 natural sources, only qualitative data are available (Table F.1).

It should be mentioned that not all of the sources reported in Table F.1 are used as foodstuffs or
are added to products sold in the EU market (GNPD, 2017) for flavouring purposes: turpentine oil
(Pistacia terebinthus) is used as a solvent, cleaning and sanitary product; Pistacia atlantica is used in
traditional medicine in Iran, it can also be used in local (Iranian) foods, such as curd, instead of
walnuts (Bahmani et al., 2015).

Table F.1: Occurrence of myrtenal [FL-no: 05.106] in natural sources as reported by Triskelion
(2017)

Natural source Quantity (mg/kg)

Calabash nutmeg (Monodora myristica Dunal) 600

Camomile < 500–4,600
Citrus fruits(a) < 5–340

Eucalyptus oil (Eucalyptus globulus Labill) 700
Ginger (Zingiber species) 600

Lamb’s lettuce (Valerianella locusta) 0.2–0.5
Laurel (Laurus nobilis L.) 1,700

Licorice (Glycyrrhiza species) 0.5
Mastic (Pistacia lentiscus) 1,300–7,200

Melon 0.04
Mentha oils 2

Myrtle (Myrtus communis L.) 2,200
Parsley (Petroselium species) 10

Pistachio oil (Pistacia vera) 2,200
Pistacia atlantica 9,000–12,000

Thyme (Thymus species) < 1,000
Turpentine oil (Pistacia terebinthus) 11,000–41,000

Xylopia species 15,000
Calamus (sweet flag) (Acorus calamus L.) Qualitative

Cherimoya (Annona cherimolia Mill.) Qualitative
Cumin seed (Cuminum cyminum L.) Trace (ppm)

Custard apple, atemoya (Annona atemoya) Qualitative
Juniperus communis Qualitative

Lemon balm (Melissa officinalis L.) Qualitative
Mace (Myristica fragrans Houttuyn) Trace (ppm)

Mangifera species Qualitative
Nutmeg (Myristica fragrans Houttuyn) Trace (ppm)

Pepper (Piper nigrum L.) Qualitative
Raspberry, blackberry and boysenberry Qualitative

Walnut (Juglans species) Qualitative

FLAVIS: Flavour Information System (database); FL-no: FLAVIS number.
(a): Quantitative data on citrus fruits are reported mainly from peel.
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According to the Global New Products Database (GNPD, 2017)10 some plant sources, i.e. Calabash
nutmeg (Mondora myristica Dunal) and Xylopia species reported in Table F.1, are not reported to be
used in food products placed on the market in the EU.

Myrtle (Myrtle communis L.) berries and leaves are used to make alcoholic-beverages in Italy,
especially in Sardinia, where the smoke of myrtle is also used for flavouring purposes in traditional
cooking. Moreover, myrtle leaves and berries can be used by the food industry for flavouring purposes
and for the production of sweet liquors (Aleksic and Knezevic, 2014). In the EU, myrtle is used not
only in the production of alcoholic beverages, but also in a few other products, e.g. in soothing gum,
tea and jelly in France; in a carbonated soft drink, pear preserve and a juice drink in Italy (GNPD,
2017).

2. Intended use and use levels of myrtenal as provided by the Flavour Industry

Use levels in the different food categories reported in Annex I of Reg. (EC) 1565/20003 have been
submitted by the flavour industry and are reported in Table F.2 (EFFA, 2016).

10 The Global New Products Database monitors product innovation and retail success in consumer packaged goods markets,
worldwide.
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Table F.2: Use levels of myrtenal [FL-no: 05.106] in food categories listed in Annex I of Reg. (EC) 1565/20003 (EFFA, 2016)

FL-no

Food categories

Normal use levels (mg/kg)(a)

Maximum use levels (mg/kg)

01.0 02.0 03.0 04.0 05.0 05.3 06.0 07.0 08.0 09.0 10.0 11.0 12.0 13.0 14.1 14.2 15.0 16.0

05.106 1
5

8
50

2
10

1
5

5
20

20
100

1
5

5
20

1
5

1
5

1
5

1
5

5
20

– 1
5

1
5

1
5

1
5

EFFA: European Flavour and Fragrance Association; FLAVIS: Flavour Information System (database); FL-no: FLAVIS number.
(a): ‘Normal use’ is defined as the average of reported usages and ‘maximum use’ is defined as the 95th percentile of reported usages (EFFA, 2002).
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3. Intake data from intended use

Annual production volumes of the flavouring substances as surveyed by industry are used to
calculate the ‘Maximised Survey-derived Daily Intake’ (MSDI) assuming that the production figure only
represents 60% of the use in food, due to underreporting and that 10% of the total EU population are
consumers (SCF, 1999).

Use levels for myrtenal provided by industry (EFFA, 2016) listed in Table F.2, have been used to
calculate the ‘modified Theoretical Added Maximum Daily Intake’ (mTAMDI).11

The MSDI and mTAMDI exposure estimates are given in Table F.3.

Table F.3: Exposure to the flavouring substance

FL-no Name
EU MSDI

lg/capita per day
mTAMDI

lg/person per day

05.106 Myrtenal 2.21 2,100

FLAVIS: Flavour Information System (database); FL-no: FLAVIS number; MSDI: Maximised Survey-derived Daily Intake; mTAMDI:
modified Theoretical Added Maximum Daily Intake.

11 mTAMDI estimation is based in an approach used by the SCF up to 1995 (SCF, 1995) and is calculated on the basis of
standard portions and normal use levels for flavoured beverages and foods in general, with exceptional levels for particular
foods.
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Appendix G – Publications on the evaluation of genotoxicity studies on
p-Mentha-1,8-dien-7-al [FL-no: 05.117]

p-Mentha-1,8-dien-7-al [FL-no: 05.117] was evaluated by the Panel as genotoxic in vivo and,
accordingly, there is a safety concern for the use of p-mentha-1,8-dien-7-al [FL-no: 05.117] as a
flavouring substance (FGE.208Rev1). After the publication of this opinion (EFSA CEF Panel, 2015), two
articles on the genotoxicity of p-mentha-1,8-dien-7-al [FL-no: 05.117] were published (Cohen et al.,
2016; Hobbs et al., 2016) that industry sent to EFSA. The authors presented the same data reported
in EFSA opinion FGE.208Rev1 (EFSA CEF Panel, 2015), but reached different conclusions compared to
the CEF Panel in relation to the evaluation of the in vivo Comet assay in the liver. Topics in
disagreement are summarised below.

1) Relevance of in vivo study in liver as follow-up of in vitro genotoxicity tests on p-mentha-
1,8-dien-7-al [FL-no: 05.117]

Hobbs et al. (2016) considered that ‘if the positive test in the liver, the major site of metabolism
in vivo, is assumed to reflect a biologically relevant result, then it is surprising that in vitro
mutagenicity and chromosome damage tests performed in the presence of metabolic activation did not
provide any indication of genotoxic effects’ (Hobbs et al., 2016).

The Panel noted that there was some evidence of positive results in vitro also in the presence of
S9-mix (Tayama et al., 1990). While Tayama et al. (1990) observed a positive result in a chromosomal
aberration assay at 300 lg/mL (in the absence of excessive toxicity), Lloyd (2009) observed a negative

result with p-mentha-1,8-dien-7-al in an in vitro micronucleus assay up to 140 lg/mL (accompanied
by 45% cytotoxicity which is less than the 50–60% cytotoxicity as recommended by the OECD TG
487).

The inconsistent results obtained by Tayama et al. (1990) and Lloyd (2009) might therefore be due
to the different maximum concentrations tested.

2) Liver toxicity

In the analysis of the Comet assay in liver, the CEF Panel noted:

‘at the highest dose (animals exposed to 700 mg/kg bw per day) a 3.4-fold and statistically
significant increase in tail intensity was observed. A statistical significant linear trend was also
apparent. Five out of the six animals treated with the highest dose had tail intensities that exceeded
the values observed in the concurrent vehicle control animals’.

The two articles indicate:

‘While this statement is correct, it should be pointed out that only 2 of the 6 animals in this dose
group, are driving the statistically significant increase in group mean tail intensity, compared to the
concurrent vehicle control animals. More importantly, these two animals were also among the three
most affected by liver toxicity (animals 27 and 23), indicating a direct association between liver toxicity
and increased DNA tail intensities’ (Cohen et al., 2016).

Referring to ‘A statistical significant linear trend was also apparent’, Cohen et al. (2016) indicate:

‘While this statement is accurate, this is also consistent with the reported dose-dependent toxicity’
(Cohen et al., 2016).

‘The lack of dose-related increases in % clouds or % cells with halos in liver cells indicates that
treatment did not cause excessive DNA damage that could have created artefacts and interfered with
comet analysis. However, other endpoints reveal evidence of dose-dependent general liver toxicity in
the test substance-exposed animals, and this effect was particularly pronounced at the highest dose
employed (700 mg/kg bw per day), including a loss of body weight in the high dose group over the
period of exposure to the test substance in 5 of the 6 rats in the group, elevated aspartate
aminotransferase and alanine aminotransferase and altered clinical biochemistry parameters
(cholesterol, potassium, chloride, urea and glucose); three animals (numbered 27, 23 and 22) in the
high dose group were particularly affected. Histopathological examination corroborated the clinical
pathology findings (..) with observations of hepatocyte vacuolation in all 6 animals in the high dose
group. Additionally, 5 of the 6 animals in the high dose group showed overt signs of toxicity reflected
in their behaviour (reduced activity), particularly animals 27 and 23’ (Cohen et al., 2016).

‘In this study, there was no dose-related increase in % hedgehogs or % cells with halos in liver
cells of exposed animals. Five out of the six animals in the 700 mg/kg per day dose group had % tail
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intensity values that exceeded those of the concurrent vehicle control animals.’ (..) ‘Measurements
were obtained for at least five animals/group for aspartate aminotransferase (AST) and alanine
aminotransferase (ALT); although mean serum values for these enzymes were not statistically
significant, three of the six rats dosed with 700 mg/kg per day perillaldehyde exhibited high activity of
both ALT and AST, indicative of hepatic toxicity’ (..) ‘Hepatocyte cytoplasmic vacuolation was observed
in liver sections from the rats exposed to 700 mg/kg per day perillaldehyde. The small vacuoles are
morphologically consistent with microvesicular fat’ (Hobbs et al., 2016).

‘The international effort to validate the in vivo comet assay for the detection of genotoxic
carcinogens, coordinated by the Japanese Center for the Validation of Alternative Methods (JaCVAM),
concluded that histopathology remains the “gold standard” for assessing tissue cytotoxicity, and
changes in % tail DNA require careful interpretation when measured in conjunction with severe
histopathological changes (Uno et al., 2015). (..) The perillaldehyde comet findings (both the group
mean and individual animal data) are well within this upper limit for acceptable vehicle control values
further supporting the conclusion that the small increase in tail intensity observed in the liver following
administration at 700 mg/kg per day was not biologically relevant and was most likely an artefact of
the observed hepatic cytotoxicity’ (Hobbs et al., 2016).

The Panel noted that histopathology has been taken into account in the evaluation of results, as
recommended by OECD TG 489. The authors of the study report indicated ‘In the liver, minimal or
slight hepatocyte vacuolation was present in animals given 700 mg/kg per day’ (Beveers, 2014a). The
Panel noted that vacuolisation is not considered an indication for strong hepatotoxicity. The
Panel considered also clinical chemistry data, which showed a slight increase in aspartate
aminotransferase and alanine aminotransferase at the highest dose that was not statistically
significant.

Moreover, the Panel noted the lack of dose-related increase of percent of cells with clouds and
halos (which according to OECD TG489 are key parameters for the interpretation of the comet assay)
confirming the absence of severe liver toxicity. Actually, also the study authors (Beevers, 2014a)
considered that there was no excessive liver damage and liver toxicity at the top dose and that this did
not interfere with the validity of the assay. The Panel noted that if liver toxicity was so severe, as
claimed by the authors of the two articles, the acceptance criteria for the study should not have been
considered as being fulfilled. In this respect, the view of the authors of the two articles (Cohen et al.,
2016; Hobbs et al., 2016) is not consistent with the view of the authors of the study report, since the
acceptance criteria have actually been considered as being fulfilled by the authors of the study report
and the study was evaluated by them.

3) Historical controls

In the analysis of the Comet assay in liver, the CEF Panel indicated:

‘. . . however, the tail intensity values for all animals fell within the laboratory’s historical control
values. The Panel noted that the range for both the negative and positive historical control values
were extremely wide for this test laboratory. In addition there was an overlap of the negative (95%
range: 0.02–11.39) and positive (95% range: 7.15–65.07) control values’.

The two articles indicate:

‘The observation that tail intensity values for all animals fell within the laboratory’s historical control
values is pertinent and under OECD TG 489 guidelines cannot be dismissed when considering the
outcome of a comet assay. (..) This is indeed the case, but it is important to consider that the tail
intensity for the negative and positive controls of the specific assay fell comfortably within the range of
the historical control values and near the means of the respective ranges: the positive control tail
intensity is close to the historical positive control mean (35.55 � 14.86). More importantly, the mean
tail intensity of the high dose group (700 mg/kg bw per day) of 2.20 � 0.60 is comparable to the
historical negative control mean (2.22 � 2.58), despite the skew effected by animals 27 and 23’
(Cohen et al., 2016).

‘However, all six animals fell well within the laboratory’s historical vehicle control 95th percentile
range (0.02–11.39; n = 165) and only two of the six animals had % tail intensity values that exceeded
the mean % tail intensity of the historical control data (2.22%). (..) In that regard, it is useful to
consider the perillaldehyde positive % tail intensity value in the context of broadened historical
datasets collated by the testing laboratory, in which the vehicle and positive control reference ranges
are clearly distinct (Supplemental Data Table II) (2016). Comparison of the positive % tail intensity
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value (2.20%) to historical data that included the studies performed immediately prior to the
perillaldehyde study (n = 230) or historical data spanning the period immediately prior and subsequent
to the perillaldehyde study (n = 400) confirms that the perillaldehyde data are close to the means of
both vehicle control data sets (2.31% and 1.60%, respectively), supporting the arguments that the
positive comet result for perillaldehyde is not biologically relevant (Hobbs et al., 2016)’.

The Panel noted that on the basis of OECD TG 489, the evaluation should be based on a
comparison between treatment-induced values and the concurrent vehicle control, the consideration of
a potential dose–response relationship and on a comparison of treatment-induced values with
(appropriate) historical negative control data, not primarily on a comparison between vehicle/positive
control experimental data and historical controls. Hobbs et al. (2016) report three different ranges of
historical control, two of the reported ranges are new and not overlapping. However, the range of
historical negative control is still wide and no justification on the overlapping range is provided. The
Panel did not have access to the broadened dataset when it evaluated p-mentha-1,8-dien-7-al in
FGE.208Rev1 (EFSA CEF Panel, 2015). As noted in the opinion (FGE.208Rev1), the Panel considered
that a comparison with concurrent control is more relevant than a comparison with historical control
data, especially if the range of historical control data is broad as it is the case here.

The authors of the two articles actually consider like the CEF Panel that p-mentha-1,8-dien-7-al
induced an increase in DNA damage in the in vivo comet assay. The difference between EFSA and the
authors is that they consider the effect due to liver toxicity. However, in the same paper, the authors
noted that liver toxicity, at the top dose, does not interfere with the validity of the assay.
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