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Abstract: This paper reports on an improved optical waveguide microcantilever sensor with high
sensitivity. To improve the sensitivity, a buffer was introduced into the connection of the input
waveguide and optical waveguide cantilever by extending the input waveguide to reduce the
coupling loss of the junction. The buffer-associated optical losses were examined for different
cantilever thicknesses. The optimum length of the buffer was found to be 0.97 µm for a cantilever
thickness of 300 nm. With this configuration, the optical loss was reduced to about 40%, and the
maximum sensitivity was more than twice that of the conventional structure.
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1. Introduction

In recent years, the development of micro processing and manufacturing technology has accelerated
the research progress of nanomechanical sensors [1–5]. Nanomechanical sensors have been widely
studied in biological, chemical, and environmental protection sensor applications because of their
high sensitivity and capacity for integration [6–8]. The sensitivity of nanomechanical sensors is
mainly affected by the readout method, relying on optical sensors used in atomic force microscopy or
interference methods [9]. An alternative method has been developed that uses an optical waveguide
cantilever (OWC) to detect the deflection or resonance change of cantilevers [10–13]. In this method,
the light coupled into the optical waveguide cantilever and emitted from the free-end of the cantilever
travels across a small gap and is captured by an output waveguide (OW). The major benefit of this
method is the higher integration of cantilever arrays that can provide highly sensitive readouts.
There are many reports about optical waveguide cantilevers based on different material platforms,
for example, SiO2 [10], polymer [14], InP [15], and Si [16] as the cantilever waveguide.

In this study, we examined material platforms using Si3N4 as the optical waveguide and SiO2 as
the cantilever to explore an optical waveguide cantilever system. An improved optical waveguide
cantilever system was developed to improve optical sensitivity. Unlike the conventional structure,
the proposed structure extends the input waveguide (IW) on the optical waveguide cantilever to
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reduce the coupling loss of the input waveguide and the cantilever. The finite element method was
used to evaluate the proposed structure and for comparison with the conventional structure.

2. Improved Optical Waveguide Cantilever Sensor

A conventional structure has been presented by several groups [10–13], as shown in Figure 1a.
The structure of the sensor includes an IW, an OWC, and an OW. The light from a laser after propagating
through the input waveguide is coupled into the microcantilever mainly by the evanescent field of the
electromagnetic wave. Then, light exiting the microcantilever free-end propagates across the gap and
is coupled into the output waveguide. The principle of operation is based on the dependence of the
coupling efficiency between the cantilever and output waveguide considering their misalignment with
respect to each other. When the position of the microcantilever free-end changes, the light coupled into
the output waveguide also changes.
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Figure 1. Schematic of the optical waveguide sensors: (a) conventional structure and (b)
improved structure.

In the conventional structure (Figure 1a), the coupling loss of the input waveguide and the
cantilever is larger due to the abrupt step on the junction, which affects the output power at the free-end
of the cantilever and leads to poor optical sensitivity. Normally, a taper should be introduced to change
the size and shape of the optical mode to achieve high coupling efficiency for the connection. To do
this, the taper must operate adiabatically by increasing or decreasing the size of the taper cross section
very slowly; that is, the local first-order mode of the waveguide should propagate through the taper
while undergoing relatively little mode conversion to higher-order or radiation modes [17–20].

However, the taper in our structure requires complex fabrication technology. To improve the
optical sensitivity and make the fabrication process as simple as possible, a buffer on the connection of
the input waveguide and cantilever was introduced as a substitution for the adiabatic taper (Figure 1b)
to reduce the coupling loss.

According to the principle of optical waveguide microcantilever sensors, the cantilever
displacements of bending in the x direction lead to a change of the coupling efficiency between
the cantilever and the output waveguide. Hence, one can know the bending displacement by
monitoring the coupling efficiency. The coupling efficiency can be calculated using the overlap
integral [21]:

Γ(x, ∆z) =
(
∫
∞

−∞
Egap(x, ∆z)E∗y(x)dx)

2∫
∞

−∞
Egap(x, ∆z)E∗gap(x, ∆z)dx

∫
∞

−∞
Ey(x)E∗y(x)dx

, (1)

where Egap(x, ∆z) is the electric field distribution of the light exiting the cantilever at the distance of ∆z,
and Ey(x) is the distribution of the electric field of the output waveguide.

In this study, we only considered the vertical direction of the cantilever and the input and output
waveguides for operation in the transverse electric (TE) mode. Thus, the transverse function Ey(x) has
a general form from Maxwell’s wave equation considering a basic three-layer waveguide structure
model [21]:

Ey =


Ae−γsx x > 0

A
(
cos(kxx) − γc

kx
sin(kxx)

)
− d < x < 0

A
(
cos(kxd) + γc

kx
sin(kxd)

)
ers(x+d) x < −d

, (2)
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where kx = k0

√
n2

f −N2, γc = k0

√
N2 − n2

c , and γs = k0

√
N2 − n2

s are the transverse propagation

constants of the waveguide, cladding, and substrate, respectively; k0 = 2π
λ is the wave in vacuum

with a wave length of λ; d is the thickness of the core; N is the effective refractive index, which can be
obtained by Equation (3); nc, n f , and ns are the refractive indexes of the cladding, core, and substrate,
respectively; and A is the amplitude of the electric field.

Light propagates across the waveguide in the form of a guided mode. Different guided modes
correspond to different effective refractive indexes. For asymmetric planar waveguides in TE modes,
the corresponding eigenvalue equation can be obtained by applying the boundary conditions and the
electric field continuity condition:

V
√

1− b = mπ+ tan−1

√
b

1− b
+ tan−1

√
b + a
1− b

, (3)

where b =
N2
−n2

s
n2

f−n2
s

is the normalized waveguide refractive index, V is the normalized waveguide

thickness, and a =
n2

s−n2
c

n2
f−n2

s
is the asymmetric part of the waveguide.

The optical sensitivity is defined as the derivative of the coupling efficiency and the free-end
bending displacement of the cantilever beam:

Sens =
∂Γ
∂x

(4)

3. Results and Discussion

Finite element analysis was performed to evaluate the proposed structure. In the simulation,
the input and output waveguide was 80 nm thick and made of silicon nitrous oxide (nSi3N4 = 2.0),
the optical waveguide cantilever was 90 µm long and made of silicon oxide (nSiO2 = 1.46), and the gap
was 2 µm wide.

In order to decide the thickness of the cantilever in the vertical direction, the guided modes of the
cantilever waveguide were determined by the effective index method. The relationship of the effective
index and the thickness of the cantilever are shown in Figure 2 for zero-, first-, and second-order modes.
For operation at a higher sensitivity, the cantilever was in single mode in the vertical direction and was
as thin as possible. However, the cantilever cannot be too thin, as it will not be able to support its own
weight, which will lead to low coupling efficiency with the fiber [22]. Based on the index shown in
Figure 2, the thickness of the cantilever was chosen as 300 nm.Sensors 2019, 19, 4346 4 of 7 
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In the proposed structure, a buffer was introduced into the connection of the input waveguide
and the cantilever to reduce the coupling loss due to the abrupt step. The electric field distribution is
shown in Figure 3 for the conventional and improved structures with a buffer. It can be seen from
Figure 3a that when there was no buffer, the coupling mode changed from strong coupling to radiative
modes. Comparing these two images shows that the buffer could significantly increase the coupling
efficiency of the input waveguide and cantilever.
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Figure 3. Electric field distribution for the input waveguide and cantilever of (a) the conventional
structure and (b) the improved structure with a buffer.

To evaluate the buffer, the optical losses on the free-end of the cantilever were calculated as a
function of the buffer length for thicknesses of 200, 250, and 300 nm, as shown in Figure 4. The optical
losses were mainly from the coupling losses of the input waveguide and the cantilever, and excessive
loss of optical power may have reduced the sensitivity. As shown in Figure 4, the curves were similar
to the sine shape of the curve, and the optimal length of the buffer was different for different cantilever
thicknesses. A 0.97 µm length buffer was chosen for the thickness of 300 nm.Sensors 2019, 19, 4346 5 of 7 
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In the manufacturing process, it is almost impossible to achieve a completely accurate device due
to technological limitations and other factors, and it is crucial to ensure that acceptable detection errors
caused by the device size difference are within a certain range. Fabrication tolerances with the 0.97 µm
length buffer were analyzed (Figure 5). Within the tolerance range −0.4 to 0.4 µm, the optical coupling
efficiency decreased by less than 1 dB, which was enough to ensure efficiency that was greater than
without the buffer and that the device would not produce large deviations due to the size difference.
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Figure 5. The optical coupling efficiency with the fabrication tolerances of the 0.97 um length buffer.

Sensitivity depends on the change of the optical power coupled into the output waveguide during
the deflection of the cantilever. In order to model a desired cantilever bending process, solid mechanics
was used to simulate cantilever bending under stress. The gap was 2 µm, the length of the buffer was
0.97 µm, and the thickness of the cantilever was 300 nm.

In this study, the change of the coupling efficiency between the OWC and the OW was simulated
when the force at the end of the OWC deflected, and the change of device sensitivity with the
displacement was obtained using the derivative of coupling efficiency and free-end deflection according
to Equation (4). The optical efficiency for different cantilever bendings was calculated, as shown in
Figure 6a. Using the derivative of the curve, the sensitivity was obtained (Figure 6b). As shown in
Figure 6, the optical efficiency and sensitivity of the structure with a buffer had obvious improvements
compared with the conventional structure. The sensitivity of the structure with a buffer was more than
twice as high as the conventional structure. Additionally, the most dramatic change of optical power
occurred when the cantilever bent slightly. The position of maximum sensitivity was not at the place
when the OWC was completely aligned with the IW, but rather the position where the cantilever beam
was slightly deflected.
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4. Conclusions

In this paper, an improved optical microcantilever waveguide sensor was proposed. Unlike the
conventional structure, a buffer was introduced into the connection of the input waveguide and the
cantilever by extending the input waveguide, which reduced the coupling loss of the input waveguide
and the cantilever. The buffer length was studied for its capacity to reduce optical loss for different
cantilever thicknesses. A 300 nm thick cantilever beam and a 0.97 µm length buffer were selected to
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improve the coupling efficiency of the input waveguide and the cantilever. In order to ensure the
stability of the device, the dimensional tolerances of the buffer in the manufacturing process were also
analyzed. The performances of conventional and improved cantilever sensors were compared, and the
coupling efficiency and the sensitivity were discussed as the key parameters of the device. The results
showed that the coupling efficiency and the sensitivity had obviously improved.
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