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The role of renin-angiotensin system activated phagocytes in the
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ABSTRACT
Objective: Management of the pandemic caused by the novel coronavirus SARS-CoV-2 challenges both scientists
and physicians to rapidly develop, and urgently assess, effective diagnostic tests and therapeutic interventions. The
initial presentation of the disease in symptomatic patients is invariably respiratory, with dry cough being the main
symptom, but an increasing number of reports reveal multiple-organ involvement. The aim of this review is to
summarize the potential role of the renin-angiotensin system activated phagocytes in the pathogenesis of COVID-19
disease.

Methods: Data for this review were identified by searches of PubMed and references from relevant articles using the
search terms “SARS,” “COVID-19,” “renin-angiotensin-system,” “phagocyte,” “reactive free radical,” “antioxidant,” “ARDS,”
“thrombosis,” “myocardial,” “ischaemia,” “reperfusion,” “microvascular,” and “ACE2.” Abstracts and reports from meetings
were not included in this work. Only articles published in English between 1976 and 2020 were reviewed.

Results: The cellular target of SARS viruses is the angiotensin-converting enzyme 2, a critical regulating protein in the
renin-angiotensin system. The elimination of this enzyme by the viral spike protein results in excessive activation of
phagocytes, migration into the tissues via the high endothelial venules, and an oxidative burst. In the case of an over-
stimulated host immune response, not only devastating respiratory symptoms but even systemic or multiorgan
involvement may be observed.

Conclusions: Early-stage medical interventions may assist in returning the exaggerated immune response to a normal
range; however, some therapeutic delay might result in excessive tissue damages, occasionally mimicking a systemic
disease with a detrimental outcome. (J Vasc Surg 2021;73:1889-97.)
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The novel coronavirus (SARS-CoV-2) emerging from
the city of Wuhan in late Autumn 2019 has dominated
both global health and economic management
throughout the year 2020. Although the majority of
cases are asymptomatic, a relatively smaller proportion
of patients develop severe disease characterized by
pneumonitis,1 such that the overall mortality rate of
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known symptomatic cases measures 6.1% at the end
of July 2020.2 The mortality rate for patients who do
require mechanical ventilation is consistently reported
as over 50% in some series, and the recovery is
extended.3 The extent of recovery is not entirely known
yet, albeit some recent data demonstrate, especially in
patients with concomitant viral myocarditis, that com-
plete restitution of health is not always achievable.4

With some reports suggesting extrapulmonary, specific
organ involvement such as renal, hepatic, and central
nervous system manifestations, indeed when consid-
ered with a prothrombotic tendency, suggests a micro-
vascular origin of these conditions. The same
pathophysiologic background may explain the
Kawasaki-like disease in some SARS-CoV-2 infected
children. Our review aims to analyze a possible patho-
physiologic route on which the coronavirus disease 19
(COVID-19) may interfere with the human body’s
normal function and regulatory pathways, resulting in
a maladaptive systemic response, and leading to multi-
organ dysfunction.

SEARCH STRATEGY AND SELECTION CRITERIA
Data for this review were identified by searches of

PubMed and references from relevant articles using the
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search terms “SARS,” “COVID-19,” “renin-angiotensin-sys-
tem,” “phagocyte,” “reactive free radical,” “antioxidant,”
“ARDS,” “thrombosis,” “myocardial,” “ischaemia,” “reperfu-
sion,” “microvascular,” and “ACE2.” Abstracts and reports
from meetings were not included in this work. Only arti-
cles published in English between 1976 and 2020 were
reviewed.

THE ROLE OF THE ANGIOTENSIN-CONVERTING
ENZYME 2 IN THE COVID-19 PATHOMECHANISM
The angiotensin-converting enzyme 2 (ACE2) was

discovered in 2000 as a transmembrane peptidase, hav-
ing the main role to inhibit the renin-angiotensin system
(RAS). In addition, it facilitates intestinal absorption of
certain amino acids and also acts as a receptor for the se-
vere acute respiratory syndrome (SARS) virus, a coronavi-
rus that has caused an epidemic mainly in South China
and Canada in 2003.5 The ACE2 protein is represented
in several organs including the heart, kidneys, intestinal
epithelium, and central nervous system, and has a high
density on the microvascular endothelium. There is a sig-
nificant ACE2 representation measured on the surface of
type I and II alveolar pneumocytes and also expressed on
the surface of alveolar macrophages and lymphocytes.6

The RAS inhibitory action of ACE2 is a catalytic function
splitting angiotensin I into angiotensin (1-9). Furthermore,
ACE2 converts angiotensin II (ATII) into angiotensin (1-7),
and angiotensin binds the MAS-related G protein-
coupled receptor (MAS receptor) causing vasodilation
and exerting an anti-inflammatory effect.7-10 The corona-
viruses, including SARS and SARS-CoV-2, bind the ACE2
enzyme on a different location than its catalytic spot
with their spike protein (S-protein), initiating virus inter-
nalization into the ACE2-carrying target cell.7,8,11

The pulmonary RAS pathway, including the antago-
nizing effect of ACE2, has been extensively investigated
in both experimental models and clinical investigations,
in the context of acute respiratory distress syndrome
(ARDS). The potential role of ACE2 in the pathogenesis
of severe lung injury has been demonstrated in experi-
ments with ACE2 knockout mice, having initial healthy
lung structure and function. In this investigation, the
same dosage of toxin on the lungs of knockout mice
resulted in more severe histological and functional
changes compared with those seen in wild-type control
specimens. The wild-type mice after infection with SARS
virus, or treated just with its S-protein, behaved similar to
the ACE2 knockout mice; and an increase in serum ATII
levels was detected. Furthermore, the administration of
an ATII type 1 (AT1) receptor blocker successfully limited
the extent of pulmonary damage in the ACE2 depleted
cohort.7 In another animal experiment, following expo-
sure to a lipopolysaccharide toxin, administration of re-
combinant ACE2 protein significantly improved the
partial oxygen pressure with the same ventilation set-
tings, and this was associated with a reduction the extent
of lung damage.7,12 The preventive effect of ACE2 against
ARDS has been demonstrated in infants suffering from
meconium aspiration, where the lung aspirates revealed
excessive ACE2 breakdown by proteases in cases devel-
oping ARDS. This effect was shown to be reversed with
the aid of protease inhibitors in experimental settings.13

In SARS and middle east respiratory syndrome, mortality
results not from the direct cytopathic effect of the coro-
navirus load, but from the emerging ARDS, in a frame-
work of excessive and maladaptive immune response
orchestrated by the host immune system,14,15 coming
from an imbalance in the RAS function.

THE IMBALANCE IN THE RAS RESULTING FROM
ACE2 LOSS AND THE “CYTOKINE STORM”

Considering the above data from the medical literature,
the SARS-CoV-2 infection downregulates the ACE2
enzyme, leading to an imbalance in the inhibitory function
of the ACE2 on the RAS cascade. As a result of this shift in
the RAS balance (angiotensin I-angiotensin 1-7), the
increased ATII level activates a pathologic inflammatory
response via the AT1 receptor (Fig 1). The AT1 receptor initi-
ates the nuclear factor kappa-light-chain-enhancer of acti-
vated B-cell (NFkB) signaling pathway, leading to an
interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis
factor-a surge activating the circulating neutrophil (PMN)
cells and monocytes/macrophages (MPH). This activation
results in adhesion and tissuemigration of the phagocytes
by promoting the expression of intercellular adhesion
molecule, vascular adhesion molecule-1, and monocyte
chemoattractant protein-1.16-20 The vascular marginaliza-
tion, endothelial rolling, diapedesis, and tissue migration
of phagocytes are associated with an oxidative burst, an
excessive reactive oxygen species (ROS) production.
Furthermore, after internalization of a coronavirus, the

freshly synthesized viral proteins (eg, ORF3b, ORF6, nsp1,
PLP) heavily influence the innate immunity on numerous
target points. In SARS infection, delayed production of
the critical antiviral IFNs was observed in human cell cul-
tures and murine models, whereas increased production
of cytokines (IL-6, IL-8) produced by NFkB signaling has
been detected. The latter may play an essential role in
the pathogenesis of ARDS,21-23 and it has to be noted
that the AT1 receptor effect is mostly related to the
NFkB signaling pathway.17

NEUTROPHIL GRANULOCYTE AND
MACROPHAGE INVOLVEMENT IN THE TISSUE
DAMAGE
Emergingdata fromthecurrentCOVID-19pandemic sug-

gest thatmainly the lower respiratory tractandoccasionally
the gastrointestinal passage represent the gate of entry for
the coronavirus, but it may affect other organs either
directly, or secondarily, including the heart, brain, and kid-
neys. This phenomenon can be understood using the
above-described RAS-ACE2-proinflammatory pathway.



Fig 1. The interaction of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus with the renin-
angiotensin system and phagocyte activation cascade. ACE, Angiotensin-converting enzyme; ARDS, acute res-
piratory distress syndrome; AT(1-7), angiotensin (1-7); AT(1-9), angiotensin (1-9); AT1R, angiotensin II receptor type 1;
AT2R, angiotensin II receptor type 2; CAMs, cellular adhesion molecules; COX, cyclooxygenase; IL, interleukin; MAS
R, MAS-related G protein-coupled receptor; MCP, monocyte chemoattractant protein; NADPH, nicotinamide
adenine dinucleotide phosphate; NFkB, nuclear factor kappa-light-chain-enhancer of activated B-cell signaling
pathway; PLT, platelet; ROS, reactive oxygen species; TNF, tumor necrosis factor; TXA2, thromboxane A2.
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The circulating PMNs defend the body against inva-
sive microbes and foreign materials by their toxic de-
fense substances, especially reinforced with the
ROS.24 These defensive mechanisms have a double-
edged sword characteristic; hence a disproportional
response to a noxa, oxidative, or enzymatic injury of
the own tissues may be the result.25 After their release
from the bone marrow, the PMNs travel to the postca-
pillary high endothelial venules (HEV) and on reaching
the intercellular junctions start their diapedesis. They
migrate within the tissues during a 5- to 6-day life cy-
cle and aim to eliminate all foreign particles with the
aid of degranulation.26 If activated by any trigger
mechanisms, including the AT1 pathway, the
nicotinamide-adenine-dinucleotide-phosphate oxidase
initiates the oxidative burst by producing extremely
reactive superoxide radical from molecular oxygen
(Fig 2).27 The free radicals damage lipid membranes
and the DNA, leading to activation of poly(ADP) ribose,
with the end effect of depleting intracellular adenosine
triphosphate storages. Because of the free radical ef-
fect, the intracellular ionized calcium and iron concen-
tration increases, leading to destruction of multiple
biomolecules. These are “hit-and-run” type damages;
once the tissues are significantly affected, the eventual
therapeutic efforts are less successful.
Free radicals cause changes in the endothelial cellular

phospholipid metabolism, leading to increased produc-
tion of lipid mediators, namely the platelet-activating
factor (PAF) and leukotriene B4, both facilitating further
chemotaxis of phagocytes. Furthermore, intracellular
xanthine oxidase produces additional superoxide anions
from xanthine; the superoxide radical activates phospho-
lipase A2, leading to a significant amendment in arachi-
donic acid metabolism with a substantial effect on
prostaglandin and Leukotriene production. The hypo-
chlorite anion gets into a reaction with the free amino
terminals of proteins and builds up a protein-amino-
hypochlorite. The protein-amino-hypochlorite inactivates
the nitrogen monoxide (NO), produced from L-arginine.
NO is a potent PMN inhibitor, and the hypochlorite addi-
tionally activates the proteases secreted from the azuro-
phil granule of the PMNs.27 Therefore, a drop in NO levels
may lead to microvascular vasoconstriction, local stasis,
and a vicious circle in PMN activation. Local thrombocyte
activation by PAF and stasis may explain



Fig 2. Free radical cascade after neutrophil granulocyte (PMN) activation. dOH, Hydroxyl radical; AZ, azurophil
granules; Cl�, chlorite; Fe2þ, ferrous ion; Fe3þ, ferric ion; FR, free radical; H2O, water molecule; H2O2, hydrogen
peroxide; HOCl, hypochlorite ion; MPO, myeloperoxidase; NADPH; nicotinamide adenine dinucleotide phosphate;
O2

�, oxygen radical; O2, oxygen molecule; SOD, superoxide dismutase; SP, specific granules.
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microthrombotic tendencies in coronavirus infections.
The catecholamine and histamine receptors of the
phagocytes reveal an additional neuroendocrine effect
pathway on this system. In contrast, the glucocorticoids
have a significant suppressive effect on both the phago-
cytosis and the concomitant destructive biosynthetic
processes.27

Neutrophil extracellular traps (NETs) consist of extracel-
lular fibers, mainly composed of PMN DNA, which bind
pathogens, primarily bacteria, and yeasts.28 NETs elimi-
nate germs with antimicrobial proteins, for example,
cathepsin, elastase, and histones; maintain a high local
concentration of antimicrobial elements; and destroy mi-
crobes extracellularly independent of phagocyte uptake.
NETs also serve as a physical barrier that prevents further
spread of the pathogens.29 NETs facilitate immune-
mediated fibrin formation and microvascular clotting
by various mechanisms including recruitment and acti-
vation of platelets; therefore, they probably contribute
to several facets of COVID-19.30

THE ANTIOXIDANT SYSTEM
The tissue-related antioxidants defend against adverse

effects of free radicals. The primary antioxidants mitigate
the production of derived free radicals from initial radi-
cals by modification into less harmful molecules. This
group of antioxidants consists of superoxide dismutase,
the enzyme breaking down the superoxide radical into
hydrogen peroxide; the glutathione peroxidase amend-
ing the hydrogen peroxide and lipid peroxides to harm-
less substances; and the metal-binding proteins, such as
ferritin and coeruloplasmin, that limit the hydroxyl free
radical production by eliminating the ferro ion
availability.
The secondary antioxidants, for example, a-tocopherol,

b-carotin, uric acid, bilirubin, and albumin, entrap free
radicals to hinder chain reactions, and the tertiary line
of antioxidants repair the biomolecules damaged by
free radicals, that is, DNA repair enzymes, methionine-
sulfoxide reductase, and so on.27

THE ROLE OF HEV IN THE IMMUNE CASCADE
The site for phagocyte extravasation is the postcapillary

HEV. The distribution of HEV in time and location is dy-
namic, depending on the place of immune system acti-
vation, concomitant inflammatory response, and this
process is functionally regulated and reversible. The
endothelium on HEV expresses adhesion molecules to
coordinate the leukocyte homing; the adhesion mole-
cules are regulated by soluble factors, mainly cytokines
IL-1, INFg, and tumor necrosis factor-a.26

The HEV activation is further facilitated by the local
vascular smooth muscle cell production of NO, IL-1, and
IL-6; the expression of P-selectin and PAF increases on
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the endothelial surface within minutes. After the cellular
bond with the PMNs, the endothelium produces IL-8 and
expresses E-selectin after several hours or days.31,32 The
experimental blockage of selectins by a polysaccharide
has reduced the myocardial reperfusion injury in an ani-
mal model, well demonstrating the destructive nature of
immune cell overreaction on the affected organ tissue.33

The P-selectin molecules are not available on “resting”
endothelium, but highly expressed in diseased organs,
facilitating the homing and migration of phagocytes.31

The activated granulocytes can damage the endothelial
surface, leading to initiation of the coagulation
cascade.34-37 The free radicals are known to have a pro-
thrombotic effect, facilitating platelet aggregation by
inhibiting antithrombin III38 and modifying the prostacy-
clin synthase effect.39 Thrombin is a potent P-selectin
activator, so a vicious circle of phagocyte attraction,
endothelial damages, local coagulation, and facilitated
coagulation by PAF on the HEV endothelial surface33,40,41

may explain the microthrombotic tendencies observed
in COVID-19-affected organs in severe infection.

FOCUS ON ESTABLISHED ISCHEMIC HEART
DISEASE IN CORONAVIRUS INFECTION
The role of the phagocyte system and free radical load

in ischemic heart disease, especially reperfusion tissue
injury and arrhythmias, is a well-researched field. The ef-
fect of SARS-CoV-2 infection on the heart is not
completely established yet, but there are signs that the
coronavirus may also cause myocarditis and might inter-
fere with pre-existing coronary disease.
Increased expression of P-selectin was detected in

atherectomy specimens from patients with unstable
angina, mainly located on the endothelial surfaces.
The pathogenetic importance of increased cellular ac-
tivity is also reinforced by the expression of cellular
adhesion molecules on circulating phagocytes, and
even the amount of soluble P-selectin is markedly
higher in unstable angina.33 In blood samples obtained
from the coronary sinus in patients with unstable
angina, an increased level of MAC-1 adhesion molecule
was registered on phagocytes. Further studies have
demonstrated in histological samples from reperfused
ischemic myocardium in a canine model that CD64-
positive monocytes are present in the first hour of
reperfusion in the HEV and perivascular connective tis-
sue. The extracellular fluid extracted from the canine
heart revealed increased phagocyte content in the first
4 hours after successful reperfusion. Initially, the PMN
proportion was higher,42 which was changed to MPH
dominance at the fourth hour. The initial chemotactic
activity was due to C5a, and then shifted to TGFb1,
which was regulated by the monocyte chemoattrac-
tant protein.43 These mechanisms are essential in the
repair of the ischemic damage, although in case of
overshoot, they are likely to result in further myocardial
damage. In an experimental model with induced inter-
cellular adhesion molecule-1 cellular surface expression,
the PMNs showed an increased adherence to isolated
myocytes and higher free radical discharge.44 Morita
et al45 demonstrated a higher MPH content on reper-
fused myocytes, in comparison with nonreperfused
ones.
All these data suggest that so long as the reperfusion is

well controlled and early after myocardial ischemia, the
phagocyte system has an essential role in the damage
repair. However, once the process overshoots, further
damage on top of the initial ischemic insult occurs. In
SARS-CoV-2 infection, especially with a high viral over-
load, the RAS is highly activated, overstimulating the
phagocyte and free radical cascade, which has an
adverse effect not only in ischemic heart disease but in
other tissue types, even in the pulmonary vasculature
as well.1,33,46

MICROVASCULAR DISEASE, THE POSSIBLE
PRIMARY TARGET OF THE COVID DISEASE
CASCADE
Emerging data regarding the SARS-CoV-2 infection

suggest that an overreactive immune responseda “cyto-
kine storm”dcan be observed in severe or fatal out-
comes.22,23 This reinforces the role of phagocytes in the
widespread tissue damage, attacking first on the micro-
vasculature, and then extending damage in the specific
tissue not only on the cells but also in the intercellular
space. The initial 4 to 6 days of “honeymoon period” in
a less symptomatic COVID-19 disease and sudden wors-
ening in respiratory compromise matches with the tissue
life cycle of phagocytes. As we have discussed before, the
activated HEV expresses PAF on the endothelial surface,
leading to platelet recruitment. The free radicals are also
prothrombotic, plus the damaged tissues also trigger
thrombocytes, and the local coagulation is initiated,
resulting in microvascular thrombosis in the first stage
of the process. The procoagulant activity has been re-
ported by several groups found in SARS-CoV-2-infected
lung tissue samples showing microthrombi47; recently,
Lautenbach et al from the University of Pennsylvania
published a remarkable phenomenon of “COVID toe” as
a sign of infection in less symptomatic patients, espe-
cially in young.
The role of early anticoagulation becomes even more

relevant in patients with elevated coagulation markers
indicative of a process that does not resemble the path-
ognomic of acute disseminated intravascular coagulop-
athy. Reports from intensive care units (ICUs) have also
highlighted the high cumulative incidence of venous
thromboembolism in COVID-19 pneumonia in the
absence of typical disseminated intravascular coagulop-
athy,48,49 and even when patients received pharmaco-
logic thromboprophylaxis. Klok et al48 found a 31%
incidence of thrombotic complicationsdacute
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pulmonary embolism, deep venous thrombosis,
ischemic stroke, myocardial infarction, and systemic
arterial embolismdin ICU patients treated with standard
doses of thromboprophylaxis, in their analysis of three
academic hospitals in the Netherlands. Lodigiani et al49

described a cumulative rate of 27.6% of arterial or venous
thrombotic events within 24 hours of ICU admission in
Lombardy.
Heparin has a potential role in binding to the viral spike

proteins as well as downregulating IL-6, which would
further support its early application in the infection.
Mummery et al50 demonstrated that in solution, heparin
at low concentration provided marked protection of IL-6
from digestion with a protease specific for Lys residues.
Second, their results showed that IL-6 binds to immobi-
lized heparin.50 Based on these data and theories, several
proactive approaches using early therapeutic anticoagu-
lation or intensified pharmacologic prophylaxis have
been reported. Atallah et al51 suggest that for patients
at high risk of thromboembolism, that is, those with
respiratory rate >24/min, O2 saturation <90%, increased
D-dimers, and elevated fibrinogen levels, intravenous
heparin administration with an activated partial throm-
boplastin time target of 60 to 85 seconds and ultrasound
screening for deep venous thrombosis should be consid-
ered. For low-risk, non-ICU patients having a D-dimer <3
mcg/mL, 40 mg of enoxaparin twice daily is recommen-
ded; at a level >3 mcg/mL, 1 mg/kg of enoxaparin twice
daily is suggested.51

THE IMPACT OF AGE IN THE INFECTIOUS
PROCESS
In current reports, especially from Europe, most fatal-

ities were observed in the septa- and octogenarian pop-
ulation. There are several debates present regarding this
phenomenon; one is undoubtedly a contributor, namely
that the elderly usually have chronic comorbidities, and
less physiologic reserve. On the other hand, with aging,
the responsiveness of the immune system is declining;
therefore, age could be a protective factor against the
overreaction of the immune system. The experience
from the current pandemic suggests that advanced
age is associated with worse clinical outcomes, including
higher mortality.52

Some reports have mentioned a possible role of pre-
existing hypertension as significant comorbidity in se-
vere COVID-19 infections requiring intensive therapeu-
tic care involving mechanical ventilation.53 With
increasing age, the RAS axis faces a shift in the
balanced proportion of ACE and antagonizing ACE2
enzymes in favor of the former.54 In addition, the AT1
receptor density is increased in elderly,55 especially in
patients on chronic ACE inhibitor (ACEI) treatment,
as the body works against with upregulation of AT1 re-
ceptors compensating the constant lower level of ATII.
This also highlights the importance of chronic
antihypertensive therapy, namely the ACEI vs angio-
tensin II receptor blocker (ARB) debate. If the ACE
enzyme is blocked, approximately 40% of ATII is still
produced on an ACE-independent pathway (Fig 1) by
cathepsin and different kinases.16 Therefore, ARBs
may offer some degree of protection against an
increased activation of the phagocyte system by
directly blocking the AT1 receptors. The ATII acting
on the AT2 receptor results in an additional anti-
inflammatory effect; the latter receptor is not blocked
by ARBs. Because of the viral ACE2 knockout, the
angiotensin (1-7) levels drop; hence the MAS receptor
anti-inflammatory effect is reduced with both antihy-
pertensives. However, the protective effect might be
somewhat influenced by a variable degree of chronic
upregulation of AT1 receptors in individuals on long-
term antihypertensive ARB treatment.
Recent observational studies suggested no harm asso-

ciated with the use of ACEI/ARB antihypertensive medi-
cations in COVID-19 patients.52,56,57 One of these large
studies revealed a potential benefit with ARBs; the haz-
ard ratio of all-cause mortality measured 0.79 (95% con-
fidence interval [CI]: 0.72-0.86) in comparison with 0.89
with ACEI (95% CI: 0.81-0.96) and with 1.08 on other anti-
hypertensives (95% CI: 1.00-1.18).52 Statin administration
may be advantageous in lowering the risk of in-hospital
death, an effect that has also been demonstrated in
some other severe viral infections.58 The particular
benefit associated with these two classes of medications
may relate to the microvascular pathophysiology associ-
ated with the disease. Statin therapy is known for its
pleiotropic effects including modulation of the immune
response, reducing ROS and increasing antioxidants, and
downregulating signaling pathways including NFkB,
which are the most relevant mechanisms in this
context.59

The utility of ACEIs in COVID-19 is more controversial in
the literature.60 Numerous publications investigate
generally ACEI/ARB medication in the pandemic; hence
in generic antihypertensive therapy, they are considered
to represent the same medication group. The dosage va-
riety, especially in clinical and experimental models, in-
fluences successful outcome comparability.61 However,
their different pharmacologic targets within the RAS
may have an effect on the course of disease in SARS-
CoV-2 infections; therefore, randomized, prospective,
controlled, large-scale studies would be required to
clarify this question. Studies concentrate on ACE2 levels
that are elevated in both chronic ACEI and ARB treat-
ment, although the protective anti-inflammatory action
is provided mainly by ARBs on ATR1 (Fig 1). Nevertheless,
abrupt cessation of ACEI administration is discouraged
for fear of precipitating adverse acute cardiovascular out-
comes.60,61 In consideration of the pathophysiologic
background, controlled transitioning of ACEIs to ARBs
might be the therapy of choice.
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Another component of awide variety inCOVID-19presen-
tationmay relyon the fact that thereare congenital andac-
quired factors in the immune response of the host also
influenced by the aging process.54 The ACE and ACE2
gene polymorphism and differences in the genetic back-
ground of immunomodulation in different populations
are inevitably complicating the clinical picture.7,8,62,63

POSSIBLE THERAPEUTIC TARGETS OF THE
“CYTOKINE STORM” AND EXCESSIVE
PHAGOCYTE ACTIVATION IN SARS-CoV-2
INFECTION
Early administration of an ARB, before suffering from

significant shortness of breath, as long as the patient’s
blood pressure asymptomatically allows (#110 mm Hg)
might show beneficial outcomes in reducing the cyto-
kine burst, particularly in those who were previously not
treated with ACEIs/ARBs, hence having no AT1 receptor
upregulation to reduce the efficacy of the therapy.52,56,57

Microthrombotic activity, especially on the capillary
level, may require minimum a low-molecular-weight
heparin prophylaxis even in the early stage of the disease.
As the thrombotic activity results from the phagocyte
activation cascade and free radical discharge,34,35 addi-
tional acetyl-salicylic acid therapy could be beneficial,
also as an antipyretic supplement.63 At a later stage,
the tissue damage results in an additional thrombotic
lesion, and the delayed treatment may not show suffi-
cient outcomes.
Even in case of initial mild respiratory symptoms, short-

ness of breath, steroid inhalation (eg, budesonide) might
be considered to hinder the excessive activation of
phagocyte cascade at the point of viral entry.27 There
are recent trials that initiated investigating the benefits
of this treatment in Japan. Systemic steroid treatment
should be avoided as much as possible to keep the
generic host immune response at an acceptable level
against the coronavirus.
Furthermore, the application of antioxidants and scav-

enger molecules may reduce the extent of pulmonary
damages at progressive respiratory symptoms/devel-
oping ARDS. Xanthine oxidase inhibitor administration,
for example, allopurinol and oxypurinol, may reduce
the free radical-caused tissue damages, as it was already
proven in myocardial function preservation after
ischemia-reperfusion.64,65 A scavenger, the mercapto-
propionyl-glycine has a proven beneficial effect in high-
risk myocardial ischemia. This molecule is a potent
hydroxyl free radical scavenger, well tolerable for long-
term oral application, and penetrates into the intracel-
lular space.66,67 The supplementary zinc therapy was
proven successful in SARS infections as the ion reduces
the viral protein transcription.68

In emerging ARDS, the bacterial superinfection is often
fatal and present in a high proportion of patients.3 Azi-
thromycin, a macrolide antibiotic, is carried in high
concentrations by phagocytes to the site of infection
and has a reasonably long half-life time, usually the life
cycle of the phagocyte migrating in the tissues. The tis-
sues damaged by both coronavirus and free radicals
are prone to bacterial superinfection. Still, the phago-
cytes are in this exact location, where the bacterial super-
infection has a gate of entry. Starting azithromycin at the
initial stage of respiratory complaints may hinder bacte-
rial colonization of the virus-infected microvascular site.
Direct targeting of the “cytokine storm” on one of its trig-

gering components, IL-6, has demonstrated promising
outcomes in Brescia, Italy. In 100 consecutive patients
developing ARDS, the IL-6 receptor antagonist mono-
clonal antibody, tocilizumab, was administered in a
dosage of 8 mg/kg by two consecutive intravenous infu-
sions 12 hours apart, and a significant improvement in
the course of pneumonitis was observed, including respi-
ratory condition stabilization, disease regression on imag-
ing studies, an increase in lymphocyte count, and a
decrease in C-reactive protein, fibrinogen, and ferritin
levels.69 Earlier administration, at the stage of starting
shortness of breath, should be considered to achieve
even more beneficial outcomes, as in manifested ARDS,
the lungs already have suffered froma significant, partially
persistent hit by the burst of the immune response.

SUMMARY
The SARS-CoV-2 virus pandemic poses a major chal-

lenge currently to our global society. Although there
are emerging data about the nature of the viral infection,
we do not yet have any specific treatment with proven
efficacy. In this review, we have summarized a possible
major pathophysiologic pathway of the novel coronavi-
rus infection using data from the previous SARS
epidemic and emerging evidence from the COVID-19
pandemic. We believe that the excessive activation of
RAS, resulting in an uncontrolled response of the phago-
cyte system, represents the key element of the severe
respiratory system damage culminating in life-
threatening ARDS. Understanding the chain reaction
involving the RAS and phagocyte system may assist us
better in using the therapeutic timeframe in the corona-
virus therapy.
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