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Abstract: Recently, hierarchical hybrid structures based on the combination of semiconductor mi-
cro/nanostructures and noble metal nanoparticles have become a hot research topic in the area
of surface-enhanced Raman scattering (SERS). In this work, two core-satellite nanostructures of
metal oxide/metal nanoparticles were successfully introduced into SERS substrates, assembling
monodispersed small silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO
NSs) or monodispersed ZnO nanospheres (m-ZnO NSs) core. The p-ZnO NSs and m-ZnO NSs
were synthesized by the pyrolysis method without any template. The Ag NPs were prepared by
the thermal evaporation method without any annealing process. An ultralow limit of detection
(LOD) of 1 × 10−13 M was achieved in the two core-satellite nanostructures with Rhodamine 6G
(R6G) as the probe molecule. Compared with the silicon (Si)/Ag NPs substrate, the two core-satellite
nanostructures of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates have higher en-
hancement factors (EF) of 2.6 × 108 and 2.5 × 108 for R6G as the probe molecule due to the enhanced
electromagnetic field. The two core-satellite nanostructures have great application potential in the
low-cost massive production of large-area SERS substrates due to their excellent SERS effect and
simple preparation process without any template.

Keywords: SERS; hierarchical hybrid structures; semiconductor micro/nanostructures; noble metal
nanoparticles; metal oxide

1. Introduction

Surface-enhanced Raman Scattering (SERS) as a powerful spectroscopy technique
has been widely used in chemistry, pharmacy, food safety, and environmental monitoring
field due to its high sensitivity, fast response, and non-destructive data collection [1–6].
Due to the strong localized surface plasmon resonance (LSPR), noble metal nanoparticles
are widely applied in SERS substrate [7–11]. Noble metal nanoparticles can be produced
by chemical synthesis, chemical etching, electrochemical deposition, sputtering, thermal
evaporation method, nanosphere lithography, electron beam lithography, and laser an-
nealing [12–14]. Noble metal colloidal nanoparticles produced by the chemical synthesis
method are prone to aggregate, which will reduce the activity and stability of SERS sub-
strates. The noble metal colloidal nanoparticles by other methods are hard to make highly
uniform and reproducible SERS signals due to the existence of random hot spots [15,16].
The hierarchical hybrid SERS substrates composed of semiconductor micro/nanostructures
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and noble metal nanoparticles are research highlights to address this issue [17–20]. The
semiconductor micro/nanostructures can provide a larger surface area and better support
structures for the deposition of metal nanoparticles, which can increase the density and
intensity of hot spots. The different hierarchical hybrid SERS substrates have been con-
structed based on the different semiconductors, such as Zinc oxide (ZnO), aluminum oxide
(AAO), cupric oxide (CuO), and titanium dioxide (TiO2) [21–26]. Among these semicon-
ductors, the application of ZnO in SERS substrates is particularly prominent due to the
advantages of various preparation methods, high chemical stability, high refractive index
nature, abundant anisotropic nanostructures, adequate sources, and popular price [27–29].
Various ZnO micro/nanostructures have been employed in SERS substrates to improve
Raman performance, such as nanosheet, nanorod, and nanocone [30–33]. However, most of
the ZnO micro/nanostructures in recent typical works have been synthesized with the help
of the template, as shown in Table 1. This property may limit the application of ZnO mi-
cro/nanostructures in the low-cost massive production of SERS substrates. Therefore, the
massive production of hierarchical hybrid SERS substrates based on semiconductor/noble
metals is still a big challenge in a simple and low-cost production way.

Table 1. Raman performance of recent typical SERS substrates based on the combination
of ZnO micro/nanostructures and noble metal nanoparticles (RhB1 is Rhodamine B; 4-ATP2

is 4-Aminothiophenol).

Structures Template-Free
Synthesis Probe Molecules EF LOD Ref.

ZnO nanocone/Au
NPs/Ag nanoclusters No RhB1 6.5 × 109 10−12 M [30]

Porous ZnO
nanosheets/Ag NPs No R6G 3.5 × 107 10−11 M [31]

Urchin-like
ZnO-nanorod/Ag NPs No 4-ATP2 1.7 × 107 10−12 M [32]

ZnO nanorods/Ag NPs Yes R6G 1.9 × 107 10−10 M [33]
p-ZnO NSs/Ag NPs Yes R6G 2.6 × 108 10−13 M

This workm-ZnO NSs/Ag NPs Yes R6G 2.5 × 108 10−13 M

In this work, the two core-satellite nanostructures of metal oxide/metal nanoparticles
were successfully introduced into the SERS substrates assembling monodispersed small
silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO NSs) or
monodispersed ZnO nanospheres (m-ZnO NSs) core. The p-ZnO NSs and m-ZnO NSs
were synthesized by the pyrolysis method without any template. The schematic diagram
for the fabrication process of p-ZnO NSs and m-ZnO NSs is shown in Figure 1. The p-ZnO
NSs methanol solution and m-ZnO NSs methanol solution were dripped onto the cleaned
silicon (Si) substrates, respectively. The Ag NPs were prepared by the thermal evaporation
method without any annealing process, as shown in the supporting information. The
ultralow limit of detection (LOD) of 1 × 10−13 M is achieved in the two core-satellite
nanostructures with Rhodamine 6G (R6G) as the probe molecule. Compared with the
Si/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and
Si/m-ZnO NSs/Ag NPs SERS substrates have higher enhancement factors (EF) of 2.6 × 108

and 2.5× 108 for R6G as the probe molecule due to the enhanced electromagnetic field. The
two core-satellite nanostructures of p-ZnO NSs/Ag NPs and m-ZnO NSs/Ag NPs have
great application potential in the low-cost massive production of large-area SERS substrates
due to their excellent SERS effect and simple preparation process without any template.
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by the hydrolysis reaction for Zn(OAc)2·2H2O according to Equation (1). The pure ZnO 
nanocrystal would be formed by the dehydration and acetic acid removal of the Zn-com-
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Figure 1. Schematic diagram for the fabrication process of p-ZnO NSs and m-ZnO NSs by the
pyrolysis method.

2. Results

As schematically displayed in Figure 1, the p-ZnO NSs and m-ZnO NSs were prepared
by the pyrolysis method with a two-stage reaction process. Microwave heating may
promote the hydrolysis of Zn(OAc)2·2H2O in diethylene glycol (DEG). The reactions may
occur according to the following two equations [34]. The Zn-complex would be formed
by the hydrolysis reaction for Zn(OAc)2·2H2O according to Equation (1). The pure ZnO
nanocrystal would be formed by the dehydration and acetic acid removal of the Zn-complex
during the aging time, as shown in Equation (2). These fresh-formed ZnO nanocrystals
spontaneously aggregate to form ZnO nanoparticle clusters in the role of intermolecular
forces [35].

Zn(CH3COO)2 + xH2O ∆→ Zn(OH−)x (CH3COO−)2−x + xCH3COOH (1)

Zn(OH−)x (CH3COO−)2−x
∆→ ZnO + (x− 1)H2O + (2− x)CH3COOH (2)

The size of ZnO nanoparticle clusters can be tuned by simply adjusting the amount of
Zn-complex precursors while keeping all other parameters constant. The varying additions
of Zn-complex solution may arise slight differences in the amount of H2O and crystal
nuclei. Both higher H2O content and higher Zn-complex concentration could accelerate the
hydrolysis of Zn(OAc)2 and dehydration of the newly formed Zn-complex, thus leading
to more nuclei in the bulk solution and finally smaller ZnO nanoparticle clusters [35].
The higher Zn-complex concentration in the synthesis of m-ZnO NSs may lead to more
nuclei in the bulk solution and finally smaller ZnO nanoparticle clusters with smaller
diameters. To verify the quality of the p-ZnO NSs and m-ZnO NSs, the X-ray diffraction
(XRD) spectra and the X-ray photoelectron spectroscopy (XPS) spectra were measured as
shown in Figure 2a–c. The (100), (002), (101), and (102) diffraction peaks of the wurtzite
ZnO structure (JCPDS card No. 36–1451) can be seen in the two XRD spectra, which means
that the p-ZnO NSs and the m-ZnO NSs both are crystalline. The stronger and sharper
peaks of the m-ZnO NSs mean that m-ZnO NSs have higher crystallinity compared with
the p-ZnO NSs. The grain sizes of ZnO nanocrystals are approximately estimated to be
9 nm and 14 nm for p-ZnO NSs and m-ZnO NSs by using the Scherrer equation from the
full width at half maximum (FWHM) of diffraction. Both XPS spectra of Zn 2p for the
p-ZnO NSs and m-ZnO NSs present two independent symmetrical peaks with binding
energies at 1022 and 1045 eV. The two independent symmetrical peaks have been attributed
to Zn 2p3/2 and Zn 2p1/2, respectively. The binding energy difference between the two
peaks is 23 eV, which is consistent with the characteristic value of ZnO. The data show
that Zn in the p-ZnO NSs and m-ZnO NSs mainly exist in the Zn2+ form [36,37]. The XPS
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spectrum of O 1s for the p-ZnO NSs presents a symmetrical peak with binding energies
at 532 eV, which is attributed to the lattice oxygen of O2− (Zn-O) in p-ZnO NSs. The XPS
spectrum of O 1s for the m-ZnO NSs presents two non-independent shoulder peaks, which
can be fitted into two Gaussian peaks at 532 eV and 530 eV. The peaks of 532 eV and 530 eV
could be separately attributed to the lattice oxygen of O2− (Zn-O) in m-ZnO NSs and -OH
(Zn-OH) absorbed onto the surface of the ZnO NSs due to structural defects [37,38]. The
data show that p-ZnO NSs have higher quality due to no structural defects compared with
the m-ZnO NSs.
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Figure 2. XRD spectra (a) and XPS spectra of (b) Zn 2p and (c) O 1s electron regions for the p-ZnO
NSs and the m-ZnO NSs. SEM images of p-ZnO NSs (d,e) and m-ZnO NSs (h,i). Statistical histograms
for the diameters of the p-ZnO NSs (f) and the m-ZnO NSs (j). Schematic diagram of p-ZnO NSs (g)
and the m-ZnO NSs (k).

The morphologies of the synthesized p-ZnO NSs at the first stage were obtained by
scanning electron microscopy (SEM), as shown in Figure 2d,e. The statistical histograms
for the diameters of the p-ZnO NSs are shown in Figure 2f. The p-ZnO NSs consists of ZnO
nanospheres (ZnO NSs) with different diameter distribution ranging from 50 to 420 nm,
and the average diameter of p-ZnO NSs is about 200 nm. A series of the large ZnO NSs
(≥200 nm) surrounded by a ring of small ZnO NSs (<200 nm) can be regarded as a major
component of the p-ZnO NSs. The average diameter of large ZnO NSs and small ZnO
NSs in p-ZnO NSs are 276 nm and 135 nm, respectively. The schematic diagram of the
p-ZnO NSs is shown in Figure 2g. The morphologies of the synthesized m-ZnO NSs at
the two stages were measured by SEM, as shown in Figure 2h,i. The statistical histograms
for the diameters of the m-ZnO NSs are shown in Figure 2j. The m-ZnO NSs consist of
homogeneous oval-shaped ZnO NSs with long diameter distribution ranging from 108
to 223 nm and short diameter distribution ranging from 91 to 201 nm. An oval-shaped
ZnO NSs can be surrounded by a ring of other oval-shaped ZnO NSs in the m-ZnO NSs.
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The average long diameter and short diameter for oval-shaped ZnO NSs are 162 nm and
132 nm, respectively. The schematic diagram of the m-ZnO NSs is shown in Figure 2k.
In Figure 2f,j, the statistical diameters of the p-ZnO NSs and the m-ZnO NSs are fitted
with Gaussian distribution. The width of the particle size distribution is described by the
polydispersity index (Pdi). The relative polydispersity can be calculated by % Polydispersity
(%Pd) = Coefficient of variation = (PDI)1/2 × 100. The samples with %Pd < 20% can be
seen as monodisperse as a rule of thumb. The detailed calculation method of %Pd can be
found in the supporting information. The calculated %Pd of diameter for p-ZnO NSs, long
diameter, and short diameter for the m-ZnO NSs are 45.5%, 15.2%, and 16.7%, respectively.
Thus, the definitions of p-ZnO NSs and m-ZnO NSs in this work are correct. From the SEM
images with lower magnification (Figure 2d,h), the p-ZnO NSs and the m-ZnO NSs can
both effectively cover the substrates with large areas, which means that they can be applied
to the large area SERS substrates. From the magnified SEM images of p-ZnO NSs and
m-ZnO NSs (Figure S1), the surface of ZnO NSs is rough, which reveals that a single ZnO
NSs with a rough surface is formed by the aggregate of an amount of ZnO nanocrystals [39].
The rough surface of ZnO NSs is more favorable for the formation of regular and orderly
Ag NPs on the ZnO NSs surface to enhance SERS activity [40].

The deposition thickness of Ag by thermal evaporation does have an important
influence on the size and morphology of the Ag NPs on the ZnO NSs. The SEM images of
p-ZnO NSs/Ag NPs and m-ZnO NSs/Ag NPs with different deposition thicknesses (3 nm,
6 nm, 9 nm) of Ag by thermal evaporation are shown in Figure S2. Compared with the Ag
NPs on the p-ZnO NSs or m-ZnO NSs with deposition thickness of 3 nm and 9 nm, the Ag
NPs on the p-ZnO NSs or m-ZnO NSs with deposition thickness of 6 nm has a stronger
sense of particles. Too small deposition thickness may make the small scale of Ag NPs
form obvious Ag NPs. Too large deposition thickness is easy to make too large Ag NPs
and tend to form continuous films. The localized LSPR effect of Ag NPs in the hot spots
is exist at the nanogaps between two Ag NPs or the apex of metal tips. Thus, the Ag NPs
with a deposition thickness of 6 nm are deposited on the p-ZnO NSs and m-ZnO NSs to
prepare the SERS substrate. The two core-satellite nanostructures are successfully prepared
as shown in the SEM images of p-ZnO NSs/Ag NPs (Figure 3a,b) and m-ZnO NSs/Ag
NPs (Figure 3e,f). Relatively regular and orderly Ag NPs are adsorbed on the surface of the
p-ZnO NSs or m-ZnO NSs due to the interaction between molecules. Relatively regular
and orderly Ag NPs look like satellites around the core of zinc p-ZnO NSs or m-ZnO NSs.
The statistical histograms for the diameters of the Ag NPs and gaps between adjacent Ag
NPs on the surface of p-ZnO NSs and m-ZnO NSs are shown in Figure 3c,g. The average
diameter of the Ag NPs and the average gap between adjacent Ag NPs on the surface of
p-ZnO NSs are about 32 nm and 3 nm, respectively. The average diameter of the Ag NPs
and the average gap between adjacent Ag NPs on the surface of m-ZnO NSs are about
25 nm and 10 nm, respectively. The schematic diagrams of the p-ZnO NSs/Ag NPs and
m-ZnO NSs/Ag NPs are shown in Figure 3d,h. These results suggest that the diameter
of the Ag NPs and the average gap between adjacent Ag NPs are different at the same
substrates with the same deposition thicknesses of Ag. The average diameter of nano
spherical p-ZnO NSs is larger than that of oval-shaped m-ZnO NSs, which shows that
the p-ZnO NSs have smaller curvature. The smaller curvature may be more favorable for
the growth of Ag NPs, which may be one of the influencing factors for the larger average
diameter of the Ag NPs and smaller the average gap between adjacent Ag NPs on the
surface of p-ZnO NSs. The influencing factors for the formation process of Ag NPs on the
ZnO templates are very complex, such as the shape, size, roughness, crystallinity of ZnO,
and so on. In contrast, Ag NPs with the same deposition thicknesses of Ag were deposited
on the Si substrate by thermal evaporation. The SEM images, statistical histograms for
the diameters, and schematic diagram of the Ag NPs on the surface of the Si substrate are
shown in Figure 4. The average diameter of the Ag NPs and the average gap between
adjacent Ag NPs on the surface of the Si substrate are about 36 nm and 8 nm, respectively.
The shape and number of Ag NPs on the surface of p-ZnO NSs or m-ZnO NSs become
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more spherical and more numerous compared with that on the surface of the Si substrate. It
is worth noting that all Ag NPs were prepared without any annealing operation. It means
that the p-ZnO NSs and m-ZnO NSs provide supportive structures for the deposition of
Ag NPs on them, which play a key role in controlling the size and shape of Ag NPs [41].
The structured surfaces of p-ZnO NSs and m-ZnO NSs can provide large structure areas
for the deposition of Ag NPs, which is beneficial to increasing the number and surface area
of Ag NPs [42].
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Figure 4. SEM images (a), statistical histograms for the diameters (b), and schematic diagram of the
Ag NPs on the surface of Si substrate (c).

The Ag NP, p-ZnO NS, m-ZnO NS, p-ZnO NS/Ag NP, and p-ZnO NS/Ag NP struc-
tures were prepared on quartz glass substrates to test the absorption spectra. The absorp-
tion spectra of the different structures on quartz glass were measured by using a PERSEE
TU-1900 spectrophotometer with a wavelength range of 300 nm−900 nm. The absorp-
tion spectra of the different structures on quartz glass are shown in Figure S3a. The Ag
NPs, p-ZnO NSs/Ag NPs, and m-ZnO NSs/Ag NPs show a wide absorption range of
300 nm–900 nm. The strong absorption peak of 543 nm is shown in Ag NPs and p-ZnO
NSs/Ag NPs, which is the absorption peak of Ag NPs [43]. The m-ZnO NSs/Ag NPs have
a strong absorption peak of 420 nm, which corresponds to the m-ZnO NSs itself absorption
peak. The excitation wavelength of 532 nm was chosen for the SERS measurements because
it is closer to the absorption peak of the Ag NPs used in this work. A series of Raman
spectra were detected to evaluate the Raman enhancement ability of the two core-satellite
nanostructures as SERS substrates under the same conditions. The concentration varying
of R6G as the probe molecule is from 10−7 to 10−13 M. The initial Raman spectra have
fluorescence from R6G since it absorbs at the wavelength of the used laser. The fluorescence
backgrounds from R6G are removed to obtain clearer Raman signals and better analyze
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the role of the substrate. Initial Raman spectra and Raman spectra after removing the
fluorescence background are shown in Figure S3b for R6G with a concentration of 10−7 M
on the Si/p-ZnO NSs/Ag NPs substrates. The ten Raman spectra were collected from
ten batches for R6G with each concentration on the different substrates. The intensity of
the SERS signal of R6G with each concentration is similar for different peaks. The Raman
spectra given in this work are the average of 10 Raman spectra. Characteristic peaks of
613, 774, 1185, 1315, 1365, 1508, and 1650 cm−1 can be seen in the Raman spectra for R6G
with different concentrations, as shown in Figure 5a,d. The vibrational modes for the
characteristic peaks are listed in Table S1. The typical Raman spectrum of R6G is still seen
for R6G with a concentration of 10−13 M in Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag
NPs substrates. The SERS signal intensities are gradually increased along with the increase
in concentrations for the R6G molecular. The EF of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO
NSs/Ag NPs substrates were calculated according to the equation:

EF =
ISERS/NSERS

IRS/NRS

where ISERS and IRS are the intensity of the SERS and the normal Raman scattering under
identical test conditions, respectively. NSERS and NRS are the number of probe molecules
within the laser spot for SERS and normal Raman intensities experiments, respectively. Due
to the same laser spot (1 µm), the value of NRS/NSERS was roughly calculated according
to the ratio of the average areal density (AD) for R6G on flat Si substrate and SERS sub-
strates. The detailed calculation process of the average AD can be seen in the Supporting
Materials. The ADs of the R6G with a concentration of 10−13 M on the fabricated Si/p-ZnO
NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates are around 3.0 × 10−2 and 2.4 × 10−2

molecules/µm2, respectively. A larger AD means better adhesion properties of the surface
of the Si/p-ZnO NSs/Ag NPs substrate for the R6G. The adhesion properties can be an-
alyzed according to the water contact angle. The water contact angles of the Si/p-ZnO
NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates are 50◦ and 30◦, as shown in Figure S4.
The surface of Si/p-ZnO NSs/Ag NPs with higher contact angle exhibits greater adhesion
of water droplets to the surface, which can increase the areal density of analytes on the
substrate and thus improve the LOD and the SERS effect [44,45]. The Raman intensities
of the 613 cm−1 peak of R6G with 10−13 M concentration are ~167 and 123 for Si/p-ZnO
NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates, respectively. The flat Si substrate
was selected as the reference substrate. The Raman spectra of R6G with 10−2–10−5 M
concentrations on the flat Si substrates were detected and are shown in Figure S5. The
typical Raman spectrum of R6G can be still seen at 10−4 M concentration for R6G in flat
Si substrates, which come from the interference effect due to the multiple reflections of
the incident laser [46,47]. The Raman intensity at 613 cm−1 peak of R6G with 10−4 M
concentration is 416 for the flat Si substrate. The calculated EFs of Si/p-ZnO NSs/Ag NPs
and Si/m-ZnO NSs/Ag NPs substrates are 2.6 × 108 and 2.5 × 108, respectively. These
results indicate that the Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs as SERS
substrates have high sensitivities.

To investigate the quantitative detection ability, the linear relationship between the
Raman intensities at 613 cm−1 or 774 cm−1 peaks with the R6G molecular concentrations
was fitted and is shown in Figure 5b,e. The error bars represent the intensity distribution of
the 613 cm−1 and 774 cm−1 peaks from 10 spots on one sample. All error values are small
compared with the corresponding Raman intensities, which shows good reproducibility of
different samples. The high determination coefficients (R2) of 0.995–0.998 for 613 cm−1 and
774 cm−1 peaks indicate the good linear relationship of Raman intensities with different
R6G concentrations. Meanwhile, the covering of the R6G on the surface of SERS substrates
can be analyzed with the fitting of adsorption Langmuir isotherm between Raman intensi-
ties and the logarithm of R6G concentrations. The relationships between Raman intensities
at 613 cm−1 and 713 cm−1 peaks and the logarithm of R6G concentrations (10−7–10−13 M)
were fitted according to the Langmuir isotherm model, which is shown in Figure S6. The
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R2 for the Langmuir isotherm fitting of Si/p-ZnO NSs/Ag NPs substrates are 0.984 and
0.951 for 613 cm−1 peaks and 774 cm−1. The R2 for the Langmuir isotherm fitting of
Si/m-ZnO NSs/Ag NPs substrates are 0.959 and 0.955 for 613 cm−1 peaks and 774 cm−1.
The non-linear Langmuir isotherm fitting may be more suitable for the actual measurement
of wide range concentrations.
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Figure 5. Raman spectra of R6G with different concentrations on the Si/p-ZnO NSs/Ag NPs (a) and
Si/m-ZnO NSs/Ag NPs (d) substrates. Calibration curve of Raman intensity at 613 cm−1 versus the
concentration of R6G (b) and (e). Ten Raman spectra of R6G with a concentration of 10−7 M on the
Si/p-ZnO NSs/Ag NPs substrate from different batches (c). Intensities distribution of 613 cm−1 peaks
of the ten Raman spectra for the Si/p-ZnO NSs/Ag NPs or Si/m-ZnO NSs/Ag NPs substrates (f).

In addition to sensitivity, homogeneity and reproducibility play an important role in
practical applications of the SERS substrates. The ten Raman spectra of R6G with 10−7 M
concentration were collected on the Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs
substrates from different batches, as shown in Figures 5c and S7. The relative intensities
and the average value at the 613 cm−1 peaks of the ten Raman spectra are shown in
Figure 5f. Minor fluctuations around the average intensity are exhibited in all intensities
of the 613 cm−1 peak. The corresponding relative standard deviation (RSD) value are
about 8.51% and 10.47% for the Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs
substrates. These data demonstrate that the two core-satellite nanostructures can realize the
homogeneous Raman signal and excellent reproducibility. The detection of malachite green
(MG) molecule in aquatic products is a very important link. To investigate the potential of
the Si/p-ZnO NSs/Ag NPs substrates in practical application, the Raman spectra of MG
as probe molecule with different concentrations (10−5–10−10 M) were measured and are
shown in Figure S8a. The typical Raman peaks (804, 912, 1179, 1372, and 1625 cm−1) of
the MG molecule are detected at high concentrations. The Raman intensities continued
to weaken along with the decrease of the concentrations for the MG molecule. The main
characteristic peaks of the MG molecule could be also observed at 10−10 M concentration,
which further indicates that the Si/p-ZnO NSs/Ag NPs substrates as SERS substrates
have a high sensitivity. The linear fit calibration curve (R2 = 0.981) is illustrated in Figure
S8b with error bars. For the MG molecule, the logarithms of the SERS intensities and the
concentrations are proportional, which indicates the promising application prospects of
this substrate.
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To investigate the SERS effect of the two core-satellite nanostructures, some contrast
substrates were prepared with different structures. The Raman spectra of contrast substrates
are shown in Figure 6a for R6G with concentrations of 10−7 M, 10−4 M, or 10−2 M. The
corresponding intensities of 613 cm−1 peak and 774 cm−1 peaks for different substrates
are shown in Figure 6b. The weak Raman intensities are achieved for the Si/p-ZnO
NSs or Si/m-ZnO NSs substrates of R6G at 10−2 M concentration. The obvious Raman
enhancement of Si/Ag NPs can be observed to R6G at 10−7 M concentration. At the same
concentration of R6G, the intensities of the SERS signal of Si/p-ZnO NSs/Ag NPs and Si/m-
ZnO NSs/Ag NPs substrates are much stronger than that of Si/Ag NPs substrates. This
means that the presence of p-ZnO NSs or m-ZnO NSs can amplify the electromagnetic field
enhancement effect. To verify the mechanism, the local electromagnetic field distributions
of different structures were simulated by the COMSOL software. The simulated structures
are Si/p-ZnO NSs, Si/m-ZnO NSs, Si/Ag NPs, Si/p-ZnO NSs/Ag NPs, or Si/m-ZnO
NSs/Ag NPs. The thickness of the Si substrate is 1 µm. The diameter of Ag NPs and the
gap between Ag NPs for Si/Ag NPs structures are 36 nm and 8 nm, respectively. The
diameter of large ZnO NSs, the diameter of small ZnO NSs, the diameter of Ag NPs, and
the gap between Ag NPs for Si/p-ZnO NSs/Ag NPs structure are 276 nm, 135 nm, 32 nm,
and 3 nm, respectively. The long diameter and short diameter for the m-ZnO NSs are
162 nm and 132 nm, respectively. The diameter of Ag NPs, and the gap between Ag
NPs for Si/m-ZnO NSs/Ag NPs structure are 25 nm and 10 nm, respectively. In this
simulation, the incident light (532 nm) irradiates perpendicularly onto the substrate surface.
The simulated electromagnetic field intensity distributions are shown in Figure 7a–e, and
the best 1000 points of corresponding intensities are shown in Figure 7f. For the Si/p-
ZnO NSs and Si/m-ZnO NSs substrates, the maximum electromagnetic field intensities
(Emaxs) are 3.2 times and 4.6 times incident electromagnetic field (E0), which shows that
the electromagnetic field is enhanced due to the presence of the ZnO NSs structures. The
enhancement of the electromagnetic field of ZnO NSs is mainly concentrated in the cavity
formed by the gap between adjacent ZnO NSs and the gap between ZnO NSs and substrates.
Therefore, weak Raman intensities of R6G (10−2 M concentration) can be obtained for the
Si/p-ZnO NSs or Si/m-ZnO NSs substrates. The Emax of Si/Ag NPs substrate is 7.4 times
E0, which should be ascribed to the LSPR effect in the hot spots that exist at the nanogaps
between adjacent Ag NPs [48]. The Emaxs of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO
NSs/Ag NPs substrates are 59.9 times and 19.2 times E0, which are higher than those of
the Si/Ag NPs substrates. The enhanced electromagnetic intensities are more obvious
in the cavities formed by the gap between adjacent ZnO NSs and the gap between ZnO
NSs and substrates. Compared with the Si/m-ZnO NSs/Ag NPs substrate, the Si/p-ZnO
NSs/Ag NPs substrate has stronger electromagnetic field enhancement. The enhanced
electromagnetic intensities of the two core-satellite nanostructures can be attributed to the
more and stronger hot spots due to the following factors: (i) the higher density of Ag NPs
on the three-dimensional ZnO NSs due to the increased surface area; (ii) the effectively
regulated shape, size and gap of Ag NPs due to the rough surface of ZnO NSs from the
abundant anisotropic nanostructures; and (iii) the formed optical cavities from the gap
between adjacent ZnO NSs and the gap between ZnO NSs and substrates.



Nanomaterials 2022, 12, 1286 10 of 13
Nanomaterials 2022, 12, x FOR PEER REVIEW 10 of 13 

600 800 1000 1200 1400 1600 1800
0

20k

40k

60k

80k

× 10

× 10

10−4 M Si
10−2 M Si/m-ZnO NSs
10−2 M Si/p-ZnO NSs

R6G

10−7 M Si/Ag NPs
Si/m-ZnO NSs/Ag NPs

10−7 M

10−7 M

Si/p-ZnO NSs/Ag NPs

 

 
In

te
ns

ity
 (a

.u
.)

Raman shift (cm−1)

(a)

× 10

0

1x104

2x104

3x104

Ag NPsp-ZnOm-ZnO

p-
Zn

O
/A

g 
N

Ps

10−7 M

10−7 M

10−7 M
10−2 M

10−2 M
× 10

× 10

In
te

ns
ity

 (a
.u

.)  613 cm−1

 774 cm−1

× 10
10−4 M

m
-Z

nO
/A

g 
N

Ps

Si

(b) R6G

Figure 6. (a) Raman spectra of R6G with concentrations of 10−7 M, 10−4 M, or 10−2 M for different 
substrates. (b) Corresponding Raman intensities of the 613 cm−1 and 774 cm−1 peaks for different 
substrates. 

Figure 7. The x-z views of simulated electromagnetic field distributions at 532 nm for the Si/p-ZnO 
NS (a), Si/m-ZnO NS (b), Si/Ag NP (c), Si/p-ZnO NS/Ag NP (d), and Si/m-ZnO NS/Ag NP (e) sub-
strates. Corresponding simulated electromagnetic field intensities of best 1000 points for different 
substrates (f). 

3. Conclusions
In summary, the two core-satellite nanostructures of metal oxide/metal nanoparticles 

were successfully applied to the SERS substrate assembling monodispersed small Ag NPs 
on large p-ZnO NSs or m-ZnO NSs core. An ultralow LOD of 1 × 10−13 M is achieved in 
the two core-satellite nanostructures with R6G as the probe molecule. Compared with the 
Si/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and 
Si/m-ZnO NSs/Ag NPs SERS substrates have higher EF of 2.6 × 108 and 2.5 × 108 for R6G 
as the probe molecule due to the enhanced electromagnetic field. The two core-satellite 
nanostructures of p-ZnO NSs/Ag NPs and m-ZnO NSs/Ag NPs have great application 
potential in the low-cost massive production of large-area SERS substrates due to their 
excellent SERS effect and simple preparation process without any template. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, 
Experimental section, Figure S1: Magnified SEM images of p-ZnO NSs (a) and m-ZnO 
NSs (b), Table S1: Vibrational mode for characteristic peaks of R6G, Figure S2: Raman 
spectra of R6G with concentrations of 10−2–10−5 M on the flat Si substrates, Figure S3: Ten 
Raman spectra of R6G with a concentration of 10−7 M on the Si/m-ZnO NSs/Ag NPs sub-
strate from different batches, Figure S4: Contact angle images of Si/p-ZnO NSs/Ag NPs 

Figure 6. (a) Raman spectra of R6G with concentrations of 10−7 M, 10−4 M, or 10−2 M for dif-
ferent substrates. (b) Corresponding Raman intensities of the 613 cm−1 and 774 cm−1 peaks for
different substrates.

Nanomaterials 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

600 800 1000 1200 1400 1600 1800
0

20k

40k

60k

80k

× 10

× 10

10−4 M Si
10−2 M Si/m-ZnO NSs
10−2 M Si/p-ZnO NSs

R6G

10−7 M Si/Ag NPs
Si/m-ZnO NSs/Ag NPs

10−7 M

10−7 M

Si/p-ZnO NSs/Ag NPs

 

 

 

 
In

te
ns

ity
 (a

.u
.)

Raman shift (cm−1)

(a)

× 10

 
0

1x104

2x104

3x104

Ag NPsp-ZnOm-ZnO

p-
Zn

O
/A

g 
N

Ps

10−7 M

10−7 M

10−7 M
10−2 M

10−2 M
× 10

× 10

In
te

ns
ity

 (a
.u

.)

 

 

 613 cm−1

 774 cm−1

× 10
10−4 M

m
-Z

nO
/A

g 
N

Ps

Si

(b) R6G

 

Figure 6. (a) Raman spectra of R6G with concentrations of 10−7 M, 10−4 M, or 10−2 M for different 
substrates. (b) Corresponding Raman intensities of the 613 cm−1 and 774 cm−1 peaks for different 
substrates. 

 
Figure 7. The x-z views of simulated electromagnetic field distributions at 532 nm for the Si/p-ZnO 
NS (a), Si/m-ZnO NS (b), Si/Ag NP (c), Si/p-ZnO NS/Ag NP (d), and Si/m-ZnO NS/Ag NP (e) sub-
strates. Corresponding simulated electromagnetic field intensities of best 1000 points for different 
substrates (f). 

3. Conclusions 
In summary, the two core-satellite nanostructures of metal oxide/metal nanoparticles 

were successfully applied to the SERS substrate assembling monodispersed small Ag NPs 
on large p-ZnO NSs or m-ZnO NSs core. An ultralow LOD of 1 × 10−13 M is achieved in 
the two core-satellite nanostructures with R6G as the probe molecule. Compared with the 
Si/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and 
Si/m-ZnO NSs/Ag NPs SERS substrates have higher EF of 2.6 × 108 and 2.5 × 108 for R6G 
as the probe molecule due to the enhanced electromagnetic field. The two core-satellite 
nanostructures of p-ZnO NSs/Ag NPs and m-ZnO NSs/Ag NPs have great application 
potential in the low-cost massive production of large-area SERS substrates due to their 
excellent SERS effect and simple preparation process without any template. 
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Figure 7. The x-z views of simulated electromagnetic field distributions at 532 nm for the Si/p-
ZnO NS (a), Si/m-ZnO NS (b), Si/Ag NP (c), Si/p-ZnO NS/Ag NP (d), and Si/m-ZnO NS/Ag
NP (e) substrates. Corresponding simulated electromagnetic field intensities of best 1000 points for
different substrates (f).

3. Conclusions

In summary, the two core-satellite nanostructures of metal oxide/metal nanoparticles
were successfully applied to the SERS substrate assembling monodispersed small Ag NPs
on large p-ZnO NSs or m-ZnO NSs core. An ultralow LOD of 1 × 10−13 M is achieved in
the two core-satellite nanostructures with R6G as the probe molecule. Compared with the
Si/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and
Si/m-ZnO NSs/Ag NPs SERS substrates have higher EF of 2.6 × 108 and 2.5 × 108 for R6G
as the probe molecule due to the enhanced electromagnetic field. The two core-satellite
nanostructures of p-ZnO NSs/Ag NPs and m-ZnO NSs/Ag NPs have great application
potential in the low-cost massive production of large-area SERS substrates due to their
excellent SERS effect and simple preparation process without any template.
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47. Vančo, L’.; Kotlár, M.; Kadlečíková, M.; Vretenár, V.; Vojs, M.; Kováč, J. Interference-enhanced Raman scattering in SiO2/Si
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