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Abstract: The Sharpe ratio is a widely used risk-adjusted performance measurement in economics
and finance. Most of the known statistical inferential methods devoted to the Sharpe ratio are
based on the assumption that the data are normally distributed. In this article, without making any
distributional assumption on the data, we develop the adjusted empirical likelihood method to obtain
inference for a parameter of interest in the presence of nuisance parameters. We show that the log
adjusted empirical likelihood ratio statistic is asymptotically distributed as the chi-square distribution.
The proposed method is applied to obtain inference for the Sharpe ratio. Simulation results illustrate
that the proposed method is comparable to Jobson and Korkie’s method (1981) and outperforms the
empirical likelihood method when the data are from a symmetric distribution. In addition, when the
data are from a skewed distribution, the proposed method significantly outperforms all other existing
methods. A real-data example is analyzed to exemplify the application of the proposed method.

Keywords: adjusted empirical likelihood; coverage probability; nonparametric; nuisance parameter;
Sharpe ratio

1. Introduction

In financial economics, Sharpe ratio, defined in [1], provides a measure of a fund’s excess returns
relative to its volatility. Let µ be an expected return of an asset, and σ be the corresponding standard
deviation. The Sharpe ratio is defined as

sr =
µ− R f

σ
,

where R f is a known risk-free rate of return. Note that the larger the Sharpe ratio is, the more return
the investor is getting per unit of risk. It is the standard convention in economics and finance research
to report the Sharpe ratio. Therefore, the Sharpe ratio is very well studied as a measure of the mutual
fund performance in the financial economic areas such as the portfolio analysis, the pricing of capital
asset under conditions of risk and the general behavior of stock market prices. The popularity of the
Sharpe ratio in financial economics is not only from its simplicity; the study of the Sharpe ratio will
also directly result in deeper understandings in portfolio selections. Assuming that the asset returns
are all normally distributed, Sharpe [1] showed that picking an asset with the largest Sharpe ratio is
equivalent to finding a solution of the investor’s expected utility problem.

Under the normality assumption, Jobson and Korkie [2] proposed a parametric test for the Sharpe
ratio, which is a very popular inferential method in economics and finance. However, as shown by
many researchers [3–6], it is very common for the actual returns of the investments, such as the hedge
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funds, to have a skewed distribution. When the normality assumption of the investment returns
is violated, the commonly used approximate distributions of the Sharpe ratio which are developed
under the normality assumption become problematic. Model mis-specification is a big concern for
all parametric approaches since a misspecified model may lead to biased results. Since the Sharpe
ratio is only involved in the first two moments of the data, one of the themes attempting to resolve
the problem is to consider higher order moments. There was abundant literature along this line of
research such as [7–10] and references therein.

Another line of research to the problem is to use the nonparametric approach. In this article,
we adopt the empirical likelihood (EL) method. Empirical likelihood-type method was first used by
Thomas and Grunkemeier [11] to study the survival probabilities estimated by the Kaplan–Meier
curve. Owen [12,13] formalized the EL as a unified inference method under more general settings.
The EL-based confidence region has several beneficial properties: it does not impose prior constraints
on region shape, is transformation invariant and Bartlett correctable [14]. Qin and Lawless [15] applied
the EL to inference on parameters that are generated from estimating equations. When the sample size
is small and/or the dimension of the estimating equations is high, the EL approach can be hindered by
an empty set problem and under-coverage problem. In order to resolve the empty set problem and
improve the coverage probability of the statistical tests of the ordinary EL methods, Chen et al. [16]
proposed the adjusted empirical likelihood (AEL) method by adding one artificial point into the data
set. However, only problems without nuisance parameters were considered in [16]. In this article,
we focus on the AEL method with nuisance parameters in addition to the parameter of primary
interest. We develop the asymptotic theory of the AEL method when nuisance parameters exist,
and demonstrate the use of the AEL method in the application of the Sharpe ratio. Our simulation
studies show that the proposed approach provides a beneficial robust alternative to the inference
of the Sharpe ratio. The proposed AEL method is comparable to Jobson and Korkie’s method [2]
and outperforms the EL method when the data are from a symmetric distribution, while for data
generating from a skewed distribution, the proposed method outperforms all other existing methods,
especially for small sample sizes. The AEL method preserves the advantage of the EL method:
the shape of confidence region based on the AEL ratio reflects the observed data set, while the
confidence region based on other methods (excluding EL) is always symmetric about the point
estimator. Therefore, the AEL approach allows the data to speak for themselves, and is robust against
model mis-specification.

The rest of the article is organized as follows. A brief introduction to the EL and
AEL methodologies is given in Section 2. In Section 3, we study the asymptotic property of the
AEL method with nuisance parameters. In Section 4, simulation studies are conducted to investigate
the precision of the coverage probabilities in the context of the Sharpe ratio. In Section 5, a real-data
example is analyzed to illustrate the application of the proposed method. Some concluding remarks
are given in Section 6. The technical details are presented in the Appendix.

2. Review of the Empirical Likelihood and the Adjusted Empirical Likelihood Methods

Let X1, X2, . . . , Xn ∈ Rd be the independent and identically distributed random vectors following
distribution F with mean µ and a nonsingular covariance matrix. The corresponding observed values
are denoted by x1, x2, . . . , xn. The EL function for the population distribution F is given by

L(F) =
n

∏
i=1

F({xi}),

where F({xi}) is the probability of observing the value xi in a sample from F. Denote pi = F({xi}).
The EL function can also be written as

L(F) =
n

∏
i=1

pi. (1)
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Clearly , we have 0 ≤ pi ≤ 1 and ∑n
i=1 pi = 1. Suppose that the goal is to construct a confidence

region for the mean µ. The profile EL function of µ is defined to be

LEL(µ) = sup
{ n

∏
i=1

pi : pi ≥ 0, i = 1, . . . , n;
n

∑
i=1

pi = 1;
n

∑
i=1

pixi = µ
}

.

Qin and Lawless [15] showed that extra information in the form of a set of estimating equations
can be used to improve the maximum empirical likelihood estimators (MELE) and the EL ratio
confidence intervals. Suppose a k dimensional parameter θ is associated with F via a vector g(x, θ) of
r ≥ k functionally independent unbiased estimating functions. Then for each j = 1, 2, . . . , r, we have
an estimating equation EF{gj(x, θ)} = 0, which can be written in the vector form as EF{g(x, θ)} = 0.
The profile EL function of θ is

LEL(θ) = sup
{ n

∏
i=1

pi : pi ≥ 0, i = 1, . . . , n;
n

∑
i=1

pi = 1;
n

∑
i=1

pig(xi, θ) = 0
}

, (2)

and hence, the profile log-EL function is

lEL(θ) = sup
{ n

∑
i=1

log pi : pi ≥ 0, i = 1, . . . , n;
n

∑
i=1

pi = 1;
n

∑
i=1

pig(xi, θ) = 0
}

. (3)

The constrained optimization problem in (3) can be solved by applying the method of
Lagrange multipliers. Let λ and t = (t1, . . . , tr)τ be Lagrange multipliers and define

H = ∑
i

log pi + λ(1−∑
i

pi)− ntτ ∑
i

pig(xi, θ). (4)

Then maximizing (3) is equivalent to maximizing H unconditionally. Setting the first partial
derivative of (4) with respect to pi equal to 0, we have

∂H
∂pi

=
1
pi
− λ− ntτ g(xi, θ) = 0,

n

∑
i=1

pi
∂H
∂pi

= n− λ = 0 ⇒ λ = n

and
p̂i =

1
n[1 + tτ g(xi, θ)]

,

where t can be expressed as a function of θ by solving the following equations

n

∑
i=1

p̂ig(xi, θ) = 0. (5)

Now the profile log-EL function can be written as

lEL(θ) = −
n

∑
i=1

log
[
1 + tτ g(xi, θ)

]
− n log n. (6)

Note that (5) can be rewritten as

n

∑
i=1

g(xi, θ)

1 + tτ g(xi, θ)
= 0. (7)
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Now maximizing (3) has been transformed into an equivalence of solving (7) for the Lagrange
multiplier t. In practice, this is achieved by numerical methods. One such algorithm devoted to this
end can be found in [16]. A necessary and sufficient condition for the existence of a solution t̃ = t̃(θ)
in (7) is that 0 must be an inner point of the convex hull expanded by {g(xi, θ), i = 1, 2, . . . , n}.

Qin and Lawless [15] further showed that under some regularity conditions, the EL ratio statistic
W0(θ0) = 2[lEL(θ̃)− lEL(θ0)] converges to χ2

k in distribution as the sample size n approaches infinity.
This result is the foundation for hypothesis test on θ and can be used to construct an approximate
100(1− α)% confidence region of θ,

IEL = {µ : W0(θ) ≤ χ2
k(1− α)},

where χ2
k(1 − α) is the 100(1 − α)% quantile of the χ2

k distribution, and α is a pre-specified
significance level.

Under mild conditions, the convex hull of {g(xi, θ), i = 1, 2, . . . , n} contains 0 as its inner point
with probability 1 as n→ ∞. However, if θ is not close to the true parameter θ0 or when the sample
size n is small, the convex hull is not guaranteed to contain 0. Thus, there is a nonzero probability
that the solution to (7) does not exist. It results computational issues when solving the constrained
optimization problem in the definition of the EL function. This is known as the empty set problem or
the convex hull problem in the EL literature.

In order to resolve the convex hull problem, Chen et al. [16] proposed the AEL method by adding
one artificial point into the data set. Denote

gi = gi(θ) = g(xi, θ)

and

ḡn = ḡn(θ) =
1
n

n

∑
i=1

gi.

Let an = o(n) be a given positive constant. Define a new point by

gn+1 = gn+1(θ) = −
an

n

n

∑
i=1

gi = −an ḡn.

Similar to (2), the profile log-AEL function if defined as

lAEL(θ) = sup
{ n+1

∑
i=1

log[(n + 1)pi] : pi ≥ 0, i = 1, . . . , n + 1;
n+1

∑
i=1

pi = 1;
n+1

∑
i=1

pigi = 0
}

,

and we have

lAEL(θ) = −
n+1

∑
i=1

log
[
1 + tτ g(xi, θ)

]
, (8)

where t satisfies
n+1

∑
i=1

g(xi, θ)

1 + tτ g(xi, θ)
= 0. (9)

The introduction of gn+1 guarantees a solution for t in (7). Let the maximum AEL estimator θ̃ be
the maximizer of lAEL(θ). Under mild regularity conditions, the AEL ratio statistic W(θ0) = 2[lAEL(θ̃)−
lAEL(θ0)] converges to χ2

k in distribution as the sample size n approaches infinity. Chen et al. [16]
showed that the statistical tests based on the AEL method give better coverage probabilities than those
obtained by the original EL method.
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In this article, we propose using the AEL method to conduct inference on the Sharpe ratio.
Suppose the data is from a population with mean µ and variance σ2. Without loss of generality, for the
rest of this article, define the Sharpe ratio of the population as

sr =
µ

σ
.

In this case, the parameter vector is θ = (µ, σ2), and the parameter of interest is sr. The set of
estimating functions can either be

X− µ and (X− µ)2 −
( µ

sr

)2
(10)

or
X− σ(sr) and (X− σ(sr))2 − σ2, (11)

which has µ or σ as the nuisance parameter, respectively. Chen et al. [16] discussed the AEL-based
inference without nuisance parameters. Building upon [15,16], we develop the convergence theorem
for the AEL with nuisance parameters as shown in the next section.

3. The Adjusted Empirical Likelihood Method in the Presence of Nuisance Parameters

Suppose a k dimensional parameter θ = (θ1, θ2) consists a q dimensional parameter of interest θ1

as well as a (k− q) dimensional nuisance parameter θ2. The goal is to test H0 : θ1 = θ0
1 for some given

θ0
1 . In order to obtain inference for θ1 using the AEL method, the asymptotic results in [16] need to be

reconstructed and extended to the situation with nuisance parameters.
First, we develop a lemma about positive definite matrices. If a matrix M is positive semidefinite,

we denote it by M ≥ 0; if M is positive definite, we write M > 0. For any matrices G and H, let G ≥ H
denote that G− H is positive semidefinite, and let G > H denote that G− H is positive definite.

Lemma 1. Let M be a k× k symmetric positive definite block matrix of the form

M =

(
A B
Bτ C

)
,

where A is a q× q matrix, B is a q× (k− q) matrix, and C is a (k− q)× (k− q) matrix. Then C is positive
definite and (

A B
Bτ C

)−1

≥
(

0 0
0 C−1

)
.

The proof of the above lemma is given in Appendix. In order to prove the main theorem, we also
need the following two results about idempotent matrices. The proof of these two results can be found
in [17] (pp. 186–187).

Result 1. A necessary and sufficient condition that Y′AY has a χ2 distribution is that A is idempotent, that is,
A2 = A, in which case the degrees of freedom of χ2 is rank A = trace A.

Result 2. If A, B, A− B are matrices of non-negative quadratic forms and A and B are idempotent, then A− B
is also idempotent.

Based on Lemma (1) and the above two results, we have the following theorem which gives the
asymptotic properties of the AEL ratio test statistic. The theorem is a nonparametric analogue of the
theorem in [18] on the asymptotic distribution of the likelihood ratio. The difference is that Wilks’
theorem is based on parametric likelihood and ours is based on the adjusted empirical likelihood.
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Moreover, it takes into consideration nuisance parameters. We follow the idea of profiling out nuisance
parameters (Corollary 5 in [15] and Corollary 1 in [19]) to perform the AEL ratio test. The proof of the
theorem is provided in Appendix.

Theorem 1. Let θτ = (θ1, θ2)
τ, where θ1 and θ2 are q× 1 and (k− q)× 1 vectors, respectively. For H0 : θ1 = θ0

1,
the profile AEL ratio test statistic is

W(θ0
1) = 2[lAEL(θ̃1, θ̃2)− lAEL(θ

0
1 , θ̃0

2)],

where θ̃τ = (θ̃1, θ̃2)
τ maximizes lAEL(θ) = lAEL(θ1, θ2), and θ̃0

2 maximizes lAEL(θ
0
1 , θ2) with respect to θ2.

Under H0, W(θ0
1)

d−→ χ2
q as n → ∞.

It is worth noticing that Theorem 1 holds true as long as an = op(n). In application, an with higher
orders is usually not recommended, since the AEL ratios are decreasing functions of the adjustment
level an [20]. As suggested by [16], we set an = 1

2 log n for all of the simulations and applications if not
otherwise specified.

Since in Theorem 1 , θ1 is the parameter of interest and θ2 is considered as the nuisance parameter.
We can apply the theorem to the Sharpe ratio by setting θ1 = sr along with θ2 = µ or θ2 = σ2. Therefore,
the AEL ratio statistic under the null hypothesis H0 : sr = sr0 can be either

W(sr0) = 2[lAEL(s̃r, µ̃)− lAEL(sr0, µ̃0)], (12)

or
W(sr0) = 2[lAEL(s̃r, σ̃2)− lAEL(sr0, σ̃2

0 )]. (13)

Our simulation shows that using (12) or (13) as the AEL ratio statistic does not make any significant
difference in the inference of sr.

4. Simulation Study

In order to evaluate the accuracy of the asymptotic chi-square calibration of the AEL method,
we choose the coverage probability as an indicator throughout this section. For some fixed sample size
n and sr0, suppose we have run the simulation m times and s of the simulated W(sr0) are less than the
1− α quantile of χ2

1 for some given α. Then the coverage probability is defined to be s/m, which is
compared with the nominal value 1− α. When m is large, if the coverage probability s/m is close to
1− α, then the level α test for sr will tend to give good performance and χ2

1 is considered an acceptable
reference distribution for W(sr0) at sample size n.

We compare the coverage probability of the proposed method with other methods for sample sizes
n = 20, 50, 200, 500 at nominal values 1− α = 0.9, 0.95. Each coverage probability is obtained from
m = 5000 simulations. The data are generated from the normal distribution with mean µ = 1 and
standard deviation σ = 0.5, t-distribution and the chi-square distributions with various degrees of
freedom. The methods under comparison are the following: the Jobson and Korkie’s method [2] (JK),
the Mertens’s method [21] (Mertens), the usual EL inferential method (EL), application of the delta
method on the asymptotic distribution of the EL estimator of the mean and standard deviation (Delta),
and the proposed method (AEL) with the adjustment level an = 0.5 log n. Jobson and Korkie [2] assumed
that the data are from a normal distribution. By applying the delta method to approximate the mean and
variance of the Sharpe ratio, confidence interval for the Sharpe ratio can then be approximated by the
Central Limit Theorem. Mertens [21] used the skewness and kurtosis to give an adjusted approximation
of the variance of the Sharpe ratio derived in Jobson and Korkie [2] and again obtained the confidence
interval of the Sharpe ratio from the Central Limit Theorem. The approach denoted by Delta is similar
to JK but based on the EL. For the EL method, whenever the convex hull problem occurs for a set of
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simulated data, we use the convention to set the value of the profile log-EL function as negative infinity.
Results are summarized in Table 1.

Table 1. Coverage probabilities of the Sharpe ratio.

1 − α Method n = 20 n = 50 n = 200 n = 500

N(1, 0.25)

0.9

JK 0.8956 0.9022 0.8968 0.9060
Mertens 0.8258 0.8694 0.8894 0.9004

EL 0.8210 0.8760 0.8906 0.9040
AEL 0.8486 0.8874 0.8942 0.9058
Delta 0.8428 0.8840 0.8896 0.8976

0.95

JK 0.9460 0.9488 0.9488 0.9522
Mertens 0.8926 0.9270 0.9414 0.9494

EL 0.8762 0.9214 0.9440 0.9514
AEL 0.8980 0.9312 0.9466 0.9534
Delta 0.9054 0.9334 0.9408 0.9476

t3

0.9

JK 0.8960 0.9004 0.9030 0.9040
Mertens 0.8390 0.8646 0.8782 0.8890

EL 0.8428 0.8738 0.8884 0.8946
AEL 0.8794 0.8896 0.8944 0.8976
Delta 0.8240 0.8586 0.8766 0.8858

0.95

JK 0.9494 0.9538 0.9516 0.9550
Mertens 0.9028 0.9144 0.9326 0.9442

EL 0.9042 0.9268 0.9438 0.9508
AEL 0.9340 0.9402 0.9466 0.9514
Delta 0.8910 0.9092 0.9318 0.9372

t6

0.9

JK 0.8982 0.8984 0.8934 0.8976
Mertens 0.8738 0.8840 0.8900 0.8954

EL 0.8700 0.8860 0.8928 0.8962
AEL 0.8986 0.9018 0.8966 0.8978
Delta 0.8634 0.8828 0.8936 0.9008

0.95

JK 0.9504 0.9482 0.9466 0.9476
Mertens 0.9246 0.9364 0.9426 0.9458

EL 0.9240 0.9394 0.9438 0.9466
AEL 0.9466 0.9470 0.9480 0.9481
Delta 0.9214 0.9330 0.9460 0.9494

χ2
4

0.9

JK 0.9640 0.9532 0.9476 0.9474
Mertens 0.8048 0.8474 0.8676 0.8938

EL 0.7800 0.8352 0.8626 0.8942
AEL 0.8216 0.8536 0.8664 0.8952
Delta 0.8072 0.8354 0.8660 0.8914

0.95

JK 0.9872 0.9808 0.9808 0.9774
Mertens 0.8780 0.9072 0.9278 0.9422

EL 0.8562 0.8972 0.9194 0.9418
AEL 0.8924 0.9126 0.9228 0.9430
Delta 0.8872 0.9046 0.9252 0.9388

χ2
6

0.9

JK 0.9466 0.9476 0.9392 0.9414
Mertens 0.8048 0.8460 0.8760 0.8916

EL 0.7996 0.8392 0.8728 0.8904
AEL 0.8346 0.8568 0.8780 0.8926
Delta 0.8236 0.8524 0.8766 0.8846

0.95

JK 0.9796 0.9776 0.9758 0.9754
Mertens 0.8780 0.9168 0.9352 0.9412

EL 0.8626 0.9032 0.9284 0.9402
AEL 0.8894 0.9156 0.9326 0.9410
Delta 0.8916 0.9170 0.9336 0.9432
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From Table 1, we can see that the AEL method has the most robust performance for various
underlying population distributions. The AEL method always has significantly better performance
over the EL method in terms of coverage probability. When the data is normally distributed,
the JK method performs the best while when the data comes from a skewed distribution, the JK
method performs poorly. For normal data with small sample size, the AEL has slightly less coverage
probabilities than the JK method, while for normal data with sample size larger than 50 and data
from various t distributions, the AEL has comparable performance with the JK method. For all other
situations, the AEL method significantly outperforms all other methods, especially for cases with small
sample sizes.

5. Real Data Analysis

The data we consider is the Nasdaq GS return of the Apple Inc. (Cupertino, CA, USA) from 3 October
2017 to 12 December 2017 (https://finance.yahoo.com/quote/AAPL/). The return is evaluated from the
close price of the current day compared with the close price of the previous day. There are 50 trading days
during the period considered. We use the yearly return rate of the 5-year bonds, which is 2.116%, as the yearly
risk-free return. Therefore, the daily risk-free return rate used in the analysis is 0.02116/252 = 8.397× 10−5.
Based on our data, the Durbin-Watson test statistic is 1.58. Hence, there is no significant evidence of serial
correlation. The qqplot of the returns in Figure 1 reveals some skewness of the data. The confidence intervals
of the Sharpe ratio for the Apple Inc. return data produced by different methods are listed in Table 2. For JK
and Mertens methods, the point estimates are the value of sr that corresponding to the 50% quantile of the
standard normal limiting distribution of their test statistics. The estimates of the Delta, EL and AEL methods
are the value of the maximum EL and AEL estimates, respectively.

−2 −1 0 1 2

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

Theoretical Normal Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 1. Quantile-quantile plot of Apple Inc. return data.

From Table 2, we see that since JK and Mertens methods are moment-based methods,
both their estimates are the same as the sample Sharpe ratio. The Delta, EL and AEL methods are
empirical-likelihood-based methods so the corresponding estimates are different from the previous
two approaches. We observe that there is some difference in the confidence intervals for various

https://finance.yahoo.com/quote/AAPL/
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approaches. Note that the data has some skewness as shown in Figure 1. Based on the observation
from our simulation studies, the skewness will affect the JK method but not the rest of the four methods.
The confidence interval based on our proposed AEL method is more robust and trustworthy.

Table 2. Confidence Intervals of the Sharpe ratio for Apple Inc. return data.

1 − α Method Estimate Lower Bound Upper Bound

0.9

JK 0.1907 −0.0441 0.4254
Mertens 0.1907 −0.0350 0.4163

Delta 0.1926 −0.0329 0.4181
EL 0.1926 −0.0376 0.4140

AEL 0.1926 −0.0479 0.4241

0.95

JK 0.1907 −0.0890 0.4703
Mertens 0.1907 −0.0783 0.4596

Delta 0.1926 −0.0761 0.4613
EL 0.1926 −0.0827 0.4558

AEL 0.1926 −0.0949 0.4683

6. Conclusions

We extended the adjusted empirical likelihood method [16] to obtain inference for the a parameter
of interest in the presence of nuisance parameters. The advantage of the proposed method is that it does
not rely on the distributional assumption of the data. In particular, we applied the proposed method
to obtain inference for the Sharpe ratio. Simulation results show that the proposed method gives the
coverage probabilities closest to the nominal value than those obtained by the standard empirical
likelihood ratio method. Simulation results illustrate that the proposed method is comparable to
Jobson and Korkie’s method [2] and outperforms the EL method when the data are from a symmetric
distribution. In addition, when the data are from a skewed distribution, the proposed method
outperforms all other existing methods.

The time-series properties of investment strategies can have a nontrivial impact on the Sharpe
ratio estimator. In this article, we proposed using empirical-likelihood-based inference for Sharpe ratio.
Empirical likelihood was motivated by independent and identically distributed data. When dealing
with dependent data, we need to account for the dependency structure in constructing confidence
regions for the parameter of interest. In general, the approach to handle dependent data within
the EL framework is parallel to the methods based on parametric likelihood. The extension of our
approach for dependent data is valuable and interesting. We will consider it in future research.
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the results. H.W. conducted the analysis in R as part of her Ph.D. thesis. All authors have read and approved the
final manuscript.
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Appendix

Proof of Lemma 1. Since M is a symmetric positive matrix, we have C > 0 and A− BC−1Bτ > 0;
see Theorem 16.1 in [22]. Noting that M has the following factorization(

A B
Bτ C

)
=

(
I BC−1

0 I

)(
A− BC−1Bτ 0

0 C

)(
I 0

(BC−1)τ I

)
,
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we have(
A B
Bτ C

)−1
=

(
I 0

(BC−1)τ I

)−1 (
(A− BC−1Bτ)−1 0

0 C−1

)(
I BC−1

0 I

)−1
.

Further note that(
0 0
0 C−1

)
=

(
I 0

(BC−1)τ I

)−1 ( I 0
(BC−1)τ I

)(
0 0
0 C−1

)(
I BC−1

0 I

)(
I BC−1

0 I

)−1

=

(
I 0

(BC−1)τ I

)−1 ( 0 0
0 C−1

)(
I BC−1

0 I

)−1
.

Above two factorizations lead to(
A B
Bτ C

)−1
−
(

0 0
0 C−1

)
=

(
I 0

(BC−1)τ I

)−1 [(
(A− BC−1Bτ)−1 0

0 C−1

)
−
(

0 0
0 C−1

)](
I BC−1

0 I

)−1

=

(
I 0

(BC−1)τ I

)−1 (
(A− BC−1Bτ)−1 0

0 0

)(
I BC−1

0 I

)−1
.

Since A− BC−1Bτ > 0, we have (A− BC−1Bτ)−1 > 0, which leads to(
A B
Bτ C

)−1
≥
(

0 0
0 C−1

)
.

Proof of Theorem 1. For simplicity, denote l(θ) = −lAEL(θ). Then θ̃τ = (θ̃1, θ̃2)
τ minimizes

l(θ) = l(θ1, θ2), and θ̃0
2 minimizes l(θ0

1 , θ2) with respect to θ2. Under this new notation, the test
statistic becomes

W(θ0
1) = 2[l(θ0

1 , θ̃0
2)− l(θ̃1, θ̃2)].

First, the following notations are needed in this proof. Let

Q1n(θ, t) =
1

n + 1

n+1

∑
i=1

gi(θ)

1 + tτ gi(θ)
,

Q2n(θ, t) =
1

n + 1

n+1

∑
i=1

1
1 + tτ gi(θ)

(∂gi(θ)

∂θ

)τ
t.

Let θ̃ and t̃ = t(θ̃) be the solution of

Q1n(θ̃, t̃) = 0, Q2n(θ̃, t̃) = 0.

The existence of θ̃ and t̃ = t(θ̃) in a neighborhood of the true parameter θ0 is proved in [15,16].
Note that
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∂Q1n(θ, 0)
∂θ

=
1

n + 1

n+1

∑
i=1

∂gi(θ)

∂θ
,

∂Q1n(θ, 0)
∂tτ

= − 1
n + 1

n+1

∑
i=1

gi(θ)gi(θ)
τ ,

∂Q2n(θ, 0)
∂θ

= 0,
∂Q2n(θ, 0)

∂tτ
=

1
n + 1

n+1

∑
i=1

(∂gi(θ)

∂θ

)τ
.

Taylor expansion of Q1n(θ̃, t̃) and Q2n(θ̃, t̃) at (θ0, 0) gives

0 = Q1n(θ̃, t̃)

= Q1n(θ0, 0) +
∂Q1n(θ0, 0)

∂θ
(θ̃ − θ0) +

∂Q1n(θ0, 0)
∂tτ

(t̃− 0) + op(δn)

0 = Q2n(θ̃, t̃)

= Q2n(θ0, 0) +
∂Q2n(θ0, 0)

∂θ
(θ̃ − θ0) +

∂Q2n(θ0, 0)
∂tτ

(t̃− 0) + op(δn),

where δn = ||θ̃ − θ0||+ ||t̃||. Observing that Q2n(θ0, 0) = 0, we have

Sn

(
t̃

θ̃ − θ0

)
=

(
−Q1n(θ0, 0) + op(δn)

op(δn)

)
, (A1)

where

Sn =

 ∂Q1n
∂tτ

∂Q1n
∂θ

∂Q2n

∂tτ
0


∣∣∣∣∣∣∣
(θ0,0)

.

Now we solve (A1) for an expression of t̃. By the law of large numbers, as n→ ∞

1
n

n

∑
i=1

∂gi(θ)

∂θ
−→ E

(∂g(θ)
∂θ

)
.

Therefore,
∂gn+1(θ)

∂θ
= − an

n

n

∑
i=1

∂gi(θ)

∂θ
= op(n).

Hence applying the law of large numbers again

∂Q1n(θ, 0)
∂θ

=
1

n + 1

n+1

∑
i=1

∂gi(θ)

∂θ

=
1

n + 1

n

∑
i=1

∂gi(θ)

∂θ
+

1
n + 1

∂gn+1(θ)

∂θ

= E
(∂g(θ)

∂θ

)
+ op(1).

Similarly, we can obtain

∂Q2n

∂tτ
= E

∂g(θ)
∂θ

τ

+ op(1) and − ∂Q1n
∂tτ

= Eg(θ)g(θ)τ + op(1).
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Thus as n→ ∞

Sn −→
(

S11 S12
S21 0

)
=

 −Eggτ E
∂g
∂θ

E
∂g
∂θ

τ

0


∣∣∣∣∣∣∣
θ=θ0

.

We can see that

S−1
n −→

(
S−1

11 + S−1
11 S12S−1

22.1S21S−1
11 −S−1

11 S12S−1
22.1

−S−1
22.1S21S−1

11 S−1
22.1

)
,

where S−1
22.1 =

[(
E ∂g

∂θ

)τ
(Eggτ)−1

(
E ∂g

∂θ

)]−1
. Consequently, (A1) can be solved as

(
t̃

θ̃ − θ0

)
= S−1

n

(
−Q1n(θ0, 0) + op(δn)

op(δn)

)
,

which means

θ̃ − θ0 = S−1
22.1S21S−1

11 Q1n(θ0, 0) + op(δn)

t̃ = −(S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 )Q1n(θ0, 0) + op(δn).
(A2)

Note that by Central Limit Theorem

Q1n(θ0, 0) =
1

n + 1

n+1

∑
i=1

gi(θ0)

=
n

1
2

n + 1
· n−

1
2

n

∑
i=1

gi(θ0)− n−
1
2 · an

n + 1
· n−

1
2

n

∑
i=1

gi(θ0)

= n−
1
2 · n−

1
2

n

∑
i=1

gi(θ0) + op(n−
1
2 ),

which implies √
nQ1n(θ0, 0) −→ N(0, Eggτ) and Q1n = Op(n−

1
2 ). (A3)

From (A2), we know that

δn = ||θ̃ − θ0||+ ||t̃|| = Op(n−
1
2 ).

Therefore, we have obtained the desired result

t̃ = −(S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 )Q1n(θ0, 0) + op(n−
1
2 ) (A4)

and
θ̃ − θ0 = S−1

22.1S21S−1
11 Q1n(θ0, 0) + op(n−

1
2 ).

In particular, we can see that

t̃ = Op(n−
1
2 ) and θ̃ − θ0 = Op(n−

1
2 ).

Now we are ready to compute l(θ̃) = l(θ̃1, θ̃2). Taylor expansion yields
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l(θ̃1, θ̃2) =
n+1

∑
i=1

log[1 + t̃ τ gi(θ̃)]

=
n+1

∑
i=1

(
t̃ τ gi(θ̃)−

1
2
(t̃ τ gi(θ̃))

2
)
+ op(1)

= t̃ τ
n+1

∑
i=1

gi(θ̃)−
1
2

t̃ τ
( n+1

∑
i=1

gi(θ̃)gi(θ̃)
τ
)

t̃ + op(1).

(A5)

Note that expanding gi(θ̃) at θ0, we get

gi(θ̃) = gi(θ0) +
∂gi(θ0)

∂θ
(θ̃ − θ0) + Op(n−1),

for i = 1, 2, . . . , n.
Hence

n

∑
i=1

gi(θ̃) =
n

∑
i=1

gi(θ0) +
n

∑
i=1

∂gi(θ0)

∂θ
· (θ̃ − θ0) + Op(1)

= nQ1n(θ0, 0) + nS12S−1
22.1S21S−1

11 Q1n(θ0, 0) + op(n
1
2 )

and

gn+1(θ̃) = −
an

n

n

∑
i=1

gi(θ̃) = op(n
1
2 ).

Consequently, we can obtain the first term of (A5) as

t̃ τ
n+1

∑
i=1

gi(θ̃) = −n Q1n(θ0, 0)τ(S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 )Q1n(θ0, 0) + op(1).

Now we calculate the second term of (A5). For i = 1, 2, . . . , n,

gi(θ̃)gi(θ̃)
τ = gi(θ0)gi(θ0)

τ + Op(n−
1
2 ).

Thus

Σn
i=1gi(θ̃)gi(θ̃)

τ =
n

∑
i=1

gi(θ0)gi(θ0)
τ + Op(n

1
2 ) = −nS11 + Op(n

1
2 ).

Note that
gn+1(θ̃)gn+1(θ̃)

τ = op(n
1
2 )op(n

1
2 ) = op(n).

We have

t̃ τ
( n+1

∑
i=1

gi(θ̃)gi(θ̃)
τ
)

t̃ = −n Q1n(θ0, 0)τ(S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 )Q1n(θ0, 0) + op(1).

Finally, we have

l(θ̃1, θ̃2) = −
n
2

Q1n(θ0, 0)τ(S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 )Q1n(θ0, 0) + op(1). (A6)

Similarly, we can apply the above process to l(θ0
1 , θ̃0

2). The procedures are sketched as follows.
Let θ̃0

2 and t̃0 = t(θ0
1 , θ̃0

2) satisfy

Q1n(θ
0
1 , θ̃0

2 , t̃0) = 0 and Q2n(θ
0
1 , θ̃0

2 , t̃0) = 0.
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Expanding Q1n and Q2n at (θ0
1 , θ0

2 , 0) will produce the linear equations

Hn

(
t̃0

θ̃0
2 − θ0

2

)
=

(
−Q1n(θ0, 0) + op(δ′n)

op(δ′n)

)
, (A7)

where θ0 = (θ0
1 , θ0

2) is the true value of θ, δ′n = ||θ̃0
2 − θ0

2 ||+ ||t̃0|| and as n→ ∞

Hn −→
(

H11 H12
H21 0

)
=

 −Eggτ E
∂g
∂θ2

E
∂g
∂θ2

τ

0


∣∣∣∣∣∣∣
θ=θ0

.

Note that H11 = S11.
Solving (A7) gives us

t̃0 = −(H−1
11 + H−1

11 H12H−1
22.1H21H−1

11 )Q1n(θ0, 0) + op(n−
1
2 ) (A8)

and
θ̃0

2 − θ0
2 = H−1

22.1H21H−1
11 Q1n(θ0, 0) + op(n−

1
2 ).

By Taylor expansion, the above estimations yield

l(θ0
1 , θ̃0

2) = −
1
2

nQ1n(θ0, 0)τ(H−1
11 + H−1

11 H12H−1
22.1H21H−1

11 )Q1n(θ0, 0) + op(1). (A9)

Using (A9) and (A6), we can write

W(θ0
1) =2l(θ0

1 , θ̃0
2)− 2l(θ̃1, θ̃2)

=[(Eggτ)−
1
2
√

nQ1n(θ0, 0)]τ(A− B)[(Eggτ)−
1
2
√

nQ1n(θ0, 0)] + op(1),

where

A = (Eggτ)−
1
2

(
E

∂g
∂θ

)[(
E

∂g
∂θ

)τ
(Eggτ)−1

(
E

∂g
∂θ

)]−1(
E

∂g
∂θ

)τ
(Eggτ)−

1
2

B = (Eggτ)−
1
2

(
E

∂g
∂θ2

)[(
E

∂g
∂θ2

)τ
(Eggτ)−1

(
E

∂g
∂θ2

)]−1(
E

∂g
∂θ2

)τ
(Eggτ)−

1
2

and all the evaluations related to g are performed at the true value θ0. By assumption, E
∂g
∂θ

has rank k and

Eggτ is positive definite. Therefore, both A and B are non-negative definite and idempotent. By Lemma 1(
E

∂g
∂θ

)[(
E

∂g
∂θ

)τ
(Eggτ)−1

(
E

∂g
∂θ

)]−1(
E

∂g
∂θ

)τ

≥
(

E
∂g
∂θ1

, E
∂g
∂θ2

)( 0 0

0
[(

E ∂g
∂θ2

)τ
(Eggτ)−1

(
E ∂g

∂θ2

)]−1

) E ∂g
∂θ1

τ

E ∂g
∂θ2

τ


=
(

E
∂g
∂θ2

)[(
E

∂g
∂θ2

)τ
(Eggτ)−1

(
E

∂g
∂θ2

)]−1(
E

∂g
∂θ2

)τ
,

which means that A − B is non-negative definite. Thus by Result 2, A − B is also idempotent.
From (A3), we can see that (Eggτ)−

1
2
√

nQ1n(θ0, 0) follows the multivariate standard normal distribution
asymptotically. Note that tr(A) = k and tr(B) = k − q. We have tr(A − B) = k − (k − q) = q.
The requirement of Lemma 1 is satisfied, which implies

W(θ0
1)

d−→ χ2
q.
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