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Abstract
Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to
act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed
auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or
potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that
cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean
basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference
viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs
implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and
N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may
constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the
ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.

Introduction

Viruses are known to play key roles in the biogeochemistry
of the global ocean by influencing nutrient cycling,
respiration, particle sinking rates, biodiversity, and transfer
of genetic information [1, 2]. Bacterial mortality due to viral
infection in marine environments varies spatiotemporally
and estimates lie between 10 and 50% of total mortality [2].
Viral infections can exert controls on species composition
and activities of microorganisms [3] and can indirectly
influence microbial metabolic fluxes, energy homeostasis,
and metabolic reprogramming of the host cells [4]. For
example, cyanoviruses have auxiliary metabolic genes
(AMGs) that encode for core photosynthetic reaction cen-
ters [5] and these genes are expressed during infection to
boost photosynthesis and increase viral abundance [6].
Virus-encoded AMGs are known to include genes involved
with nearly all of central carbon metabolism [7], nitrogen
[8], phosphorus [9] and sulfur cycling [10, 11], nucleotide
metabolism [12–14], oxidative stress responses [15] and
methane oxidation [16]. Even degraded prophages can
reprogram metabolisms through altered gene regulation at
the phage integration site [17] or by horizontal gene transfer
enabling niche expansion among susceptible hosts [1]. Due
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to high energy costs, selection pressures, and physiological
constraints, it is presumed that only maintain the most
beneficial AMGs would persist in viral populations [18].

We know little about the ecology of viruses below the
epipelagic zone, particularly in oxygen-deficient water
columns (ODWCs). However, a few biochemically relevant
AMGs have been identified in ODWCs, including an
archaeal virus-encoded ammonia monooxygenase (amoC)
and a SUP05 phage-encoded dissimilatory sulfite reductase
subunit C gene (dsrC), among others [8, 19]. Redoxclines,
or transitional zones between oxygenated and anoxic
waters, provide a continuum of biologically important
electron donors and acceptors, creating a diverse microbial
niche space [20, 21], often harboring unique and low
diversity viral communities with numerous endemic mem-
bers [19, 22]. ODWCs are expanding and intensifying
worldwide [23], and thus it is critical to understand how
these changes shape microbial and viral populations and
their activities.

The Cariaco Basin on the Venezuelan continental
margin exhibits physically and chemically stratified
waters below the mixed layer (<80 m) [24, 25]. The
redoxcline extends from ~200 m down to ~250–350 m
depth; below which the water becomes euxinic, with
sulfide concentrations approaching 80 µM near the basin
floor [26, 27]. Its bottom waters have remained anoxic and
sulfidic for the past ~12,600 years [28]. Biogeochemical
evidence suggests the deep euxinic zone harbors a pre-
dominantly heterotrophic microbial community, poten-
tially involved in nitrogen and sulfur metabolism, and
likely supported by fermentation, sulfur reduction, and
methane metabolism [29–31]. Here, we explore the
diversity of viruses detected in Cariaco Basin, as well as
the variety of genetic elements detected within viral
metagenomes prepared from water samples collected
through the water column (ranging from fully oxygenated
to euxinic) that may play roles in shaping prokaryotic
metabolic activities.

Materials and methods

Water sampling

Hydrographic data and seawater samples from six depths at
the Cariaco Basin Ocean Time-Series station (10.51°N,
64.67°W) were collected during CAR216_2 (6–7 Novem-
ber 2014) aboard the R/V Hermano Gínes. Hydrographic
data for samples discussed are presented in Fig. 1 and
Supplementary Table 1.

Depths sampled coincide with those targeted for pre-
vious studies of microbial communities (e.g., [32]).
Sample collection, processing, and data treatment for O2,

H2S, nutrients, microbial activity measurements and
microscopic counts of prokaryotes and virus-like particles
(VLPs) were performed as described in [33, 34]. Details
on water sampling are provided as Supplementary
Methods.

For the collection of VLPs, cells and particles were first
removed by pre-filtering 10–18 L of seawater through a
0.22 μm Sterivex filter, retaining only the filtrate. Viral
particles were then concentrated by FeCl3 flocculation,
removed from suspension by filtration on a 142-mm dia-
meter 1.0-μm polycarbonate membrane, and stored at 4 °C
until further processing [35] (see Supplementary informa-
tion for details).

Virome processing and assembly

All bioinformatic analysis were conducted using the Ohio
Supercomputer Center [36]. Viral particle metagenomes
were prepared from oxic, redoxcline, and euxinic samples
(Supplementary Table 1) according to methods in [37]. See
full details in Supplementary Methods. The viral sequen-
cing data were deposited in Sequence Read Archive (SRA),
accession numbers: 148 m PRJNA375242 and PRJ
NA375241, 200 m PRJNA365439, 237 m PRJNA375245,
247 m PRJNA375239, 267 m PRJNA405926, 900 m
PRJNA375240. Reads were quality trimmed with Trim-
momatic v.0.33 to remove the Nextera adapters, low quality
leading and trailing sequences, regions with a Phred score
lower than 20 in a sliding window of 4 bp, and reads shorter
than 50 bp [38]. Sequences from the two filters prepared
from 148 m were co-assembled. Quality controlled reads for
individual samples were assembled using Spades 3.11.1
with default settings and k-mer lengths of 21, 33, 55, and 77
nucleotides [39]. Contigs relevant to the data presented in
this paper are deposited on Xenodo (temporary https://doi.
org/10.5281/zenodo.3801713).

Reference and environmental viruses were selected for
genome comparison with the AMG-encoding viruses by
identifying those that fell into the same VconTact viral
genera or those with the lowest e-value and/or highest
number of BLASTp alignments using the RefSeq virus
database with an e-value threshold of <0.0001. Genome
alignments were then conducted by first creating Gen-
Bank files for each virus using Prokka v1.13 with the
“–kingdom Viruses” option, which implements Prodigal
for ORF prediction. Coding sequences (CDS) were then
aligned between each virus using BLASTp as imple-
mented by the Easyfig software version 2.2.2 [40] with a
BLASTp e-value threshold of 0.0001. To determine
whether AMGs on the flanking edges of a viral contig
were part of the phage genome, DNA termini were pre-
dicted using PhageTerm and default settings [41]. AttL,
attR, and putative prophage regions were predicted using
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PHASTER to provide additional lines of evidence to
support the identification of viral genome boundaries. The
read QC and assembly practices implemented in this study
have been recently benchmarked by Roux et al. [42] who
showed that assemblies >500 bp created by MetaS-
PADES, using quality-filtered reads, would result in a less
than 2% chimeric or mis-assembly rate. This rate of
assembly error is even lower for contigs with assembly
coverage values higher than 5× which is the threshold
applied to our data.

Microbial metagenomes

Microbial metagenomes were prepared as described in [32].
See full details in Supplementary Methods. Microbial
metagenome data were deposited in SRA, accession number
PRJNA326482.

Viral identification and annotation of viral and
microbial genes

To identify viral sequences and to separate those from
possible contaminating microbial sequences, we used a
combination of four tools; VirSorter, VirFinder, Contig
Annotation Tool (CAT) and PHASTER [43–46]. Viruses
were identified here as in [47] with slight modification as
follows. High confidence viruses were defined here as those
in VirSorter categories 1 or 2 and those with a VirFinder
score greater than 0.9 [43, 44]. Medium confidence viruses
were those that were only identified by VirSorter or Vir-
Finder, were predicted to be prophages by VirSorter (cate-
gories 4–6) and validated by PHASTER, or were identified
in VirSorter’s category 3 and VirFinder with a score
between 0.7 and 0.9 and were further validated to be viral
by CAT [43–46]. Viral populations were established by

Fig. 1 Biogeochemical data for the cruise when virome samples
were collected (CAR216_2, left panel, 6–7 November 2014) and
additional data collected 3 days later during cruise CAR216_3
(right panel, 10–11 November 2014). Virome samples were collected
from casts 2 to 4 during CAR216_2 (left panel). Corresponding
oxygen concentrations for the two casts from CTD sensors are pre-
sented as black lines and gray lines, respectively. Abundances of VLPs
and prokaryotes from individual samples as measured by microscopy
are presented as unfilled circles and filled triangles, respectively. Error

bars for VLPs and prokaryotes represent the standard errors derived
from counting multiple grids on the same filter. Average VLP (long-
dashed line) and prokaryote (dotted line) abundances were calculated
for duplicate samples. Additional samples were collected 3 days later
during CAR216_3 for sulfide (gray dots), ammonia (black squares),
and nitrate (black circles) (right panel). During CAR216_3 CTD
oxygen profiles were similar (black line). Error bars for sulfide
represent standard error among analytical triplicates from single pre-
served samples.
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clustering the contigs larger than 5 kbp at 95% average
nucleotide identity over 80% of the shortest sequence using
nucmer from the MUMmer 3.23 package [48]. The longest
sequence in each cluster was used as the representative
sequence of the population. Viral ORFs were predicted
using Prodigal version 2.6.3 with the -p meta options [49].
Functional annotations for both viral populations and
microbial contigs were provided as in [50] (see also Sup-
plementary Methods).

Putative AMG validation

Conserved domains and active sites of AMGs were identi-
fied using the NCBI conserved domain search (https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), and an e-value
threshold of 0.001 (Supplementary Table 2). Noncoding
intergenic regions (IGRs) and promoters were predicted
using a python script (https://github.com/SBRG/sbaas/blob/
master/sbaas/resources/get_interregions.py, [51] and the
BPROM software [52, 53] (Supplementary Table 2).
Descriptions of protein domains as well as protein structural
homology of all viral elements were identified using the
PROSITE database [54] and Phyre2 [55], respectively
(Supplementary Table 2; Supplementary Methods).

Known viruses were identified by blastp against the
RefSeq virus database using an e-value threshold of
<0.0001. The reference virus represented by either the
lowest e-value or highest number of alignments was
selected for comparison with the AMG-encoding viruses.
To determine whether AMGs on the flanking edges of a
viral contig were part of the phage genome, DNA termini
were predicted using PhageTerm and default settings [41].
AttL and attR sites predicted by PHASTER along with the
PHASTER predicted prophage regions were used as addi-
tional lines of evidence to support the identification of viral
genome boundaries. Genbank files for each contig encoding
a viral element were created using Prokka v1.13 with the
–kingdom Viruses option. CDS were visualized using
Easyfig version 2.2.2 [40].

Ecological analyses of viral data

Viral populations present in the Cariaco Basin, but not
recovered by the assemblies were identified by recruiting
the Cariaco Basin paired and non-paired end reads to the
488 k viral populations larger than 5 kb identified in the
Tara Oceans dataset [47]. Coverage values were only
retained for contigs which recruited reads to over 75% of
the contig at a read identity of 95% over 90% of the read.
These coverage values were then normalized by metagen-
ome size and contig length to derive a proxy for relative
abundance, which in turn was used to evaluate the local and
global distributions of the identified viral populations

(Fig. 2). Expanded details are described in Supplementary
Methods.

The degree of sample saturation for the Cariaco Basin
samples was calculated in R version 3.4.4 with the R spe-
caccum package using 100 permutations and the jackknife 2
richness estimator (Supplementary Fig. 1) [56]. Nonmetric
multidimensional scaling ordinations of the samples used
Bray–Curtis dissimilarities to discern relationships among
samples based on viral relative abundances (Supplementary
Fig. 2) [56]. Cariaco viromes were hierarchically clustered
alone and then together with the second Global Oceans
Virome from the Tara Oceans datasets (GOV2.0) using the
R package pvclust [57] and Manhattan distances with 100
permutations (Fig. 2). The distribution of identified viruses
was plotted using the R package heatmap3 (Fig. 2).

Viral taxonomic assignments

Genus scale taxonomic assignments were applied to iden-
tified viral populations larger than 10kbp using Vcon-
TACT2 [58]. Viral ORFs along with a text file linking each
ORF to a contig were uploaded to VconTACT2. NCBI
RefSeq v.85 was used to classify specific viral genera.
Specific connections and taxonomic affiliations are avail-
able in Supplementary Table 3.

Results and discussion

Viral particle abundances tracked prokaryotic abundance
through the Cariaco water column with greatest abundances
at 148 m and within the redoxcline (~237–267 m depth,
Fig. 1; Supplementary Table 1). From all six samples we
sequenced a total of 1.5 M reads, 2 orders of magnitude
more sequencing depth than previously derived from any
other ODWC viromes [22] and ~70% of sample sequencing
depth for recent surface ocean viromes [11, 47]. From these
samples we identify 2232 high and medium confidence viral
sequences larger than 1.5 kbp (See Supplementary infor-
mation for details).

Taxonomic clustering of viral sequence space into
species-level delineations, designated as populations, is well
established by gene flow studies and population genetics
theory [47, 59–61] (See Supplementary Information for
expanded discussion). Viral populations are defined as viral
sequences that cluster at 95% identity over 80% of the
shorter sequence and are larger than 5 kbp [47]. From the
Cariaco Basin viromes, 150 million quality trimmed reads
were recovered which assembled into nearly 1 million
contigs. Viral identification and population-scale clustering
as defined above yielded only 2232 clustered viral
sequences with only 647 larger than 5 kb, thus meeting the
requirements to be termed populations representing distinct
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ecological units (Supplementary Fig. 3; Supplementary
Table 4). Comparable community-based viral species
counts from other ODWCs are not currently available.
However, the number of populations we recovered is ~25%
of the number of populations recovered from other viromes
in the surface ocean [47]. By recruiting Cariaco reads to the
Global Ocean Viromes (GOV) 2.0 dataset [47] we detected
an additional 101 viral populations. In total, we recovered
748 viral populations, which recruited on average, 3%
(range 0.7–6.5%) of the reads from the pooled Cariaco
Basin viromes, with the remaining reads being not detec-
tably viral, possibly representing cellular contamination or
novel viruses that failed to assemble (Supplementary

Tables 4 and 5). This is consistent with other ocean virome
studies [7, 62], but lower than what was achieved by two
generations of Tara Oceans virome analyses [11, 47]. The
proportion of viral reads in each sample may reflect a viral
community comprised of viruses unique to the Cariaco
Basin and possibly to other ODWCs (Supplementary Fig. 3;
Supplementary Table 4). Read recruitment to all phage
sequences described below also reveals generally consistent
coverage across all phages (unless otherwise noted), indi-
cating no assembly error. Host predictions for the recovered
viral populations were attempted using k-mer frequency
comparisons, CRISPR spacer matches, and tRNA compar-
isons, however, no statistically robust results were obtained.

0 5 10 15

Cariaco Basin/GOV shared viruses
Sam

ples

Viral Relative Abundance

Cariaco Redoxcline

Cariaco Oxic

Cariaco Euxinic

GOV Surface

GOV DCM
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GOV OMZ

Cariaco Basin
GOV
GOV polar 

Fig. 2 Hierarchical clustering of the normalized relative abun-
dances of viral populations across each as identified in the Tara
Oceans dataset. Each row represents an individual virome, labeled
with the sample name, depth and oceanographic feature. Each column

represents an individual viral population (≥5 kbp), where the normal-
ized relative abundance values (ln transformed) are shown in grays-
cale. Samples from Cariaco Basin are labeled in red.
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A gene-sharing network analysis identified 94 viral
genera comprised of 313 viral populations with 116 outliers
(assigned to a cluster but sharing relatively fewer proteins),
and 319 singletons (Supplementary Table 3). Of the 94
clustered viral genera, 14 were associated with bacter-
iophages infecting Cellulophaga, Acinetobacter, and
Pseudomonas, bacteria detected in 16S rRNA libraries from
the same water samples [32] and 80 had no known reference
viruses and represent novel viruses (Supplementary
Table 3). The AMG-containing viral contigs likely repre-
sent novel viruses at a level greater than genus because of
their lack of clustering in the gene-sharing network analysis,
and we cannot evaluate them further using marker genes as
these contigs lack such marker genes.

Of the 748 Cariaco populations, 219 were also found in the
Tara Oceans dataset, and 529 appeared to be present only in
Cariaco Basin indicating a relatively high degree of endemism
among the identified viral populations (Supplementary
Table 5). Of the viral sequences endemic to Cariaco, 217 were
only detected in anoxic habitats with 177 of these being
exclusively found in the euxinic zone, 28 only detected in the
anoxic redoxcline, 11 found in both the redoxcline and
euxinic zone, and 53 populations had near undetectable
abundances, limiting inference on their distribution. Among
the 219 populations shared with the Tara Oceans dataset, 122
were also shared only among the oxygenated habitats in the
Cariaco Basin indicating a more cosmopolitan lifestyle for
these populations. Only nine populations shared with the Tara
Oceans dataset were found to be exclusive to the euxinic zone
in Cariaco Basin. These nine populations were also found in
27 Tara Oceans stations, 26 of which were from “Tara Polar”
which encompasses samples from within the Arctic circle and
one from the ODWC in the Arabian Sea (Supplementary
Table 5).

While hierarchical clustering is challenging with low
sample saturation, observed clustering between our samples
and those from the Tara Oceans GOV2.0 dataset are likely
driven by nitrate and oxygen concentrations (samples from
200 to 237 m depth with Tara Oceans station 38_MES)
and low species richness and alpha diversity (sample from
267 m with Tara Oceans station 32_DCM) [47]. Two of our
samples (247 and 900 m) do not cluster with any other
sample, likely reflecting novel communities, however low
sampling saturation should be taken into consideration
(Fig. 2).

Sample saturation analyses based upon accumulation
curves imply the bulk of the viral community in each
sample remains unidentified with a >38% new population
detection rate in the final random subsampling (Supple-
mentary Fig. 1). Relative population composition and
abundance displayed a high degree of evenness (Pielou’s J
0.997–0.999) indicating a low proportion of dominant
populations in each sample. The highest observed species

richness and alpha diversity were found in the euxinic zone
at 900 m, followed by the redoxcline samples from 237 m,
oxic sample from 200 m, the redoxcline samples from 247
m, the oxic sample at 148 m, and finally the redoxcline
sample from 267 m (Supplementary Table 4). These indices
must be interpreted with caution because diversity estimates
are heavily influenced by the degree of sample saturation
and sequencing depth (Supplementary Figs. 1 and 3) [63].
Nonetheless, results are roughly similar to those for bacteria
and archaea in Cariaco [32] where diversity was highest in
oxic and euxinic samples and lowest in the redoxcline,
suggesting viral diversity might be driven by the diversity
of microbial hosts. Ordination analysis with Bray–Curtis
dissimilarities revealed no statistically significant patterns
among distributions of viral groups from different samples.
The only exception was a very tight association between
237 and 247 m samples (Supplementary Fig. 2).

Composition of viral populations in the Cariaco Basin
relative to the GOV 2.0 dataset appears to include groups
that are similar to those found in other deep ocean regions
around the world, but also groups in its anoxic and euxinic
waters not detected previously. This is likely due in part to
under-sampling of euxinic waters globally, so it would be
premature to draw conclusions about the novelty of Car-
iaco’s viral community. We focus further attention on the
genetic content of the viral populations we detected.

Potential auxiliary metabolic genes (AMGs)

Marine viruses were found to encode metabolic genes of
host origin which may be retained in the viral genome if
they enhance production of new viruses by bolstering
metabolism of their hosts [1, 7, 64]. Viral metagenomes
from the surface and upper oxycline of the Eastern Tropical
South Pacific (ETSP) ODWC contained bacterial genes
involved in many metabolic processes [22]. Metabolic
genes in viral communities may alleviate efficiency bottle-
necks in the metabolisms of infected hosts. Evidence for
this comes from viruses mined from SUP05 genomes from
the Saanich inlet coastal ODWC which encode bacterial
genes involved in phosphate, nitrogen, and sulfur metabo-
lism [19]. Viruses identified in the Cariaco Basin carried
genes implicated in biochemical pathways that were
expected to be active at several or all depths (Fig. 3, Sup-
plementary Table 2). By examining gene content and
organization within the Cariaco viromes, we predict whe-
ther these elements are probable AMGs.

Assimilatory phosphoadenosine 5′ phosphosulfate
(PAPS) reductase

PAPS reductase is an enzyme in sulfur metabolism and was
detected in almost all our viromes except the oxic sample at
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148 m, with the greatest diversity of PAPS reductase
domains detected at 900m. We identified nine viral contigs
encoding PAPS reductase genes (Supplementary Table 2),
three of which cluster into distinct viral genera with four
other viral populations, and six that are classified as sin-
gletons or outliers in our gene-sharing network analysis.
Each of the PAPS reductases encoding contigs contained
clear viral genes indicating a true viral origin for the PAPS
gene. The best representative of these viruses is shown in
Fig. 4. Both VirSorter and PHASTER place the PAPS
reductase encoding genes within the interior of the viral
genome. However, no attL/R sites or termini regions were
identifiable, indicating incomplete viral genome recovery.

All representative PAPS reductase genes bear the
expected conserved domain and structural configuration of
PAPS reductase (Supplementary Table 2) that assimilates
sulfates for two essential amino acids (methionine and

cysteine) in both aerobic and anaerobic organisms [65]. See
Supplementary Information for discussion of PAPS con-
served domain and structural homologies.

In microbial metagenomes from water samples collected
concurrently with virome samples, we found PAPS reduc-
tase genes. However, only one gene from Clostridiales was
closely related to a viral PAPS. This suggests multiple
origins and/or evolutionary histories of the viral PAPS
reductase sequences in the Cariaco Basin.

The PAPS reductase detected in our Cariaco viromes is
the first detected putative AMG directly involved in
assimilatory sulfur metabolism linked to amino acid bio-
synthesis. A study of Sulfurimonas concluded that PAPS
reductase provides metabolic scope to adapt to variable
redox conditions [66]. We hypothesize that PAPS reductase
can enhance biosynthesis of methionine and cysteine for
protein synthesis. Additionally, in the Cariaco Basin’s

Fig. 4 Genome map of the putative PAPS AMGs. Genome map of
the two representative PAPS reductase encoding viruses, displaying
the AMG of interest in purple, genes observed in other viromes as

indicated by VirSorter in orange, and non-phage like or uncharacter-
ized genes in teal.

148m

200m

237m

247m

267m

900m

0 100 200 300 400 500 600 700 800 900 1000

nitrogen fixation protein (NifU)
diguanylate cyclase (DGC)
UDP-sulfoquinovose synthase (UDP-SQ) 
acetate kinase (Ack)
phosphate acetyltransferase (Pta)
phosphoadenosine phosphosulfate reductase (PAPS reductase)

Viral population relative abundance

D
ep

th
 (m

)

Encoded AMG

Fig. 3 Viral population relative abundance of AMGs along the
water column in the Cariaco Basin. Relative abundance of AMG-
encoding viral populations (coverage values normalized by

metagenome size and contig length) detected in viromes from different
depths along the water column in the Cariaco Basin.
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euxinic interior, where sources of labile carbon are limited,
bacteria can benefit by fermenting amino acids produced
from intermediate products (e.g., pyruvate) of methionine
and cysteine degradation. Thus, we hypothesize that PAPS
reductase enhances the metabolic flexibility of this sulfur-
driven microbial food web.

AMGs from Mu-like phages

Mu-like phages represent an intriguing example of viruses
that can persist through replicative transposition within the
host genome [67–69]. Multiple Mu-like phages have pre-
viously been resolved that include 0.5–3 kb of host DNA
covalently bound to the edges of their genome during
headful packaging [70–72]. Thus, Mu-like viruses can
acquire and mobilize host genes among susceptible hosts
[73, 74]. Distinguishing host gene acquisition from ran-
domly packaged host genomic material carried by Mu-like
viruses is challenging. Typically, randomly packaged host
genes will be discarded, and are not likely to be detected by
population-scale metagenomic screens. However, genes

may be maintained in the viral population if they provide a
selective advantage [75]. Identification of host metabolic
genes in the interior of a phage genome representing a
population-scale cluster of viral contigs would provide
evidence for the maintenance of such genes.

We identified two probable Mu-like phages encoding
putative AMGs involved in signaling pathways and N-
glycosylation (Fig. 5). Both share a high degree of syntenic
arrangement with Bacteriophage Mu along with numerous
short homologous regions (BLASTp e-value <0.0001). While
each of these short homologous regions is not individually
compelling, the number of these hits, the proportion of genes
annotated as Mu-like, and the syntenic arrangement of these
genes suggests that these may be novel Mu-like viruses. The
first Mu-like virus, encoding diguanylate cyclase (DGC)
involved in signaling pathways, was found in the sample from
267m where it comprised ~2% of the total observed viral
community and was 76% as abundant as the most abundant
population (Fig. 3 and extended discussion in Supplementary
Information). We detected a second Mu-like virus encoding a
putative UDP-sulfoquinovose synthase, in euxinic waters at
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Fig. 5 Genome maps of the probable Mu-like phage AMGs. The
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P. Mara et al.



900m where it was less than 1% of the total community and
55% as abundant as the most abundant population (Fig. 3).
Each of these viruses encode diagnostic Mu-like proteins,
including Mu-like major capsid and morphogenesis proteins.
Other genes, with non-viral homology include multiple
uncharacterized proteins, an ATP dependent clp protease, and
transposon B, with the last two being cellular genes that have
been shown to play a role in Mu-like virus activation [76].
One of these Mu-like viruses, encodes the cellular Clp pro-
tease, DCG, and the phage c repressor at the edge of the viral
contig, drawing into question whether the DCG is part of the
phage or host genome. However, this region, spanning both
cellular and phage genes, had consistent coverage
(albeit higher than the rest of the sequence) which in com-
bination with the lack of an identifiable att site and the pre-
sence of a promoter upstream of the DCG, are indicative of a
contiguous region without a phage genome boundary. The
higher coverage of this region is likely due to our population-
scale clustering, allowing reads from different subpopulations
to accumulate on the representative contig. The high degree of
similarity with bacteriophage Mu and the presence of Mu-like
transposases, along with other proteins important for Mu
activation, suggest that these phages are indeed Mu-like rather
than degraded prophage regions encoding a non-phage
transposable element. A third Mu-like virus was identified
in the 900m sample, but did not encode any detectable
AMGs (see Supplementary Information).

Diguanylate cyclase

DGCs have been detected in viromes from the Pacific
Ocean and linked to signal transduction mechanisms [77].
Genes associated with cell signaling were also detected in
viromes from the surface and oxycline waters of the ETSP
ODWC [22], and in cultivated viral isolates [78]. Selective
pressure may exist to retain DGC genes in viral elements
since they can enhance rates of conjugative plasmid transfer
in anaerobic bacterial strains via the production of the
secondary messenger cyclic diguanylate (c-di-GMP) [79].
This could enhance host fitness in ODWCs by increasing
gene transfer. c-di-GMP is a signaling molecule that also
induces biofilm formation [80]. Since particle-associated
microbes play an important role in the Cariaco water col-
umn [32, 81], viral-encoded DGCs may enhance signal
transduction involved in biofilm formation. See Supple-
mentary Information for discussion of viral-encoded DCG
function and structural homology.

UDP-sulfoquinovose synthase

Viral elements related to glycosylation pathways may
contribute to viral fitness by increasing host protein stability
or by increasing production of intermediate substrates (e.g.,

oligosaccharides) [82] that can be utilized by hosts in the
euxinic interior of Cariaco Basin. Elevated hydrostatic
pressure, much like temperature, can cause protein transi-
tions between native and unfolded states [83].
N-glycosylation was found to decrease dynamic fluctuation
of proteins and to increase stability [84]. See Supplementary
Information for discussion of viral-encoded UDP-SQ
function and structural homology.

Genes related to N-linked glycosylation are encoded in
almost all archaeal genomes obtained to date, and in a small
number of bacterial species [85]. N-glycosylation is a
common posttranslational modification that promotes and
regulates protein folding [86] and is considered essential for
maintaining cell integrity under extremes of temperature,
pH, salinity as well as other physical challenges [87].
N-glycosylation in bacteria, is related to protein thermo-
stability in extreme environments, such as hydrothermal
vents [85]. We hypothesize that viral-induced changes in
host N-glycosylation pathways via this viral-borne UDP-SQ
AMG may improve viral fitness by enhancing host protein
stability under the pressures encountered at 900 m in the
Cariaco Basin.

Other phage-related viral elements detected in the
cariaco basin

Acetate metabolism

Viral elements related to acetate metabolism were detected
from Cariaco’s oxycline at 200 m. One viral contig, pre-
dicted by PHASTER to be a complete prophage bounded by
both attL and attR sites, encoded both an adenine phos-
phoribosyltransferase (Pta) and an acetate kinase (Ack)
(Fig. 6). The Ack/Pta pathway mediates acetate fermentation
[88] and is the major regulator of the acetyl-phosphate levels
which control protein acetylation in bacteria [89]. Both
genes were adjacent to each other on the contig. The contig
also encodes 28 additional phage-like genes including
multiple hallmark genes and aligned with Vibrio phage ×29
(NC_024369), suggesting a viral origin (Fig. 6). This phage
may have picked up cellular genes on one end of this contig,
such as the chaperonins GroES and EL. However, both
phages and archaeal viruses are also known to encode cha-
peronins to assist in structural protein folding during infec-
tion when the expression of these genes is high [90–93].

The potential importance of acetate as a carbon source in
the Cariaco Basin is intriguing, as acetate cycling has been
shown to vary seasonally and vertically [94]. Observed
acetate uptake rate constants were highest in the euphotic
zone and at the suboxic–anoxic boundary (0.03–1.4 d−1)
and diminished below 400 m (<0.01 d−1) [94]. Para-
doxically, the Pta and Ack genes on viral contigs were only
detected in our viromes from 200 m. Acetate is typically
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released to the environment by fermentative bacteria which
are not expected to be active where oxygen is still present.
However, enriched acetate concentrations have been
observed in Cariaco oxic waters between 200 and 300 m on
multiple occasions [94]. Particle-associated anoxic micro-
environments in this layer may be conducive to fermenta-
tion and acetate release [32]. We hypothesize Ack and Pta
genes on viral contigs may influence host metabolism in
Cariaco waters by altering host metabolic flux and energy
homeostasis or by increasing the pool of available acetyl
phosphate and thus rates of acetyl phosphate-dependent
acetylation. Both may lead to increased viral fitness by
providing additional ATP and can support use of alternative
carbon sources [7].

Iron–sulfur cluster formation

AMGs related to the iron–sulfur cluster and sulfur mobili-
zation [Fe–S] formation systems have been previously
described in viromes from the Pacific Ocean’s photic zone
[77] and from the Global Ocean Survey data sets [95],
suggesting that supporting host electron transfer enhances
viral replication success. In the nitrogen fixation (NIF)
system, NifU and NifS work in concert to synthesize the
oxygen-sensitive [Fe–S] clusters required for the activation

of nitrogenase [96] and are also involved in the biosynthesis
of the iron–molybdenum (Fe–Mo) cofactor [97].

Two viral contigs found in samples from 148 and 900 m
encoded a putative NifU gene (Supplementary Table 2).
The shorter of these contigs only encoded six genes. Two of
these genes were similar to those in Pelagibacter phages,
but there was little other support for a viral origin of this
population. On the larger of these contigs, the nifU gene
was located in the center of the contig and was surrounded
by both phage-like and bacterial genes (Fig. 7). This NifU
gene also contains an NifU conserved domain and shares
secondary structural homology with described NifU-C
domains (91.3% confidence, 30%ID) (Supplementary
Table 2). Of the 74 predicted proteins, 18 were observed in
other viruses. This contig encodes at least one viral tail fiber
protein and a phage-like HIRAN domain (Fig. 7). HIRAN
domains are DNA-binding domains that recognize DNA
damage and stalled replication forks [98]. Although they
have been identified in phages, their function in phages
remains unclear [99]. It is likely this represents a region
within a larger phage genome that may influence lipopo-
lysaccharide biosynthesis. These phages often contain sugar
epimerase, transferase, and synthase genes [12]. However, it
is also possible that this putative AMG is in a cellular region
bordering a prophage in a cellular genome. Regarding the
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latter, PHASTER identified the specific NifU encoding
region as a putative prophage, supporting the likelihood that
this is indeed a phage-encoded NifU gene. However, no
attL, attR, or termini regions were identifiable (Fig. 7).

The “mobilome”

Degraded prophage regions are often hotspots for mobile
element activity [100] and so may represent biogeo-
chemically relevant phage-like regions that carry meta-
bolically active genes derived from transposable elements
and not the viral genome. In the present study, a putative
transposable element encoding a cysteine desulfurase
(nifS) gene was found in viromes from nearly all depths
sampled (Supplementary Table 2). NifS may be important
in low redox environments because it can enhance elec-
tron transport and influence the activity of proteins that
boost metabolism and fitness of the host. Abundance of
nifS was especially high in the oxic sample, indicating a
possible cyanobacterial association. The nifS gene in this
putative mobile element includes the nifS conserved
domain (Supplementary Table 2) and is flanked on one
side by a phage-like integrase and numerous phage-like
transposase genes (Supplementary Fig. 4) thus presenting
the possibility of a viral origin. However, due to small size
of this sequence and the multiple transposon genes
(transposase mutator and transposase) this sequence may
also be a phage-like transposable element in a degraded
prophage region of the cellular genome. Thus, it is not
possible to confidently link this nifS gene to the remnant
prophage or the transposon.

Conclusions

Viromes recovered from Cariaco Basin water samples
reveal viral communities composed of a high proportion of
unique viruses. We detected viral elements potentially
contributing to a wide range of metabolic processes in their
hosts. Some of these genes support central metabolism, and
others support processes that occur in putative host popu-
lations in geochemical regimes specific to oxygen-depleted
habitats. While some elements can be acquired by viruses
through random packaging of host genetic material prior to
host lysis, we report the presence of bacterial genes that
would enhance or stimulate particular host metabolic pro-
cesses, resulting in increased production of raw materials
required for formation of new viral particles.
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