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Abstract: Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here
as “modalities”). As each modality is designed to offer different anatomical and functional clinical
information, there are evident disparities in the imaging content across modalities. Inter- and intra-
modality affine and non-rigid image registration is an essential medical image analysis process in
clinical imaging, as for example before imaging biomarkers need to be derived and clinically eval-
uated across different MRI modalities, time phases and slices. Although commonly needed in real
clinical scenarios, affine and non-rigid image registration is not extensively investigated using a single
unsupervised model architecture. In our work, we present an unsupervised deep learning registration
methodology that can accurately model affine and non-rigid transformations, simultaneously. More-
over, inverse-consistency is a fundamental inter-modality registration property that is not considered
in deep learning registration algorithms. To address inverse consistency, our methodology performs
bi-directional cross-modality image synthesis to learn modality-invariant latent representations, and
involves two factorised transformation networks (one per each encoder-decoder channel) and an
inverse-consistency loss to learn topology-preserving anatomical transformations. Overall, our model
(named “FIRE”) shows improved performances against the reference standard baseline method (i.e.,
Symmetric Normalization implemented using the ANTs toolbox) on multi-modality brain 2D and
3D MRI and intra-modality cardiac 4D MRI data experiments. We focus on explaining model-data
components to enhance model explainability in medical image registration. On computational time
experiments, we show that the FIRE model performs on a memory-saving mode, as it can inherently
learn topology-preserving image registration directly in the training phase. We therefore demonstrate
an efficient and versatile registration technique that can have merit in multi-modal image registrations
in the clinical setting.

Keywords: multi-modality image registration; unsupervised image registration; deep learning;
inverse-consistency; explainable deep learning

1. Introduction

Clinical decision-making from magnetic resonance imaging (MRI) is based on com-
bining anatomical and functional information across multiple MRI sequences (defined
throughout as “modalities”). Multiple imaging biomarkers can be derived across different
MR modalities and organ areas. This makes image registration an important MR image
analysis process, as it is commonly required to “pair” images from different modalities,
time points and slices. Hence, both intra- and inter-modality image registration are essential
components in clinical MR image analysis [1], and finds wide use in longitudinal analysis
and multi-modal image fusion [2].
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Although numerous deep learning (DL) methods have been devised for medical image
analysis [2], DL-based image registration tasks have been relatively less explored [3,4].
Among DL-based registration studies, supervised learning-based methods showed promis-
ing results. The main disadvantage of supervised learning is that it necessitates laborious
and time-consuming manual annotations for model training, even as it is difficult to design
generalised frameworks [5–7]. Unsupervised DL-based image registration methods gain
increasing popularity, as they aim to overcome the need of training datasets with ground
truth annotations [3,4]. However, unsupervised learning has been mainly investigated
on intra(single)-modal image registration [3,4,8] and on either 3D volumes [9–13] or 2D
images [14–18]. Also, previous unsupervised learning methods involve affine registration
before training, which is a laborious, time-consuming and computationally expensive
task [2–4,9–18].

To date, most previous unsupervised DL methods can perform either affine or non-
rigid registration [3,4,9,10,12–18]. To our knowledge, the only unsupervised DL study that
has developed a method for both affine and non-rigid registrations is by de Vos et al. [11].
In this work, DL modelling was performed using two autonomous models in the analysis
pipeline to address both affine and non-rigid registrations, whilst also requiring affine
transformations before training. Inverse-consistency-based transformation models show
improved ability to preserve the contextual and topology information in image registra-
tion [19]. Note that a deformable image registration between two images is called inverse
consistent, when the correspondence between images is invariant to the order of the choice
of the source and target image [19–21].

In our work, we demonstrate a bi-directional unsupervised DL model that is capable of
performing multi-modal (n-D, where n = 2–4) affine and non-rigid image transformations.
As will be discussed in the next sections, we model n-D affine and non-rigid registrations
through bi-directional cross-modality synthesis and inverse-consistent spatial transforma-
tions. Unlike previous unsupervised learning studies that focus on estimating asymmetric
transformations and cannot preserve topology [2–4,9–18], our proposed technique is effi-
cient for both affine and non-rigid image registrations, as demonstrated in multi-modal
brain and cardiac image registration experiments.

1.1. Motivation

Unsupervised DL techniques have considerable potential in medical image registra-
tion. In this paper we combine up-to-date progress in unsupervised learning with strong
prior knowledge about medical image registration: reaching high registration performance,
we synchronically perform multi-modal image synthesis and factorised spatial transfor-
mations (one per each encoder-decoder channel). This operation allows us to efficiently
reach inverse-consistent multi-modal affine and non-rigid image registration of multi-
dimensional medical imaging data, making our work efficient and versatile for the medical
imaging community.

The FIRE model provides a generalised architecture for registration applications, as
the synthesis components of the FIRE model can be customised and re-trained if/when data
from additional medical imaging modalities would need to be co-registered. The synthesis
factor captures global image modality information, determining how organ topology is
rendered in the target image. Between other things, maintaining a representation of the
modality characteristics in the synthesis factor of the model provides the ability to poten-
tially model data from multiple modalities. We evaluate this function using the multi-modal
MR data of variable anatomical information (see also the “model explainability” section).

Finally, the incorporation of factorised spatial transformations in the FIRE model
allows us to learn varied image transformations. We examine whether the FIRE architecture
and its associated loss functions can directly output transformation fields for both affine and
non-rigid registrations. We demonstrate that the FIRE model architecture efficiently learns
to produce inverse-consistent deformations that are intrinsically topology-preserving.
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1.2. Overview of the Proposed Approach

Learning image representations and spatial transformations through image synthesis
is an area of recent work in medical image analysis [20]. However, there was no previous
consideration about the precision of the synthesis process and the versatility of the spatial
transformations. This is important in medical image analysis, as both affine and deformable
registrations are commonly required for a typical clinical dataset.

Following our previous work [22], we demonstrate a versatile registration method
called “FIRE” by explicitly incorporating spatial transformation into our cross-domain
bi-directional image synthesis (Figure 1). We show that our method can robustly model
2D/3D and 4D registrations when examined on multi- and intra-modality brain and cardiac
MRI, respectively. We provide thorough explanations regarding our model explainability
in medical image registration. Moreover, we demonstrate the efficiency of our method on
computational time experiments.
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, Chinese symbol for “fire”) architecture (red dash-dotted line box). Two
synthesis encoders G(xA) and G(xB) extract modality-invariant (latent) representations. Two synthesis
decoders FA→B and FB→A map the representations extracted by G(xA) and G(xB) to x̂B and x̂A (images
synthesised), respectively (see FA→B and FB→A at the bottom). Finally, two transformation networks
TA→B and TB→A model the transformation fields, finalising the FIRE training process.
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1.3. Contributions

Our main contributions are as follows:

• With the use of two spatial transformation networks factorised into our cross-domain
synthesis, the “
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where needed, we show that our FIRE model simultaneously learns both affine and
non-rigid transformations.

• Overall, the novel FIRE model loss functions and training procedure are designed to
allow simultaneous learning for synthesis and registration of 2D, 3D and 4D multi-
modal MR data.

• We show that our FIRE model is explainable and provides a comprehensive (affine
and non-rigid) framework for future improvements and generalisation.

2. Related Work

In this section we review previous work on registration methods using DL (Section 2.1).
We then review inverse-consistent DL transformations (Section 2.2). Finally, we review
methods that solve inter-modality registration through image synthesis (Section 2.3).

Since we detail the background and motivation of our work against previous studies in
the Introduction section of this paper, here we focus on discussing similarities and differences
of our FIRE model against previous methods that are relevant to our application domain.

2.1. Registration Methods Using DL

Early DL registration methods were mostly adaptations of the conventional image
alignment scheme, where DL was used to extract convolutional features for guiding cor-
respondence detection across subjects [23], or to learn new similarity metrics across im-
ages [24,25].

Reinforcement learning methods have shown promising results, but they are still de-
signed to solve image registration through iterative processes, making them computationally
expensive and time-consuming [26–28]. As discussed, although DL-supervised learning-
based methods have also been promising for image registration, one of their main disadvan-
tages is that they require laborious and time-consuming manual annotations [5–7,29].

To overcome the limitations of supervised learning methods, unsupervised learning
approaches were recently developed that learn image registration by focusing to minimise
the loss between the deformed image and fixed (target) image. The development of a spatial
transformer network (STN) in 2015 by Jaderberg et al. has inspired many unsupervised
learning methods as it can be inserted into existing DL models [8]. The STN allows explicit
manipulation of images within a network and can potentially perform image similarity
loss calculations during the training and testing process. Balakrishnan et al. demonstrated
Voxelmorph, a 3D medical image registration algorithm using STN within a convolutional
neural network (CNN), in which parameters are learned by the local cross-correlation
loss function [30,31]. Krebs et al. proposed a probabilistic formulation of the registration
problem through unsupervised learning, in which an STN was used within a conditional
variational autoencoder [32]. Kim et al. developed CycleMorph, a cycle-consistent DL
method for deformable image registration (through an STN component) and demonstrated
accurate registration results [33]. Unlike previous techniques [30–32,34,35], the CycleMorph
model incorporated inverse consistency directly in the training phase [33] to improve model
efficiency and robustness.

To date, the only unsupervised DL study that has developed a method for both affine
and non-rigid registrations is by de Vos et al. [11]. However, in this work, DL modelling
required the incorporation of two autonomous models in the analysis to address both
affine and non-rigid registrations, whilst also requiring affine transformations as part of
the modelling process (therefore adding complexity and computational cost).
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2.2. Inverse-Consistent DL Transformations

Most recent studies are mainly focusing on performing non-rigid deformations [30–36],
whilst requiring computationally expensive and laborious affine transformations in pre-
processing using ANTs [30,36,37] or some other software application [20]. Note that
affine transformation is inherently inverse-consistent because of the invertibility of the
transformation matrix. In the past decade, inverse consistency has mainly been achieved by
incorporating diffeomorphic deformation fields [37]. Some of the most popular examples
include the diffeomorphic Demons algorithms [38,39].

Several DL diffeomorphic architectures have recently been proposed, such as the Voxel-
morph [30,31,34,35], the Quicksilver [38] and the CycleMorph [33]. However, most of these
unsupervised diffeomorphic models were tested on intra-modality brain data [30,31,34,35,38].
As already discussed in Section 2.1, the CycleMorph model is still considered the only tech-
nique to effectively incorporate inverse consistency directly in the training phase, whilst
it was tested on multi-modal (brain MRI and liver CT data) medical imaging data. In our
work, we define the output deformation fields with simple inverse-consistency constraints,
devising a model that can learn topology-preserving registratrion in an expandable and ver-
satile architecture. It may be important to emphasise that Nielsen et al. recently concluded
that the diffeomorphism fails to account for local discontinuities in brain images with
pathological conditions [39]. Despite this finding, we should highlight that it is straight-
forward to integrate diffeomorphic layer components into the FIRE framework if deemed
as appropriate (for example, the Voxelmorph velocity field [30,31], or the CycleMorph
homeomorphic mapping [33] could potentially be incorporated).

In clinical practice, image registration tasks commonly involve comprehensive image
deformations, i.e., a combination of affine and non-rigid registration. In our study, we
demonstrate a versatile and efficient DL model that can perform both affine and non-
rigid (deformable) registration, and which can learn to produce inverse-consistent and
intrinsically topology-preserving image deformations.

2.3. Image Synthesis DL Methods

Image synthesis-based methods have potential in recent DL-based inter-modality
registration algorithms. Alongside the recent developments on adversarial cycle-consistent
loss [40], most recent methods focus on using CycleGAN for synthesis-based inter-modality
registration [20,41]. Wei et al. performed image registration by devising CycleGAN-based
image synthesis as a separate processing step prior to registration [41]. Qin et al. proposed
a bi-directional unsupervised training framework, which is conceptually close to our
model. However, our FIRE model is simultaneously learning synthesis and registration
on a memory-saving architecture that requires less hyperparameters when balancing all
different losses (see Section 3). Moreover, the FIRE model is evaluated on 2D, 3D and 4D
data involving different organs (brain and heart; note that 4D here denotes periodic heart
deformations observed across different time phases of cardiac cine-MRI).

3. Methods

Our proposed model can be described as a bi-directional cross-domain image synthesis
structure, with two factorised spatial transformation components (one per each encoder-
decoder channel) [22].

Each time two images xA and xB are processed, the FIRE model learnsϕA→B andϕB→A

transformations, warping xA and xB into xA ◦ ϕA→B and xB ◦ ϕB→A, via the transformation
networks TA→B and TB→A. In parallel, two synthesis encoders G(xA) and G(xB) extract
modality-invariant latent representations through the synthesis decoders FA→B and FB→A,
mapping the representations extracted by G(xA) and G(xB) to the synthesed images x̂B and
x̂A, respectively.
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3.1. Architecture

Our model involves the following components (Figure 1): (a) one synthesis encoder
G, which extracts modality-invariant representations G(xA) and G(xB); (b) two synthe-
sis decoders FA→B and FB→A, which map G(xA) and G(xB) to x̂B = FA→B(G(xA)) and
x̂A = FB→A(G(xB)) (synthesised images); and (c) two transformation networks, TA→B

and TB→A, which model the transformation fields ϕA→B = TA→B(G(xA), G(xB)) and
ϕB→A = TB→A(G(xB), G(xA)). Note that during training, G(xA) and G(xB) are warped into
G(xA) ◦ ϕA→B and G(xB) ◦ ϕB→A before being used to generate the synthesised images:
x̂B

T = FA→B(G(xA) ◦ ϕA→B) and x̂A
T = FB→A(G(xB) ◦ ϕB→A).

3.2. Encoder and Decoder for Synthesis

The structures of the encoder and decoders were inspired by the design of the Cycle-
GAN [41], which includes a set of downsampling and upsampling convolutional layers
connected through a series of Resnet blocks.

We modified the architecture of the CycleGAN generator by adding two decoders in
the generator and by eliminating the discriminator (instead of having one decoder in the
generator followed by a discriminator, as in the original CycleGAN, Figures 1 and 2) [41].
In our model, we did not need to recruit adversarial learning through the discriminator,
since by involving two decoders and geometrical mapping via our STN-derived defor-
mations in the cross-domain synthesis learning, our model was designed to match the
(pixel intensity and geometrical) distribution of generated images to the data distribution
in either target domain.
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The encoder G contained one convolutional block (7 × 7, 64) with stride 1, two
downsampling convolutional layers (3 × 3, 128; 3 × 3, 256) with stride 2 and four Resnet
blocks of the same size (3 × 3, 256) with stride 1. The decoders contained four consecutive
Resnet blocks of the same size (3 × 3, 256) with stride 1, two convolutional layers used
for upsampling (3 × 3, 128; 3 × 3, 64) with stride 1 and a convolutional block (7 × 7, 3)
with stride 1. The synthesised output was finally produced by a 1 × 1 convolutional layer,
followed by a Tanh layer [22].
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The downsampling layers (in the encoder) encode the images down to an abstract
latent representation. In this process, the model learns weights that enable the reducing
of the spatial resolution of the feature (image pixel) maps. The output feature maps
derived from downsampling are then passed through a series of Resnet blocks with skip
connections to further interpret and process their underlying information while addressing
the vanishing gradient problem that may occur in large networks [20,41]. Through the
upsampling layers, the model learns to transpose (reverse) convolutions, decoding the
latent representations back to the size of the ouput image.

3.3. Transformation Network

The transformation networks of our model, TA→B and TB→A, can learn both affine
and non-rigid transformations (denoted as ϕaf and ϕnr, respectively, Figure 3). Each
transformation network consists of a subnetwork for affine transformation followed by a
subnetwork for nonrigid transformation, as shown in Figure 3.

1 

 

 
Figure 3. Affine and non-rigid spatial transformation networks incorporated in the FIRE model.

To derive deeper geometrical inter-relationships from the processed data, we modified
the start of the STN structure by adding three convolutional layers with instance normal-
ization and standard LeakyReLU layers (Figure 3). In specific, the affine transformation
network Taf uses an initial convolutional layer of size (1 × 8, 7) and stride 2, followed
by two “convolutional layer + ReLU + Instance Norm” blocks (the size of the first and
second convolutional layers used were 8 × 10, 5 and 16 × 20, 2, respectively, with stride 2).
Following the two “convolutional layer + ReLU + Instance Norm” blocks, two Dense (fully
connected) layers were recruited to compute the parameters of the affine transformation
matrix (2 × 3 for 2D; 3 × 4 for 3D transformations) [8]. Essentially, the input of the affine
subnetwork is the concatenated features obtained from the two input images. The convolu-
tional features derived from the third convolutional layer were resampled into a fixed-size
feature vector using Global Average Pooling [8,22], followed by two fully connected layers
that were used to generate the transformation matrix.
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Non-rigid transformation network Tnr
A→B receives the affinely transformed feature

G(xA) ◦ Tnr
A→B and the untransformed feature G(xB) as inputs, and subsequently processes

them in parallel layers (Figure 3). The features extracted are finally concatenated and used
as inputs into a ResNet block with instance normalization and LeakyReLU layers. To pro-
duce the non-rigid deformation ϕnr

A→B, a final convolutional layer and a Tanh activation
function are implemented. The Tanh layer is performed on a normalised coordinate system:
a coordinate p ∈ [−1, 1] n exists for an n-D image [22].

As described, we factorised two separate transformation networks for each encode-
decoder channel in our FIRE model, which means that the above processes described for the
A→B (affine and non-rigid) transformations are identical for the B→A affine and non-rigid
transformations as well.

3.4. Training Procedure and Overall Loss Function

Our FIRE model is trained for simultaneously learning mutually inverse registration
and synthesis tasks across both “A→B” and “B→A” directions.

The A→B image synthesis process synthesised images x̂B and x̂B
T, so that x̂B is regis-

tered with xA and x̂B
T is identical to the target image xB. The A→B transformation learned

by TA→B is applied to the features G(xA) for synthesis purposes, and subsequently to image
xA for registration.

The B→A image synthesis process performs backward registration and synthesis. All
parameters of the entire network are updated end to end in the training process, and only
G and a single transformation network are required to deform the moving image in the
testing phase, for either modality input image.

To train the proposed FIRE model, a synthesis loss (Lsyn and a registration loss (Lreg)
are recruited. A regularisation process (R) is introduced to perform topology-preserving
deformation and spatial smoothing [22]. Combining these terms, the overall loss function
of the proposed model is:

L = Lsyn + Lreg +R (1)

As described in the next subsections, we formulate most of the terms in Lsyn, Lreg
andR using root-mean-square (RMS) calculated on normalised inputs. As a result, apart
from regularising the smoothness of the non-rigid deformation field, no hyperparameter is
required to balance different losses, as detailed below.

3.5. Synthesis Loss

There are four synthesis loss terms involved, each one supporting a different purpose
(see Figure 4). First, to perform accurate cross-domain synthesis, the following synthesis
accuracy loss was defined (by implementing the RMS error):

Lsyn, acc= RMS(x̂B
T, xB) + RMS(x̂A

T , xA) (2)

Note that for image synthesis, the synthesised images x̂A
T and x̂B

T aim to be identical to
the target images xA and xB, respectively, which is defined in Equation (2).

Second, G is designed to learn modality-invariant features. To represent this, we
defined the following feature loss, which aims to minimise the RMS error between G(xA)
and G(xB) ϕB→A, as well as G(xB) and G(xA) ϕA→B:

Lsyn, fea= RMS
(

G
(

xA
)

, G
(

xB
)
ϕB→A)+RMS

(
G
(

xB
)

, G
(

xA
)
ϕA→B

)
(3)

Equation (3) was designed to minimise the error between the G outcomes from either
modality and the transformations learned in the G outcomes of the other modality.
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Third, the cycle-consistency loss used in CycleGAN [20,41] has been proven to be
critical for its superior performance in cross-domain image synthesis. For robust cross-
modality synthesis performance, a cycle-consistency loss was therefore designed:

Lsyn, cyc= RMS(FB→A (G(x̂B)), xA) + RMS(FA→B (G(x̂A)), xB) (4)

Essentially, Equation (4) encourages FB→A (G(x̂B)) = xA and FA→B (G(x̂A)) = xB, enforc-
ing these mappings to be reverses of each other (by minimising the error of either mapping
procedure to the inputs xA and xB).

Finally, aligning x and x̂ is important to transfer the geometric correspondence from
either xA or xB (learned through the transformation networks), and to the synthesis process.
To this end, the synthesis alignment loss was defined as:

Lsyn, align= RMS(G(xA), G(x̂B))+RMS(G(xB), G(x̂A)) (5)

The entire FIRE synthesis loss was [22] (Figure 4):

Lsyn = Lsyn, acc + Lsyn, fea + Lsyn, cyc+Lsyn, align (6)

3.6. Registration Loss

To perform synthesis and registration, features extracted by G were transformed
and registration was then performed through the following transformations to the input
images xA and xB: ϕA→B = ϕaf

A→B ◦ ϕnr
A→B and ϕB→A = ϕaf

B→A ◦ ϕnr
B→A. Because the

output of the synthesis process F•→• (G(·)) is aligned with its input, the synthesised image
obtained from a transformed xA image should be identical to xB. Based on this, we defined
the following registration accuracy loss:

Lreg, acc= RMS(FA→B(G(xA)ϕA→B), xB) + RMS(FB→A (G(xB)ϕB→A), xA) (7)
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Finally, for inverse-consistent registration, the transformations ϕA→B and ϕB→A

should be mutually inverse; thus, the following inverse-consistency loss was defined:

Lreg, ic= RMS
(

xA, xAϕA→BϕB→A ) + RMS
(

xB, xBϕB→AϕA→B
)

(8)

This inverse-consistent loss can be seen as a transformation-oriented cycle-consistency
loss, which encourages the composition of mutual mappings from the moving image to
the fixed image on a bi-directional mode. For example, for xA (moving image) to xB (fixed
image) registration, it minimises the error for both ϕA→B and ϕB→A mappings.

The overall entire registration loss was computed as:

Lreg = Lreg, acc + Lreg, ic (9)

In practice, the non-rigid transformation field ϕnr was calculated on G(x) and linearly
resampled before being applied to image x.

3.7. Regularisation

Inspired by conventional image registration, in which regularisation is commonly
an integral part [11,22], we also add regularisation terms in both affine and non-rigid
transformations. The main novelty in terms of regularisation in our work is that we
incorporate separate regularization terms for both affine and non-rigid transformations in
our model. At that stage, it is important to note a fundamental difference between affine
and non-rigid transformation [11,30–33]: affine registration recruits global transformation
fields, whilst non-rigid registration recruits mainly local transformation fields [11]. Non-
rigid registration may contain affine transformations. However, affine registration should
not involve non-rigid transformations.

In that context, we first add a bending energy penalty term to reinforce smooth
displacements for both non-rigid transformation fields ϕnr

A→B and ϕnr
B→A, as follows:

Rsmooth = ‖ ∇2 ϕnr
A→B ‖2

+ ‖ ∇2 ϕnr
B→A ‖2

(10)

where ∇ is the Laplacian operator.
Second, because our FIRE model is designed to also calculate affine registrations, we

propose to induce a separate regularization term to eliminate non-rigid transformations
when affine transformation is present in the data. During image synthesis, the affinely
transformed features G(xA) ◦ ϕaf

A→B and G(xB) ◦ ϕaf
B→A can be used as inputs into the

synthesis decoders to obtain FA→B(G(xA) ◦ ϕaf
A→B) and FB→A(G(xB) ◦ ϕaf

B→A). The
regularisation of the synthesis is then computed as:

Rsyn = RMS(xB, FA→B(G(xA)ϕaf
A→B)) + RMS(xA, FB→A(G(xB)ϕaf

B→A)) (11)

Similarly, a regularisation for registration,Rreg, is defined using the affinely deformed
xA and xB:

Rreg = RMS(xB, FA→B(G(xAϕaf
A→B))) + RMS(xA, FB→A(G(xBϕaf

B→A))) (12)

The overall regularisation of the FIRE model was [22]:

R = Rsyn +Rreg + λRsmooth (13)

where λ is the scaling parameter for Rsmooth, which is the only hyperparameter used
in the FIRE loss. We should note that to register n-D images, λ = 22n/10N where N is
the number of points in the input image. It is important to also emphasise that when
non-rigid transformation is present, the model uses all three parameters,Rsyn,Rreg and
Rsmooth, from Equation (13). When affine registration is present, the model focuses on
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using the Rsyn and Rreg terms (since the Laplacian operator is not activated during
affine registration).

3.8. Optimization

Computing Lreg requires the input of the transformed images into G, which creates a
circular computing graph. Furthermore, different networks in the proposed FIRE model
show different behaviours in the training process. For example, Taf

•→• is more sensitive to
changes in L, compared to G and F•→•.

To address this issue, we implemented three Adam optimisers to separately optimise
parameters for (a) Taf

•→•, (b) Tnr
•→• and (c) the synthesis encoder/two decoders. We

used a uniform training procedure regardless of the size of the datasets. To optimise
speed of convergence, learning rates for training Taf

•→• and Tnr
•→• and G/F•→• were

set to 10−5, 5 × 10−5 and 10−4, respectively. The FIRE model was trained end to end for
144,000 iterations for both datasets (empirical observation 1: for both brain and cardiac
data, the total duration of the training phase was approximately 15–18 h on a Tesla P40
GPU with 24 G memory (about 7.5–9 h per dataset); empirical observation 2: for the cardiac
data, model convergence was reached in the first 2–3 h, but the model was kept under
training for all 144,000 iterations).

4. Experiments

The performance of our proposed model was evaluated using multi- (for inter-
modality registration) and single- (for intra-modality registration) modal MR data.

4.1. MRBrainS Data

For multi-modality registration, the training data from the MRBrains13 (http://
mrbrains13.isi.uu.nl/, last accessed on 1 February 2022) and the MRBrains18 (https://
mrbrains18.isi.uu.nl/, last accessed on 1 February 2022) Challenges were fused. The fused
dataset contained multi-modality brain MR data.

In detail, the dataset consisted of 3D T1-weighted, T2-Fluid-attenuated IR (T2-FLAIR)
and inversion recovery (IR) data from 12 subjects, acquired using 3T MRI. The 3D T1,
T2-FLAIR and IR datasets included 192, 48 and 48 slices per patient, respectively. The 3D T1
and IR data were already co-registered to the T2-FLAIR data. Images across all modalities
had a voxel size of 0.958 × 0.958 × 3.000 mm3.

To assess model performance, manual annotations from three brain anatomical struc-
tures were used: the brain stem (BS), the cerebellum (Ce) and the white matter (WHM).
For the training, validation and testing processes, we used all MRI slices from eight, one
and three patients, respectively (Table 1). To perform 3D and 2D registration, all data were
resampled to 1.28 mm3 per voxel.

Table 1. Total number of images for training, validation and testing per brain and cardiac dataset.
Note that for the cardiac data, only two images per cardiac slice contained annotations and were
evaluated at testing.

Organ Sequence Training Validation Testing

Brain

T1 1536 192 576

IR 384 48 144

T2-FLAIR 384 48 144

Cardiac Cine 14,400 240 480

In the registration process, 2D and 3D registration was performed between T1 and
T2-FLAIR data, and 2D registration between IR and T2-FLAIR data. During training,
moderate-to-strong (20–50% change across at least one dimension) affine and non-rigid
transformations were randomly applied to the moving and fixed images. In the testing

http://mrbrains13.isi.uu.nl/
http://mrbrains13.isi.uu.nl/
https://mrbrains18.isi.uu.nl/
https://mrbrains18.isi.uu.nl/
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phase, each of the T1 and IR data were randomly transformed 20 times and were subse-
quently allowed to be registered to the corresponding T2-FLAIR data.

4.2. ACDC Data

To perform intra-modality registration, 4D cardiac cine MRI data from the 2017 ACDC
(https://www.creatis.insa-lyon.fr/Challenge/acdc, last accessed on 1 February 2022) Chal-
lenge were used. Note that the fourth dimension here describes temporal resolution.
The voxel size was between 1.37–1.68 × 1.37–1.68 × 5–8 mm3, and each 4D image has
28–40 phases covering the cardiac cycle.

In specific, the training dataset contained MRI data from 100 patients with different
cardiovascular pathologies, with manual annotations of the myocardium and the left
ventricle per patient at two cine-MR phases (images) per slice.

To train the FIRE model, we used all MRI phases per slice. To test the model, only the
two annotated phases per slice were evaluated. For the training, validation and testing
process, MRI data from 60, 10 and 30 patients were used, respectively (Table 1).

4.3. Evaluation Metrics and Baselines

Both the MRBrainS and ACDC datasets provided manual annotations (ground truths).
To evaluate our method, we used the Dice metric to measure the overlap of the moving
and fixed annotations. Increased Dice scores represent high registration performance and
vice versa.

Although there are recent developments in image registration (described in the In-
troduction and detailed in Related Work), the mutual information (MI) and Symmetric
Normalization (SyN) techniques through using the Advanced Normalization Toolbox
(ANTs) (http://stnava.github.io/ANTs/, last accessed on 1 February 2022) [37] are still
considered the current reference standard techniques for affine and non-rigid registration,
respectively [4,9–18,30–41].

Hence, the proposed model is evaluated against the standard MI and SyN techniques
to assess affine and non-rigid registration performance in multi-slice multi-modality brain
and multi-phase/multi-slice single-modality cardiac MRI data, respectively.

5. Results
5.1. Inter-Modality Registration

Initially, 2D and 3D T1 to T2-FLAIR image registration was examined. The proposed
model was consistent in achieving higher scores against the SyN method for all brain
anatomical areas investigated (Table 2). As presented in Table 2, the proposed model
outperformed the SyN method across all 2D and 3D T1 to T2-FLAIR image registration
experiments examined. These results were maintained when both affine and deformable
image registration were evaluated.

Table 2. Results obtained from the 2D and 3D T1 to T2-FLAIR registration, on the MRBrainS data. Dice
scores were measured on the brain stem (BS), cerebellum (CE) and white matter (WHM). Standard
deviations are included within the parenthesis. Bold shows our FIRE model-derived results.

Data Object Unaligned ANTs-Affine FIRE-Affine ANTs-SyN FIRE

2D

BS 11.62 (6.1) 61.25 (3.7) 62.90 (4.1) 78.73 (7.3) 80.68 (7.7)

CE 7.17 (4.4) 63.32 (3.2) 64.36 (4.0) 75.72 (8.1) 76.96 (7.3)

WHM 14.29 (7.5) 59.12 (4.5) 59.97 (4.4) 81.36 (6.0) 84.18 (3.7)

3D

BS 27.15 (9.2) 67.15 (3.1) 69.81 (4.1) 79.77 (6.7) 81.08 (7.0)

CE 28.38 (9.5) 68.38 (3.6) 70.62 (3.7) 86.00 (6.9) 86.13 (7.2)

WHM 20.27 (9.3) 60.27 (3.8) 60.61 (3.8) 72.33 (7.4) 72.56 (7.1)

https://www.creatis.insa-lyon.fr/Challenge/acdc
http://stnava.github.io/ANTs/
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A visual representation of the T1 to T2-FLAIR registration is illustrated in Figure 5. In
this representation, the FIRE model shows better alignment between the outer contour (in
the extracerebral space) outlining the cerebrospinal fluid (shown with blue) and the actual
brain tissue delineation, versus the Syn technique.
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Figure 5. Visual representation of the T1 to T2-FLAIR registration using the MRBrainS data. Brain
stem, cerebellum and white matter used to assess registration performance are illustrated with purple,
blue and green, respectively. Red illustrates the outer contour outlining the entire head.

Subsequently, IR to T2-FLAIR registration was evaluated. Our proposed model con-
sistently reached improved registration performance against the Syn method: a mean
Dice score of 0.68 (0.3), 0.69 (0.2) and 0.70 (0.3) for the BS, Ce and WHM brain structures
was reached, respectively. A visual representation of the IR to T2-FLAIR registration is
illustrated in Figure 6.
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Figure 6. Visual representation of the IR to the T2-FLAIR registration using the MRBrainS data. To
increase clarity because of having less anatomical information in IR and T2-FLAIR data, we use
the outer brain region and ventricles (with red and purple respectively) to visually demonstrate
registration results. Note that the upper left image shows an IR image before pixel normalisation
occurred during model fitting.
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It is important to note that the average Dice score obtained across all brain anatomical
areas was below 0.45 when the SyN technique was evaluated: there was a mean Dice
score of 0.43 (0.2), 0.42 (0.3) and 0.44 (0.3) for the BS, Ce and WHM brain structures,
respectively. These results were repeated when a grid search for the Syn method within
ANTs was carefully examined, making it impossible to derive a visual alignment of the IR
to T2-FLAIR registration.

5.2. Intra-Modality Registration

Intra-modality registration was then investigated using 4D cardiac cine-MRI data. On
the left ventricle anatomical areas, the FIRE model and the Syn method showed high and
comparable Dice scores (Table 3, Figure 7). On the myocardial anatomical areas, the FIRE
model marginally outperformed the Syn method (Table 3).

Table 3. Results on ACDC data. Dice scores computed on left ventricular endocardium (LVe) and
myocardium (Myo). Standard deviations are included within the parenthesis. LVe: left ventricle,
Myo: myocardial tissue. Bold shows higher model performance, versus the other model.

Object Unaligned ANTs-SyN FIRE

LVe 65.75 (16.2) 90.81 (4.3) 90.28 (5.5)

Myo 51.95 (14.5) 70.71 (5.6) 71.86 (6.3)
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Figure 7. Illustration of the intra-modality image registration using ACDC data (the purple and
magenda contours demonstrate the endocardial and epicardial left ventricle delineations, respec-
tively). The red and green contours illustrate the right ventricle delineations, respectively (not used
in the analysis due to showing small changes across the cardiac cycle). Full diastole (a,c) and systole
(b,d) are illustrated.
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5.3. Computational Times

We methodologically assessed the computational costs required for each image reg-
istration process using the FIRE and the baseline SyN method implemented in ANTs.
For both the FIRE model and SyN methods, the running times at the testing phase were
calculated on a CPU system (Intel(R) Xeon(R) Silver 4112 CPU @ 2.60 GHz, RAM: 256 GB).
Furthermore, the GPU-accelerated performance of our FIRE model was also measured
using a Tesla P40 GPU with 24 G memory. Note that GPU acceleration is not available for
the SyN method within ANTs.

Average running times for registering 3D and 2D data were obtained from 30 volumes,
each volume containing 48 2D slices. For the 4D cardiac MR data provided in the ACDC
dataset, we computed the average time for registering 10 3D volumes (of 10 slices each) at
full systole to their first cardiac cine MR phase representing full diastole, therefore using
100 image pairs in total. All results are shown in Table 4.

Table 4. Mean computational times of the FIRE and the Syn method in the testing phase. The
parentheses show standard deviations.

Data Registration Multi-Modal Number of
Images Used FIRE-GPU (Sec) FIRE-CPU (Sec) SyN (Sec)

MRBrainS (2D)
Affine Yes

1440

0.305 (0.01) 1.1856 (0.03) 0.3375 (0.06)

Non-rigid Yes 0.352 (0.01) 1.5370 (0.04) 1.3987 (0.09)

MRBrainS (3D)
Affine Yes 0.454 (0.06) 37.939 (0.48) 4.3542 (0.13)

Non-rigid Yes 0.555 (0.07) 29.004 (0.34) 30.069 (0.49)

ACDC (4D)
Affine No

200
4.873 (0.08) 199.54 (1.26) 224.78 (1.89)

Non-rigid No 5.026 (0.09) 200.16 (1.78) 1887.30 (2.25)

Under the CPU mode, our FIRE model is consistently faster compared to the baseline
Syn method, for both affine and non-rigid registration of the 4D cardiac data. The FIRE
model shows comparable speed with the baseline in non-rigid registration of 3D and 2D
brain data, whilst it was only slower for affine registration of the 3D brain data (Table 4).

When accelerated by a GPU system, our FIRE model considerably reduced the com-
putational cost (by at least 30 times), when examined on 2D and 3D brain data. The FIRE
model saved over 99.7% running time compared to the SyN method, while achieving
higher accuracy in non-rigid registration of the 4D ACDC data. Bold shows improved
computational time, versus the other technique.

6. Discussion

We demonstrate that the FIRE method is an efficient DL model that performs accurate
and fast inter- and intra-modality affine and is capable of both affine and non-rigid image
registration. The FIRE model efficiently learns inverse-consistent topology-preserving
deformations when evaluated on 2D and 3D multi-modal brain MR and 4D single-modal
cardiac MR data, showing higher accuracy and robustness against the reference standard,
the Syn method.

6.1. Inter-Modality Registration on Brain MRI

We showed that when both 2D and 3D image registration were examined on T1 to
T2-FLAIR registration, the proposed model was consistent in showing higher performance
against the Syn technique across all brain structures assessed (Table 2). This finding
indicates that the proposed model can robustly model different anatomical and semantic
features in these multi-tissue/multi-modal MR data; thus behaving as a brain tissue and
MR modality-agnostic model (for T1 to T2-FLAIR registration).

The IR to T2-FLAIR image registration was compromised by the lack of anatomical
information in either input modality. Implementing the Syn technique reference standard,
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it was not possible to reach accurate image registration results on quantitative assessments
(all DICE scores were lower than 0.45), whilst we did not reach optimal alignments on visual
assessments (Figure 6). It is important to note that the Syn method is the reference standard
baseline technique for model evaluation in image registration [3,4,9–18,30–41]. Despite this,
our FIRE model outperformed the Syn method and was able to achieve moderate mean
Dice scores across all brain structures (Section 5.1).

Moreover, when examined in the testing phase, the FIRE model showed comparable
speed with the baseline in non-rigid registration of 3D and 2D brain data (Table 4). The
only case for which the FIRE model was slower was when affine registration of 3D brain
data was measured. Nevertheless, all FIRE model-derived affine and non-rigid registration
processes for all 3D brain volumes were performed in less than 40 s.

The FIRE model can therefore perform multi-modal affine and non-rigid registration
on a memory-saving mode, without requiring supercomputers or GPU systems in the
testing phase.

6.2. Intra-Modality Registration on Cardiac MRI

We demonstrated that the FIRE model can optimally model deformable transforma-
tions in cardiac cine-MR data (Table 3). Although there were only two images segmented
across each cine-MR dataset (used in the testing phase), these represent the maximum
geometric difference within each cardiac data-set (one segmented image is always on full
diastole and the other on full systole within ACDC data). Moreover, despite the local dis-
placements between diastole and systole being relatively small (in the 3D space), the tissue
deformation is the largest within cardiac cine-MR data. In other words, this means that the
cardiac tissue is non-uniformly non-rigidly deformed across phases, with the maximum
deformation occurring between diastole and systole (Figure 7). Hence, while using all
cardiac phases (in between diastole and systole) in the training phase (representing 4D
information), our results in the testing phase show that the FIRE model can optimally learn
to perform accurate registration between largely deformed geometries (different cardiac
shapes between systole and diastole).

In addition, the computational cost for the FIRE model was substantially lower com-
pared to the Syn method, when non-rigid 4D registration of cardiac MR data was examined.
Thus, the FIRE model demonstrated overall improved registration speed when dealing
with 4D data, which can be particularly important across numerous cardiac MR appli-
cations involving time series [41–44]. To our knowledge, the only other technique that
can effectively perform inverse-consistent registration directly in the training phase is
the CycleMorph model [33]. In our work, we define the output deformation fields with
simple inverse-consistency constraints, devising a model that can inherently learn topology-
preserving image registration in a consistent mode (via the synthesis encoder G and a single
transformation network).

6.3. FIRE Model Explainability

Despite recent developments in DL, inter-modality image registration is not yet widely
investigated using deep networks [30,31,33,34]. A major reason is the absence of explain-
ability regarding why a DL model learns and/or where it fails to learn anatomical image
information and semantics. This becomes more evident in image registration, as the lack of
standardised annotations (ground truths) may have diversified methods for model evalua-
tion and thus, discouraged model explainability [5–7,26–35,38,41]. Our main consideration
here is that DL explainability can help to interpret model-data interrelationships before
(or beyond) deriving class activation maps [45,46], which can encourage thorough (and
explainable) DL investigations in inter-modality image registration. We showed that the
FIRE model can learn anatomical and semantic representations across modalities, and
demonstrated improved performance for inter-modality image registration, versus the
SyN method.
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It is important to note that T1, T2-FLAIR and IR are routinely used MR sequences,
but there are fundamental disparities in terms of the MR physics involved and, thus, their
imaging content [47]. These MR modalities are optimised to provide different imaging
information in clinical MRI: T1 is designed to provide detailed anatomical information,
whereas IR and T2-FLAIR are primarily implemented to extract functional information [47].
In T1 to T2-FLAIR registration, our cross-domain synthesis component (encoder/decoders)
can effectively leverage anatomical information from the T1 data and can subsequently
map this information to complementary functional T2-FLAIR information. This comple-
mentary anatomical-functional information is compromised in the IR to T2-FLAIR data
registration during cross-domain synthesis. Hence, not the anatomical information per
se, but the presence of (heterogeneous) complementary anatomical-functional informa-
tion makes the multi-modal transformations invertible in relation to each other, which
in turn encourages our model to produce inverse-consistent topology-preserving image
registrations. Although not in the scope of the current study, further work is underway
to quantify this complementary information in our model, through gradient-weighted
class activation mapping (Grad-CAM) [48], across each of the model main components
(enconder, STN, decoders).

We should also highlight that there can be multiple methodologies by which it can
become possible to enrich “poor” anatomical information within a dataset, towards enhanc-
ing inverse-consistency through complementary information. For example, an accurate
semi-supervised inter-modality learning model could be explored to derive anatomical
annotations and guide the registration process [49,50], hence, potentially adapting our
technique for functional (non-anatomical) MR modalities [49,50]. Other active contour-
based segmentation algorithms for fast image segmentation have shown excellent seg-
mentation accuracies even for images with large noise interference and intensity inhomo-
geneities [51–53], and therefore may be applicable to enrich anatomical information in
multi-modal registration of imaging modalities with decreased anatomical information.

7. Conclusions

We have demonstrated a robust method that efficiently models inter- and intra-
modality image registration through bi-directional cross-domain synthesis and factorised
spatial transformation. To our knowledge, parallelising cross-domain synthesis while mod-
elling spatial transformation to dynamically learn anatomical and latent representations
simultaneously across modalities has not been previously investigated.

Our work showed the efficiency of our methodology as we improve intra- and inter-
modality registration by maintaining fast computational times in the testing phase, across
all registration tasks.

In broader terms, the main significance of our work is the simultaneous bi-directional
cross-domain image synthesis and spatial transformation per synthesis channel, which
enables us to diversify our technique across numerous multi-modality medical image
analysis scenarios. Through providing a model explainability framework, we can suggest
that it is possible to adapt our technique to learn anatomical-semantic information when
we have at least one dataset with enriched anatomical information. This means that we
can customise our methodology to address image registration on additional anatomically
enriched imaging data, such as with computed tomography (CT) or ultrasound data, next
to MRI.

To date, the main limitation of our work is that we have only assessed multi-modal
MRI data. However, we examined two organ areas (brain and heart), intra- and inter-
modality registration, and investigated 2D, 3D and 4D registrations frames. This inspired
our future work as we are currently investigating model generalisation frameworks to
allow further multi-organ and multi-modal applications. In conclusion, we show here that
our methodology demonstrated improved performance and efficiency against the current
standard Syn method, thus presenting a versatile image registration technique that may
have merit in the clinical setting.
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