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Background. The mechanistic aspects of the involvement of long noncoding RNAs (lncRNAs) in NETosis, the process of
neutrophil extracellular trap (NET) formation in head and neck squamous cell carcinoma (HNSCC), lack comprehensive
elucidation. The involvement of these molecules in the immune microenvironment and plausible HNSCC prognosis remain to
see the light of the day. The plausible functioning of NETosis-related lncRNAs with their plausible prognostic impact in
HNSCC was probed in this work. Methods. The scrutiny of lncRNAs linked to NETosis entailed the probing of twenty-four
genes associated with the process employing Pearson’s correlation analysis on HNSCC patients’ RNA sequencing data from
The Cancer Genome Atlas (TCGA) database. The application of univariate, least absolute shrinkage and selection operator
(LASSO), and multivariate Cox regression analyses yielded a NETosis-related lncRNA signature that was subjected to probing
for its suitability in prognosis employing survival and nomogram analyses. Results. The NETosis-related lncRNA signature
inclusive of five lncRNAs facilitated patients to be segregated as high-risk and low-risk groups with the former documenting a
poor prognosis. Regression unearthed that the risk score was an independent factor for prognosis. The receiver operating
characteristic (ROC) or receiver operating characteristic curve analysis documented a one-year area under time-dependent
ROC curve (AUC) value of 0.711 that is corroborative of the accuracy of this signature. Additional probing documented an
evident enriching of immune-linked pathways in the low-risk patients, while the high-risk patients documented an
immunologically “cold” profile as per the infiltration of immune cells. We verified lncRNA expression from our NETosis-
related lncRNA signature in vitro, which reflects the reliability of our model to a certain extent. Moreover, we also verified the
function of the lncRNA. We found that LINC00426 contributes to the innate immune cGAS-STING signaling pathway, which
explain to some extent the role of our prognostic model in predicting “hot” and “cold” tumors. Conclusions. The plausible
prognostic relevance of the NETosis-related lncRNA signature (with five lncRNAs) emerges that is suggestive of its promise in
targeting HNSCC.

1. Introduction

HNSCCs arise from the mucosal epithelium in the oral cav-
ity, pharynx, and larynx and occupy the sixth position in
global cancer incidence [1]. The most ubiquitously implica-

ted risk factors for HNSCC encompass oncogenic human
papillomavirus (HPV) infection, tobacco smoke, and exces-
sive alcohol consumption [2]. HNSCC is remarkably hetero-
geneous for the anatomical location of cell origination,
various etiologies, and carcinogenic mechanisms [3]. Most
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patients receive a late-stage HNSCC diagnosis without a clin-
ical history of premalignancy [1]. Notwithstanding expand-
ing surgical and nonsurgical approaches (inclusive of the
radiotherapy, chemotherapy, and immunotherapy), the clin-
ical prognosis of HNSCC still remains a roadblock, with the
5-year survival rate below 50% [4, 5]. Therefore, the probing
of several plausible prognostic markers that accurately pre-
dict the outcome of HNSCC emerges as vital to assist the
delineation of individualized treatment plans.

Neutrophil extracellular traps (NETs) are web-like DNA
structures coated with histones, proteases, and granular and
cytosolic proteins [6] and are released by neutrophils to trap
microorganisms, and the process of their formation is
referred to as NETosis [7]. The possible involvement of
NETs in noninfectious diseases, such as autoimmunity,
coagulation, acute injuries, and cancer, has been docu-
mented [6]. Its involvement in increased primary tumor
growth, metastasis, and complications like venous thrombo-
embolism in malignancies has also been probed [8]. It has
been corroborated that NET extrusion induced by tumor-
secreted CXCR1 and CXCR2 ligands exerts a protective
effect on the malignancies from the cytotoxicity of natural
killer (NK) cells and T cells [9]. The augmentation of the cell
cycle to boost metastasis within the bloodstream by NETs to
expand the metastatic potential of circulating tumor cells is
also known [10]. Yang et al. demonstrated that the DNA
component of NETs (NET-DNA) promotes cancer metasta-
sis via the transmembrane protein CCDC25 [11]. However,
studies probing the role of NETosis in HNSCC are few. Li
et al. found that a hypercoagulable state is driven in oral
squamous cell carcinoma via systemic inflammation to stim-
ulate neutrophils to prime and release NETs [12]. While a
recent study documented the scrutiny of a NET-related gene
signature for predicting non-small-cell lung cancer progno-
sis [13], the role and functioning of NETosis warrants more
research. Therefore, it is meaningful to discern novel
NETosis-linked biomarkers to recognize the molecular
mechanistic aspects of NETosis for prognosis prediction in
HNSCC patients.

lncRNAs are RNAs exceeding 200 nucleotides in length
and do not participate in protein coding but are involved
in controlling gene expression [14]. In lung cancer, the
involvement of lncRNAs to regulate NETs is known [13].
However, the probing of NETosis-associated lncRNAs in
HNSCC is yet to see the light of the day making the prog-
nostic value of NETosis-associated lncRNAs unclear.

Immunotherapy has revolutionized cancer treatment
over the past two decades, mostly employing immune check-
point blockade (ICB) approaches. As of 2019, ICB (pembro-
lizumab, an IgG4 humanized antibody to PD-1) was
approved as first-line or subsequent therapy of recurrent or
metastatic squamous cell carcinoma of the head and neck
[15]. The tumor microenvironment is vitally linked to the
response to ICB. ICB efficacy is poor in “cold” tumors doc-
umenting lower PD-L1 levels in tumor cells, macrophages,
and immune cells [4]. The conversion of these “cold” tumors
into “hot” ones for ICB therapy in HNSCC can augment the
response [16]. Although the sensitization of tumors to
immunotherapy (PD-1+CTLA-4 dual checkpoint blockade)

by NETosis inhibition has been documented recently [9],
such studies are still limited. The probing of the relationship
between NETosis and the tumor immune microenviron-
ment to further comprehend “cold” HNSCC is warranted
to facilitate optimal treatment systems for “cold” HNSCC.

This work was aimed at scrutinizing NETosis-related
lncRNAs in HNSCC to comprehend the molecular and sig-
naling pathways of this phenomenon in this malignancy and
predict the prognosis in these patients. In addition, the links
between NETosis and tumor immune microenvironment
were further probed to provide a speculative basis in “cold”
HNSCC therapy.

2. Materials and Methods

2.1. Patient Details. The RNA sequencing data and patient
characteristics of HNSCC patients (502 malignant and 44
normal samples) were sourced from the TCGA database
(https://portal.gdc.cancer.gov/repository). The clinicopatho-
logical attributes were inclusive of age, gender, smoking sta-
tus, HPV status, tumor grade, tumor stage, survival time,
and survival status. Following the exclusion of the normal
samples (n = 44) and a patient with the overall survival
(OS) missing, 499 patients documenting complete survival
and sequencing data were enrolled in this work. Figure S1
is illustrative of the workflow employed.

2.2. Identifying NETosis-Related lncRNAs. Firstly, 24
NETosis-associated genes were identified by searching liter-
ature (Table S1) [9, 17–25]. lncRNA and protein-coding
gene annotations in the Ensembl human genome browser
GRCh38.p13 (http://asia.ensembl.org/index.html) then
ensued [26]. The correlation between the lncRNAs and the
expression of NETosis-associated genes was probed
employing Pearson’s correlation coefficients. NETosis-
related lncRNAs were determined at P < 0:001 and jRj >
0:4.

2.3. Establishment and Validation of the NETosis-Related
lncRNAs Prognostic Signature. This entailed the random
assignment (2 : 1) of 499 patients into a training cohort and
a validation cohort. NETosis-related lncRNAs for prognosis
were first scored employing univariate Cox regression anal-
ysis of the patients’ survival data in the training cohort
(P < 0:05). LASSO Cox regression ensued of these prog-
nostic NETosis-related lncRNAs to diminish the chance
of overfitting as much as possible. Subsequent application
of multivariate analyses facilitated the indication of the
candidate lncRNAs significantly involved in OS prognosis
prediction. Five relevant NETosis-related lncRNAs were
identified for the prognostic model as per the lowest
Akaike information criterion (AIC) value. The risk scores
of the HNSCC patients were obtained by the normalized
lncRNA expression levels and the corresponding regres-
sion coefficients. This entailed the following formula for
its computation (risk score = βgeneð1Þ × EXPgeneð1Þ + β
geneð2Þ × EXPgeneð2Þ +⋯ + βgeneðnÞ × EXPgeneðnÞ) with
the discerned lncRNA expression level as EXPgene and
its multivariate Cox regression analysis coefficient as β.
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The median value of the risk score was employed to cate-
gorize patients in the training cohort into high-risk (≥
median number) and low-risk (<median number) groups.
The following tests ensued to corroborate the signature:
intergroup OS was scored by Kaplan-Meier analysis with
the “survival” and “survminer” R package. The prediction
accuracy was probed by the “survival ROC” R package
employing time-dependent receiver operating characteristic
(ROC) curve analysis. The scrutiny of the utility of this
signature as an independent prognostic factor as opposed
to other clinical attributes entailed multivariate Cox
regression analysis. Subsequent corroboration of this sig-
nature in the validation cohort entailed the use of the
aforementioned formula to quantitate the risk score in
individual patients. The cutoff value employed in the
training cohort was applied in validation cohort with the
categorization of patients as high-risk and low-risk groups.
Corroboration entailed both the Kaplan-Meier and the
time-dependent ROC analyses.

2.4. The Predictive Nomogram. We further depicted nomo-
grams built on the “rms” R package with the aforementioned
lncRNA signature and other prognostic contributors for OS
prediction in HNSCC patients (1 year, 3 years, and 5 years).
We also computed the calibration curve to probe its
accuracy.

2.5. Functional Enrichment Analysis. This entailed scrutiny
of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis with Gene set enrichment analysis (GSEA)
(versionv4.1.0, http://www.gsea-msigdb.org/gsea/
downloads) in the risk groups employing our NETosis-
related lncRNA signature.

2.6. All-Inclusive Probing of Immune Cell Profile and ICB
Therapy in Both Risk Groups. The measure of tumor-
infiltrating immune cells in HNSCC samples was probed
employing CIBERSORT [27], CIBERSORT−ABS [27],
QUANTISEQ [28], XCELL [29], MCPcounter [30], EPIC
[31], and TIMER [32] algorithms. Both risk groups were
scrutinized for NETosis and immune functioning by
ssGSEA or single-sample GSEA employing the “GSVA”
package, while literature was scored for plausible genes of
immune checkpoint molecules. In order to gauge the impact
of the signature in patient prognosis post-ICB therapy,
ssGSEA was done with the gene set of NETosis employing
that the “GSVA” package of R in two cohorts in which
ICB therapy (anti-PD-L1/PD-1) was administered [33, 34]
to get individual NETosis scores. These scores (median
values) were utilized to group patients into high and low
scores. The relevance of the signature to predict ICB therapy
response entailed relevant survival analyses.

2.7. Chemotherapy Response with Our NETosis-Related
lncRNA Signature. The response to chemotherapy in the
patients was scored employing the R package “pRRophetic”
[35].

2.8. Cell Culture. This work entailed the use of normal
human immortalized nasopharyngeal epithelial cell line

(NP69) and human nasopharyngeal carcinoma cell lines
(CNE1, HNE1, TW03, and SUNE1). All cells were cultivated
in RPMI-1640 medium (GIBCO) supplemented with 7%
fetal bovine serum (ExCell Bio) in 5% CO2 at 37

°C.

2.9. Quantitative Real-Time PCR. Total RNA of NP69,
CNE1, HNE1, or TW03 cells was collected employing the
RNA-Quick Purification kit (ESscience) adhering to the req-
uisite and prescribed protocols. cDNA was synthesized
employing the RNA reverse transcription kit (ESscience) as
per the prescribed instructions. Real-time PCR amplification
ensued with SYBR Green (Vazyme) and the following sets of
primers: AC079336.5 (5′-CACAATCCCACGCTGTACCT-
3′ and 5′-CAGGTGTCCTCAGAAAGCGT-3′), AL645933.2
(5′-GCTTGCTGACTCTGTGGACT-3′ and 5′-AGTTCA
GGTCACCAGTCCCT-3′), LINC00426 (5′-TGCAGGCTT
TGTAGACCCTC-3′ and 5′-TTGCGGGTGATTTACT
GGGG-3′), LINC00623 (5′-AGCTTCTCTGCAGGTCACA
C-3′ and 5′-TGGGCCACCCTTGAACATTT-3′), and
GADPH (5′-CTGGGCTACACTGAGCACC-3′ and 5′-
AAGTGGTCGTTGAGGGCAATG-3′). All samples were
subjected to scrutiny in triplicate, and each target gene was
normalized by GADPH. qPCR and analyses were performed
using the LightCycler 480 Instrument (ROCHE) and software.

2.10. Colony Formation Assay. CNE1 or SUNE1 cells were
placed in triplicate with 500 cells per well in 12-well plates
(BIOFIL) and cultured in RPMI-1640 medium (GIBCO)
supplemented with 7% fetal bovine serum (ExCell Bio) for
10 days. Then, the plates were washed twice with PBS and
fixed with 75% alcohol for 1 hour. After washing twice with
PBS, the cells were stained with crystal violet for 2 hours.
Then, the crystal violet was washed off, and the number of
colonies was counted.

2.11. Cell Proliferation Assay. MTT assay was used to assess
the relative viability of the cells. Briefly, cells were seeded at
1000 cells per well in 96-well plates and cultured overnight
in RPMI-1640 medium containing 7% FBS at 24 hours post-
transfection, respectively. Add 10μL of MTT labeling
reagent and continue incubation for 4-6 h. Read the spectro-
photometry of the samples at 570nm. Data were analyzed
using GraphPad Prism 8 (GraphPad Software, La Jolla,
CA, USA).

2.12. Wound Healing Assay. Cells were seeded into 6-well
tissue culture plates at an appropriate density of 50-60%
and cultured in RPMI-1640 medium (GIBCO) supple-
mented with 7% fetal bovine serum (ExCell Bio) for 24
hours before becoming a monolayer. A linear wound was
scraped on the cell monolayer with a 20μL pipette tip. After
scraping, the cells were washed off by gently rinsing the
medium twice and then cultured in RPMI-1640 medium
without fetal bovine serum. Wounds were imaged under a
microscope at 0, 24, 48, and 72 hours. Three areas were ran-
domly photographed.

2.13. Plasmids and Transfection. LINC00426 plasmids and
control plasmids were purchased from Shanghai Genechem
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Co. Ltd. Plasmid transient transfection was performed using
Lipofectamine 3,000 (Invitrogen) according to the manufac-
turer’s instructions. And then, cells were collected for subse-
quent experiments after 24 hours of transfection.

2.14. Western Blotting. Whole-cell extracts were generated
by direct lysis with 1× Cell Lysis Buffer (Cell Signaling
Technology, #9873) with 1mM phenylmethylsulphonyl
fluoride (PMSF) added immediately before use. Samples
with 6× SDS sample buffer added were heated at 100°C
for 10min and resolved by SDS-PAGE and then trans-
ferred to a PVDF membrane. The membranes were then
examined with primary antibodies, followed by the corre-
sponding HRP-conjugated anti-mouse or anti-rabbit (Pro-
teintech) secondary antibodies. The following antibodies
were used: α-tubulin (1 : 1000, Proteintech), cGAS (1 : 1000,
Abcepta), TBK1 (1 : 1000, Proteintech), phospho-TBK1
(1 : 1000, CST), STING (1 : 1000, Proteintech), phospho-
STING (1 : 1000,CST), IRF3 (1 : 1000, Proteintech), and
phospho-IRF3 (1 : 1000, CST).

2.15. Statistical Analyses. The Wilcox test was employed to
probe the relative amounts of immune checkpoint molecules
and immune cells infiltrating the malignancy in both the risk
groups. The lncRNA signature and its link with clinicopath-
ological factors were probed by the chi-squared test. As elu-

cidated above, the identification of the independent factors
in OS prognosis entailed multivariate Cox regression analy-
ses. The accuracy of prognosis prediction was gauged by
ROC analyses. R software (Version 4.1.0) and SPSS (Version
23.0) were employed for all these computations.

3. Results

3.1. Patient Characteristics in Both Cohorts. Random assign-
ment of HNSCC patients who met eligibility criteria
(n = 499) was done into training (N = 333) and validation
(N = 166) cohorts in a 2 : 1 ratio. The clinical characteristics
and pathological records have been detailed in Table 1. The
training cohort included 246 (73.9%) male and 87 (26.4%)
female patients with 50.8% patients over 60 years old, while
the validation cohort included 120 (72.3%) male and 46
(27.7%) female patients with 51.8% patients over 60 years
old. A total of 204 (61.3%) patients and 110 (66.3%) patients
had smoking history in the training cohort and validation
cohort, respectively. Most of the patients had absence of
HPV evaluation in both groups. There were 23 patients
(6.9%) confirmed with positive HPV status and 53 patients
(15.9%) confirmed with negative HPV status in the training
cohort. Similarly, there were 10 patients (6.0%) confirmed
with positive HPV status and 26 patients (15.7%) confirmed
with negative HPV status in the validation cohort. For the

Table 1: Clinical characteristics of patients in the training cohort and validation cohort.

Training cohort Validation cohort
P valueN = 333 N = 166

No. % No. %

Age

≤60 164 49.2 80 48.2
0.824>60 169 50.8 86 51.8

Gender

Female 87 26.4 46 27.7
0.706

Male 246 73.9 120 72.3

Smoking

Former and current smoker 204 61.3 110 66.3
0.276

Nonsmoker 129 38.7 56 33.7

HPV status

Negative 53 15.9 26 15.7

0.926Positive 23 6.9 10 6.0

Unknown 257 77.2 130 78.3

Grade

G1-2 236 70.9 123 74.1

0.749G3-4 84 25.2 37 22.3

Unknown 13 3.9 6 3.6

Stage

I 17 5.1 8 4.8

0.888

II 45 13.5 24 14.5

III 56 16.8 22 13.3

IV 170 51.1 89 53.6

Unknown 45 13.5 23 13.9
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training cohort, pathological evaluation showed that 236
(70.9%) patients were classified as moderate to poor differ-
entiation grade (grade 1-2), and 84 (25.2%) patients were
classified as well differentiation grade (grade 3-4). Besides,
17 (5.1%) patients, 45 (13.5%) patients, and 56 (16.8%)
patients, and 170 (51.1%) were classified as TNM stages I,

II, III, and IV HNSCC, respectively. For the validation
cohort, pathological evaluation showed that 123 (74.1%)
patients were classified as moderate to poor differentiation
grade (grade 1-2), and 37 (22.3%) patients were classified
as well differentiation grade (grade 3-4). Besides, 8 (4.8%)
patients, 24 (14.5%) patients, and 22 (13.3%) patients and
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LINC00426 (N = 333) 0.30
(0.112-0.79)
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AC087752.4 (N = 333) 0.28
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# Events: 148; Global p-value (Log-Rank): 9.6088e-08
AIC: 1459.15; Concordance index: 0.67 0.1 0.2 0.5 1

Hazard ratio

(c)

Figure 1: The construction of a prognostic model in head and neck squamous cell carcinoma (HNSCC) patients. (a) 12 NETosis-related
lncRNAs were selected by the least absolute shrinkage and selection operator (LASSO) regression model according to minimum criteria.
(b) The coefficient of NETosis-related lncRNAs was calculated by LASSO regression. (c) Forest plots showing the results of the
multivariate Cox regression analysis between the 5 NETosis-related lncRNAs and overall survival (OS) of HNSCC.
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89 (53.6%) were classified as TNM stage I, II, III, and IV
HNSCC, respectively. Overall, no significant differences
were detected in age, gender, smoking history, HPV status,
tumor grade, and tumor stage between training and valida-
tion cohorts.

3.2. Data Collection and Identification of NETosis-Related
lncRNAs. Firstly, we included the data of RNA-seq and clin-

ical data of 528 HNSCC patients from TCGA; then, 44 nor-
mal samples and 1 sample lacked survival data were
excluded (final patient number = 499). Then, 24 NETosis-
linked genes were delineated in HNSCC patients as outlined
above. The correlation between 564 NETosis-related
lncRNAs and 24 NETosis-linked genes was evaluated by
Pearson’s correlation analysis, and the NETosis-related
lncRNAs were identified according to the standard that the

Table 2: Signature was identified based on the lowest Akaike information criterion (AIC).

Model Prognostic signature combination AIC

1
AC093278.2 +AC114730.3 +AC015911.3 +AC079336.5 +AC087392.5 + LINC00623 + RAB11B-AS1+ AL359881.1

+AC087752.4 +AL359921.1 +AL645933.2 + LINC00426
1468.15

2
AC093278.2 +AC015911.3 +AC079336.5 +AC087392.5 + LINC00623 +RAB11B-AS1 +AL359881.1 +AC087752.4

+AL359921.1 +AL645933.2 + LINC00426
1466.15

3
AC093278.2 +AC079336.5 +AC087392.5 + LINC00623 + RAB11B-AS1 +AL359881.1 +AC087752.4 +AL359921.1

+AL645933.2 + LINC00426
1464.52

4
AC093278.2 +AC079336.5 +AC087392.5 + LINC00623 + RAB11B-AS1 +AC087752.4 +AL359921.1 +AL645933.2

+ LINC00426
1463.14

5 AC079336.5 +AC087392.5 + LINC00623 + RAB11B-AS1 +AC087752.4 +AL359921.1 +AL645933.2 + LINC00426 1461.83

6 AC079336.5 + LINC00623 +RAB11B-AS1 +AC087752.4 +AL359921.1 +AL645933.2 + LINC00426 1460.50

7 AC079336.5 + LINC00623 +AC087752.4 +AL359921.1 +AL645933.2 + LINC00426 1459.89

8 AC079336.5 + LINC00623 +AC087752.4 +AL645933.2 + LINC00426 1459.15

Table 3: Association between signature and clinicopathological manifestations.

Training cohort
(N = 333)

P

Validation cohort
(N = 166)

P
High risk Low risk High risk Low risk
n = 166 n = 167 n = 81 n = 85

Age (%)

≤60 76 (45.8) 88 (52.7)
0.207

35 (43.2) 45 (52.9)
0.210>60 90 (54.2) 79 (47.3) 46 (56.8) 40 (47.1)

Gender (%)

Female 46 (27.7) 41 (24.6)
0.512

26 (32.1) 20 (23.5)
0.218

Male 120 (72.3) 126 (75.4) 55 (67.9) 65 (76.5)

Smoking (%)

Former and current smoker 96 (57.8) 108 (64.7)
0.200

55 (67.9) 55 (64.7)
0.663

Nonsmoker 70 (42.2) 59 (35.3) 26 (32.1) 30 (35.3)

HPV status (%)

Negative 24 (14.5) 29 (17.4)

<0.001
12 (14.8) 14 (16.5)

0.034Positive 1 (0.6) 22 (13.2) 1 (1.2) 14 (16.5)

Unknown 141 (84.9) 116 (69.5) 68 (84.0) 62 (72.9)

Grade (%)

G1-2 129 (77.7) 107 (64.1)

0.020

64 (70.9) 59 (69.4)

0.178G3-4 33 (19.9) 51 (30.5) 16 (19.8) 21 (24.7)

Unknown 4 (2.4) 9 (5.4) 1 (1.2) 5 (5.9)

Stage (%)

I 5 (3.0) 12 (7.2)

0.261

7 (8.6) 1 (1.2)

<0.001
II 20 (12.0) 25 (15.0) 10 (12.3) 14 (16.5)

III 33 (19.9) 23 (13.8) 13 (16.0) 9 (10.6)

IV 86 (51.8) 84 (50.3) 48 (59.3) 41 (48.2)

Unknown 22 (13.3) 23 (13.8) 3 (3.7) 20 (23.5)
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Figure 2: Continued.
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P value was less than 0.001 (P < 0:001), and the absolute
value of Pearson’s correlation coefficient was more than 0.4
(jRj > 0:4).

3.3. Building a Prognostic NETosis-Related lncRNA Signature
in HNSCC Patients. A total of 499 HNSCC patients were
randomly assigned to either training set or validation set.
The initial univariate Cox regression analysis unveiled the
prognostic lncRNAs in HNSCC patients based on training
set. The overlapping prognostic lncRNAs and NETosis-
related lncRNAs were identified as the candidate lncRNAs
for the NETosis-related lncRNA signature, which resulted
in 113 lncRNAs. In other words, these 113 lncRNAs were
significantly associated not only with NETosis but also with
prognosis of HNSCC patients. Subsequent LASSO Cox
regression to reduce the multicollinearity unearthed 12
lncRNAs (Figures 1(a) and 1(b)). Ensuing multivariate Cox
regression analysis ultimately highlighted five NETosis-
related lncRNAs as optimal prognostic factors in HNSCC
patients (Figure 1(c)). The lncRNA signature (AC079336.5,
LINC00623, AC087752.4, AL645933.2, and LINC00426)
was unveiled employing the least AIC score (Table 2). The
computation of the risk score based on the signature was
as per the following formula: risk score = −0:468 × AC
079336:5 + 0:360 × LINC00623 – 1:257 × AC087752:4 –
0:209 × AL645933:2 – 1:215 × LINC00426. Then, each
patient in the training set got a risk score based on the for-
mula. The grading of patients in training set was done as
high-risk (n = 166) and low-risk (n = 167) groups with the
median risk score value. No evident differences between

both risk groups emerged for age, gender, smoking status,
and tumor stage, while HPV positive and grade 3-4 were
more common in the low-risk group (P < 0:001 and P =
0:020, respectively) (Table 3). The survival outcome, risk sta-
tus, and expression profile of lncRNAs of each patient are
documented in Figures 2(a), 2(c), and 2(e), respectively, with
the high-risk patients documenting a lower probability of
survival vs. the low-risk patients. Further, the OS was short-
ened in the high-risk patients as evidenced by the Kaplan-
Meier method (Figure 2(g), P < 0:001). The signature docu-
mented significant predictive roles regarding the 1-year OS,
2-year OS, and 3-years OS with the AUC of the ROC analy-
ses at 0.711, 0.710, and 0.672, respectively (Figure 2(i)).

3.4. Corroboration of the lncRNA Signature in the Validation
Cohort. To verify the accuracy of the NETosis-related
lncRNA signature, the computation of the risk score of val-
idation cohort entailed the one employed in the training
cohort. On the same lines, the categorization of the valida-
tion group patients ensued as high-risk (N = 81) and low-
risk (N = 85) groups (Table 3) employing the aforemen-
tioned cutoff value. As shown in Table 3, both groups docu-
mented no conspicuous differences for age, gender, smoking
status, and tumor grade, while HPV positive and stage I were
more common in the low-risk patients (P = 0:034 and P <
0:001, respectively). The survival outcome, risk status, and
lncRNA profile are illustrated in Figures 2(b), 2(d), and 2(f
), respectively. On similar lines, the low-risk patient group
was demonstrative of an elevated survival vs. the high-risk
patients with the latter group demonstrative of a diminished
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Figure 2: The prognostic performance of the NETosis-related lncRNA signature in the training cohort and validation cohort. (a)The
distribution of the risk scores in the training cohort. (b) The distribution of the risk scores in the validation cohort. (c)The scatter plots
showing whether the samples were alive or not in the training cohort. (d) The scatter plots showing whether the samples were alive or
not in the validation cohort. (e) Heat map of the expression of 5 NETosis-related lncRNAs in the training cohort. (f) Heat map of the
expression of 5 NETosis-related lncRNAs in the validation cohort. (g) Kaplan-Meier curves for the overall survival of patients in the
high- and low-risk groups in the training cohort. (h) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk
groups in the validation cohort. (i) Area under time-dependent ROC curve (AUC) of time-dependent receiver operating characteristic
(ROC) curves verified the prognostic accuracy of the risk score in the training cohort. (j) AUC of time-dependent ROC curves verified
the prognostic accuracy of the risk score in the validation cohort.
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OS as evidenced by the Kaplan-Meier method (Figure 2(h),
P = 0:011). The signature documented significant predictive
roles in the 1-year OS, 2-years OS, and 3-years OS with
the AUC at 0.631, 0.652, and 0.673, respectively
(Figure 2(j)).

3.5. The Independent Functioning of the lncRNA Signature
for HNSCC Prognosis.Multivariate Cox regression facilitated
the ascertaining of our lncRNA signature as an independent
factor in HNSCC prognosis (training cohort: HR = 1:776,
95%CI = 1:470 – 2:147, P < 0:001; validation cohort: HR =
1:738, 95%CI = 1:032 – 2:929, P = 0:038, respectively)
(Figures 3(a) and 3(b)). The ROC curve analysis probing
its specificity and sensitivity documented the strength of
the signature with an AUC of 0.711 and 0.631 for the train-

ing and validation cohorts, respectively, exceeding that of
the remaining factors probed (Figures 3(c) and 3(d)). Thus,
our NETosis-related lncRNA signature could function as
an independent tool for prognosis prediction of HNSCC
patients.

3.6. The Predictive Nomogram: Development and
Corroboration. To provide a useful prediction model for sur-
vival probability of HNSCC patients, a nomogram including
clinical features and risk score was constructed. As the mul-
tivariate Cox regression analysis indicated the clinical feature
including stage, age, and risk score as independent factors,
the nomogram was constructed employing the stage, age,
and signature (Figure 4(a)).The prediction of the OS (1 year,
3 years, and 5 years) entailed the construction of a prognostic
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Figure 3: Independent prognostic value of the NETosis-related lncRNA signature in the training cohort and validation cohort. (a) Results of
the multivariate Cox regression analysis regarding OS in the training cohort. (b) Results of the multivariate Cox regression analysis
regarding OS in the validation cohort. (c) Area under time-dependent ROC curve (AUC) of receiver operating characteristic (ROC)
curves compared to the prognostic accuracy of the risk score and other clinicopathological in the training cohort. (d) AUC of ROC
curves compared to the prognostic accuracy of the risk score and other clinicopathological in the validation cohort.
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nomogram encompassing all the independent factors dis-
cerned to depict a risk gauging system comprehensively and
visually. The gauging of the OS employing this nonogram
via calibration curves was illustrated in Figure 4(b). A con-
spicuous agreement emerged for the OS predicted by the
nonogram and the authentic values across various follow-
up periods. The stability and accuracy of our nomogram
encompassing our lncRNA signature with clinical features
can predict the outcome of individual patients, thus bringing
benefits to clinicians and patients.

3.7. GSEA for Vital Pathway Scoring. To explore the poten-
tial signal pathways or functions of NETosis-related
lncRNAs in HNSCC, we applied gene set enrichment analy-

sis (GSEA) to two cohorts. As elucidated above, this entailed
scoring both groups for pathways documenting variations by
KEGG analysis employing GSEA. An upregulation emerged
for genes in focal adhesion, ECM receptor interaction, and
actin cytoskeleton regulation in the high-risk patient set
(Figure 5(a)). The low-risk dataset documented a conspicu-
ous upregulation for anticancer immune pathways inclusive
of B cell receptor, T cell receptor and FcεRI signaling, natu-
ral killer cell-mediated cytotoxicity, and primary immuno-
deficiency along with the chemokine signaling pathway
(Figure 5(b)).The results of the KEGG of NETosis-related
lncRNAs suggested that high-risk patient set was more pos-
sibly to exhibit tumor metastasis and worse prognosis, while
the upregulation of anticancer immune pathways in low-risk
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Figure 4: Building and validation of the nomogram to predict the overall survival of patients. (a) Nomogram plot was built based on risk
score, age, and stage in the whole cohort. (b) Calibration curve of the nomogram.
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patient set indicated an immune status unfavorable to tumor
growth and better prognosis.

3.8. ICB Therapy Outcome Determined by the Immune and
NETosis Status across Both Risk Groups. To investigate the

relationship between NETosis-related lncRNAs and immune
status, the various algorithms outlined mentioned in the
materials section were employed to probe the immune cells
and pathways in both the risk groups, which showed signifi-
cant difference for proportions of different tumor-infiltrating
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Figure 5: Gene set enrichment analysis (GSEA) of the two groups based on the NETosis-related lncRNA prognostic signature. (a) GSEA
results show significant enrichment of glucose and protein metabolism pathways in the high-risk head and neck squamous cell
carcinoma (HNSCC) patients. (b) GSEA results show significant enrichment of immunoregulatory pathways against cancer in the low-
risk HNSCC patients.
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Figure 6: Continued.

12 BioMed Research International



immune cells between the low-risk and high-risk groups
(Figure 6(a)). Further, CIBERSORT facilitated the immune
cell infiltration to be gauged. As shown in Figures 6(b) and
6(c), the high-risk group documented an evident diminishing
of naive B cell, plasma cells, CD8+ T cell, follicular helper T
cells, regulatory T cells, gamma and delta T cells, and resting
and activated mast cells vs. that in the low-risk patient set;
however, the proportion of resting NK cells and M0 macro-
phages was significantly higher in high-risk group.

Then, the difference in immune functions between the
two groups was compared. Both groups were demonstrative
of evident variations in the ssGSEA for T cell functions like
checkpoint (inhibition), cytolytic activity, HLA, inflamma-
tion status, T cell coinhibition, and T cell costimulation,
which is indicative of the low-risk group documenting an
elevated T cell functions (Figure 7(a)). Based on the above
considerations, the low-risk cohort can be assigned plausibly
as a “hot tumor” demonstrative of elevated immune check-
point (inhibition) as per the augmented immune cell infiltra-
tion and immune responses. Our prognostic signature is
demonstrative of an augmented effects in the low-risk group
by ICB therapy. The immune checkpoint molecule profiles
were then scored in both groups. We found that the low-
risk group documented an elevated level of PDL1 (CD274),
CTLA4, IDO1, and LAG3 documented vs. the high-risk
patient group (Figure 7(b)).

To further explore the prognostic value of NETosis score
in patients with immunotherapy, firstly, we confirmed that
patients in the high-risk group of HNSCC have higher
NETosis score by using the “GSVA” package, which revealed

activation of NETosis in the high-risk group vs. the low-risk
group (Figure 8(a)). Then, we performed ssGSEA by using
the NETosis gene panel in two cohorts administered with
immunotherapy employing the “GSVA” package as docu-
mented in Materials and Methods to compute the NETosis
score of individual samples. Following the categorization of
samples as high and low scores employing the median score
value, the patients documented a better survival profile when
the NETosis score was lowered (Figures 8(b) and 8(c)). This
suggests that the low-risk group based on our NETosis-
related lncRNA signature has a lower NETosis score and
better survival after receiving ICB therapy. These docu-
mented outcomes are also corroborative of the plausible
impact of our NETosis-related lncRNA signature to predict
how fitting ICB would be in these patients.

To summarize, a link between the immune cell status
and NETosis score with this lncRNA signature emerged with
the high-risk group possibly documenting a diminishing of
immune cell infiltration and activity with downregulation
of immune checkpoint molecules with lowered survival
post-ICB therapy as opposed to the lower-risk cohort.
NETosis-related lncRNAs-NETosis-antitumor immunity
may be a signaling cascade, which may pave the way for a
future novel therapeutic approach to target the malignancy
in HNSCC patients.

3.9. Scoring the Chemotherapy Response with the NETosis-
Related lncRNA Signature. To further probe the value of
our lncRNA signature in patients undergoing varying che-
motherapy regimens, the “pRRophetic” approach was
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Figure 6: The immune cell infiltration landscape in head and neck squamous cell carcinoma (HNSCC). (a) Heat map for immune cell
infiltration landscape based on the CIBERSORT, CIBERSORT−ABS, QUANTISEQ, XCELL, MCPcounter, EPIC, and TIMER algorithms
among high- and low-risk groups. Only items with significant differences will be displayed; P value < 0.05 was controlled. (b) Barplot of
the tumor-infiltrating cell proportions based on CIBERSORT algorithm. (c) Violin plot showed the different proportions of tumor-
infiltrating cells between different groups based on CIBERSORT algorithm.
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Figure 7: Barplot shows that the low-risk group and high-risk groups exhibit different immune statuses. (a) Single-sample gene set
enrichment analysis (ssGSEA) for the immune functions between high and low head and neck squamous cell carcinoma (HNSCC) risk
groups. (b) The expression levels of immune checkpoints between high and low HNSCC risk groups (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P <
0:001).
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employed to predict the chemotherapy response in both risk
groups. A diminished estimated IC50 was documented by
the low-risk patients vs. the high-risk ones in terms of these
chemotherapy drugs: AKT inhibitor VIII, etoposide, JNK
inhibitor VIII, metformin, methotrexate, rapamycin, shiko-
nin, vorinostat, and elesclomol (Figures 9(a)–9(i)) (P < 0:05
). The results showed that patients in the high-risk group
had poorer outcomes vs. in the low-risk patients when
receiving the above chemotherapy regimens.

3.10. lncRNA Expression from Our NETosis-Related lncRNA
Signature In Vitro. There are five lncRNAs in our prognostic
model, of which four are protective factors and one is a risk
factor. The high-risk group documented an elevated expres-
sion of the risk factor with a diminished expression of pro-
tective factors. This led to whether tumor cell lines also
document this similar expression as the high-risk group.
We compared immortalized nasopharyngeal epithelial cell
lines (NP69) and human nasopharyngeal carcinoma cell
lines (CNE1, HNE1, and TW03). As we described above,
protective factors include AC079336.5, AC087752.4,
AL645933.2, and LINC00426, while LINC00623 is a risk fac-
tor. qPCR revealed lowered expression of LINC00426 in
CNE1, HNE1, and TW03 than in NP69 and lowered expres-

sion of AC079336.5 and AL645933.2 in CNE1 and TW03
than in NP69, while the expression level of LINC00623 is
inconsistent among control cell and tumor cell lines
(Figures 10(a)–10(d)). The above results reflect the reliability
of our model to a certain extent.

3.11. Verification the Effect of lncRNA on Proliferation and
Migration In Vitro. To further investigate the role of
LINC00426, we tested the effect of LINC00426 on the prolifer-
ation and migration of human nasopharyngeal carcinoma cell
lines by transient transfection of overexpressing plasmids. The
expression of mRNA was assessed by qPCR. We then investi-
gated whether the cell proliferation and migration were
inhibited upon LINC00426 overexpression in the nasopharyn-
geal carcinoma cell lines cells (CNE1 and SUNE1). However,
cell proliferation assays showed that overexpression of
LINC00426 did not affect cell viability compared to the neg-
ative group (Figure S2A and Figure S2C). There was also no
change in colony formation ability after overexpression of
LINC00426 in CNE1 and SUNE1 cells (Figure S2B and
Figure S2D). In addition, the wound healing assay also
showed that overexpression of LINC00426 did not affect
the migration ability of CNE1 and SUNE1 cells
(Figure S2E and Figure S2F).
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Figure 8: The prognostic value of NETosis score in patients with immunotherapy. (a) ssGSEA was used to calculate the level of NETosis
between the high-risk and low-risk group. (b) Kaplan-Meier curves for the overall survival of patients in the David A. Braun et al.’s clear
cell renal cell carcinoma cohort. (c) Kaplan-Meier curves for the overall survival of patients in the Sanjeev Mariathasan et al.’s urothelial
cancer cohort.
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Figure 9: Evaluation of chemosensitivity by the risk model. The model showed that low-risk scores were associated with a lower half
inhibitory centration (IC50) for chemotherapeutics such as (a) AKT inhibitor, (b) etoposide, (c) JNK inhibitor V, (d) metformin, (e)
methotrexate, (f) rapamycin, (g) shikonin, (h) vorinostat, and (i) elesclomol.
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3.12. LINC00426 Contributes to the STING Signaling
Pathway. The prognostic model of lncRNA that we built
was able to not only predict the prognosis of patients but also
identify “hot” and “cold” tumors. Therefore, we try to explore
the possibility of lncRNA regulation of immunity in vitro. We
hypothesized that LINC00426 regulated immune cell infiltra-
tion; we overexpressed LINC00426 in CNE1 and SUNE1 cells
(Figures 11(a) and 11(c)) and detected the expression of
cGAS-STING-TBK1-IRF3 signaling pathway. The data exhib-
ited that LINC00426 overexpressed significantly enhanced p-
STING, p-TBK1, and p-IRF3 protein levels in both CNE1
and SUNE1 cells (Figures 11(b) and 11(d)). The activation of

the STING signaling pathway is known to further promote
the secretion of cytokines such as CXCL10, CCL5, ISG15,
and ISG56, thereby recruiting B cells, T cells, and promoting
immune cell infiltration. These data explain to some extent
the role of our prognostic model in predicting “hot” and
“cold” tumors.

4. Discussion

To our knowledge, our study was the first to probe a
NETosis-related lncRNA signature to predict HSNCC prog-
nosis and group a patient set into high-risk and low-risk
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Figure 10: lncRNA expression from our NETosis-related lncRNA signature. (a) mRNA expression of LINC00426 in different cell lines. (b)
mRNA expression of LINC00623 in different cell lines. (c) mRNA expression of AC079336.5 in different cell lines. (d) mRNA expression of
AL645933.2 in different cell lines.
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Figure 11: Changes in STING signaling pathway-related proteins in different cell lines transfected with or without LINC00426
overexpression plasmids. (a) mRNA expression of LINC00426 in CNE1 cells. (b) Western blot for cGAS, TBK1, STING, and IRF3 in
CNE1 cells. (c) mRNA expression of LINC00426 in SUNE1 cells. (d) Western blot for cGAS, TBK1, STING, and IRF3 in SUNE1 cells.
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groups. An evident increase in anticancer immune pathways
was documented in the low-risk group by functional enrich-
ment analysis. In the meanwhile, a close association emerged
for our lncRNA signature with the immune cell infiltration
and NETosis profiles in HNSCC. To expound, an immuno-
logically “cold” profile emerged in the high-risk group,
which included diminished immune cell infiltration and
activity, and dampened immune checkpoint molecule
expression, while an immunologically “hot” profile emerged
in the low-risk group. The putative potential of our signature
was also corroborated in the two patient sets who received
ICB as evidenced in the ssGSEA to predict the relevance of
ICB in patients. The effective prediction of the response to
select chemotherapy drugs by the signature was also docu-
mented in HNSCC patients.

The involvement of lncRNAs in NETosis has been
demonstrated in several studies. For example, Li et al.
reported that an upregulation of IL-12A due to lncRNA
X-inactive specific transcript by binding to miR-21 stimu-
lates NETosis and accelerates primary graft dysfunction
subsequent to lung transplantation [36]. Gao and Zhang
documented that diminishing of lncRNA MINCR inhibits
NETosis and is involved in LPS-evoked acute injury and
inflammatory response [37]. Nonetheless, there are few
studies on elucidating lncRNAs connected with NETosis
in oncogenesis and moreover HNSCC. There were many
researches focusing on figuring out NETosis-associated
gene; we employed Pearson’s correlation analysis on these
genes and lncRNAs to identify NETosis-related lncRNAs,
which initially resulted in 113 NETosis-associated lncRNAs
that regarded to be associated with the survival of HNSCC
patients by univariate Cox regression. Further analyses nar-
rowed down on five NETosis-related lncRNAs: AC079336.5,
LINC00623, AC087752.4, AL645933.2, and LINC00426. Of
these 5 lncRNAs in our prognostic signature, the involvement
of LINC00426 in oncogenesis has been documented. For
example, the regulation of miR-455-5p by LINC00426 to
boost lung adenocarcinoma progression was demonstrated
[38], while LINC00426 was downregulated in non-small-cell
lung cancer patient tumor tissues and correlated with poor
prognosis [39]. Another study documented that LINC00426
contributes to doxorubicin resistance by sponging miR-4319
in osteosarcoma [40]. Our results showed that LINC00426
overexpressed upregulated STING signaling pathway in
HNSCC cell lines, which indicated that innate immunity was
activated [41]. Our data explain to some extent the role of
our prognostic model in predicting “hot” and “cold” tumors,
which illustrated that our model is reliable. For the four
remaining NET-related lncRNAs (AC079336.5, LINC00623,
AC087752.4, and AL645933.2), research on their involvement
in cancer has not yet been documented. We are not able to
verify the function of the other four lncRNAs within severe
constraints of time and money.

The involvement of NETosis in tumorigenesis and thera-
peutic approaches is being documented in several reports.
The definition of NETosis entailed NET release and cell
death involving ROS specifically in cells of hematopoietic ori-
gin [8]. Several signaling cascades are then stimulated by this
NETosis production in tumors encompassing the malig-

nancy itself with blood cells like leukocytes and platelets
and establish an inflammatory microenvironment to boost
tumor progression [42]. As outlined above, the involvement
of this process and NETosis-related lncRNAs in the HNSCC
immune microenvironment warrants scrutiny. This work
documented a diminishing of crucial immune pathways
involved in antitumor functioning like natural killer cell cyto-
toxicity, B cell/T cell receptor signaling, and elevated NETo-
sis in the high-risk group in the relevant assays. This was
suggestive of the plausible link between antitumor immunity
and NETosis in HNSCC. Zhang et al. demonstrated the
recruitment of neutrophils to trigger NETosis by IL17 to
exclude cytotoxic CD8 T cells in pancreatic ductal adenocar-
cinoma. Interestingly, NET inhibition was documented in a
recipient animal model with an arginine deiminase 4 gene
(the enzyme PAD4, vitally involved in mediating NETosis
from neutrophils) deletion with a better response to ICB in
these murine systems emerging vs. those who expressed
PAD4 and demonstrated NETs in the tumor microenviron-
ment [43]. Another study has uncovered the inhibition of
immune cytotoxicity by NETs via immune cell-target cell
contact impairment and inhibition of NETosis by pharmaco-
logically suppressing PAD4 augments tumor sensitivity to
PD-1+CTLA-4 dual checkpoint blockade in a syngeneic
mouse model of breast cancer [9]. These results revealed a
strong association between NETosis and antitumor immu-
nity, which was consistent with our results.

In order to prove the hitherto unknown aspects of
immune cell infiltration and NETosis in HNSCC, the former
was scrutinized employing the algorithms listed earlier. A
conspicuous diminishing of infiltration of cytotoxic cells
inclusive of naive B cells and CD8+ T cells emerged in the
high-risk patients vs. that of the low-risk patient set. The
high-risk group also was demonstrative of diminished
immune checkpoint molecule expression to be hence tagged
as immunologically “cold” tumors to plausibly limit the
response of ICB therapy as documented by our lncRNA signa-
ture. To corroborate this possibility, functional enrichment
analysis was conducted, which revealed that anticancer
immune pathways were significantly upregulated in the low-
risk HNSCC group. Furthermore, probing of the cohorts with
our NETosis-associated lncRNA signature unearthed an aug-
mented survival post-ICB therapy in low-risk patients. These
observations were indicative of the putative impact of our
NETosis-related lncRNA signature to predict ICB response
in patients to further guide treatments in the future.

An augmentation of NETosis emerged in the high-risk
cohort as scrutinized by the “GSVA” package-based score.
This leads us to hypothesize an augmented response to
ICB therapy in this group by boosting immune cell infiltra-
tion by plausibly suppressing this NETosis in this high-risk
group. The role of NETosis in anti-tumor immunity is being
unearthed by ongoing work. Inhibition of NETosis is closely
associated with antitumor immunity. Our research has pro-
vided the theoretical basis that high-risk HNSCC patients
may benefit from the combination of ICB with NETosis
inhibitors, which inhibit cell NETosis and increase immune
cell infiltration to enhance the response to ICB therapy. This
gains support with ongoing trials exploring the efficacy of
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concurrent NETosis inhibitors with other therapeutic strate-
gies. The suitability of the neutrophil/NET system and the
CXCR1/2 and the IL-8 pathway is receiving the center stage
as therapeutic targets given their crucial importance. Con-
current administration of ICB with some CXCR1 and 2
inhibitors has been subjected to clinical testing. For instance,
a phase I study is probing a combination of SX-682 (a
CXCR1/2 inhibitor) and nivolumab (anti-PD1) in metastatic
pancreatic ductal adenocarcinoma (NCT04477343). The
concurrent administration of pembrolizumab (anti-PD1)
with navarixin (a CXCR1/2 inhibitor) in advanced/metasta-
tic solid tumors is being probed in a phase II study
(NCT03473925) [42]. Our study may help provide clues to
identify high-risk patients who may benefit more from the
combination of ICB and NETosis inhibitors.

This work encompasses a few limitations. More in vivo
or in vitro basic experiments are warranted to corroborate
the potential molecular mechanistic aspects of NETosis-
related lncRNAs in prognosis. In addition, clinical trials
are urgently required to confirm whether inhibiting NETosis
could improve the efficacy of immunotherapy in human
HNSCC patients.

In conclusion, we identified the suitability of a NETosis-
based lncRNA signature in the prognosis of HNSCC patients.
Further variation in the immune cell profile and immune
checkpoint molecule expression between the high-risk and
low-risk groups are also documented. Our study suggests that
NETosis inhibition may emerge as a strategy to augment the
efficacy of immunotherapy in HNSCC patients.

Abbreviations

AIC: Akaike information criterion
AUC: Area under time-dependent receiver operating

characteristic curve
CYT: Cytolytic activity
GSEA: Gene set enrichment analysis
HNSCC: Head and neck squamous cell carcinoma
HPV: Human papillomavirus
ICB: Immune checkpoint blockade
KEGG: Kyoto Encyclopedia of Genes and Genomes
LASSO: Least absolute shrinkage and selection operator
lncRNAs: Long noncoding RNAs
NETs: Neutrophil extracellular traps
NK: Natural killer
OS: Overall survival
ROC: Receiver operating characteristic
TCGA: The Cancer Genome Atlas.

Data Availability

The RNA sequencing data and patient characteristics of
HNSCC patients were sourced from the TCGA database
(https://portal.gdc.cancer.gov/repository). lncRNA and
protein-coding gene annotations were ensued in the
Ensembl human genome browser GRCh38.p13 (http://asia
.ensembl.org/index.html). Gene set enrichment analysis
(GSEA) was performed by GSEA software (versionv4.1.0,
http://www.gsea-msigdb.org/gsea/downloads).

Consent

Consent is not necessary.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Authors’ Contributions

XH, ZL, and XZ were responsible for the conception and
design. SL and YX were responsible for the data acquisition.
XH, SL, ZL, XZ, and RD were responsible for the data anal-
ysis and interpretation. SL, YX, ZL, XZ, and RD were
responsible for the material support. XH, ZL, and XZ were
responsible for the study supervision. YX was responsible
for the in vitro experiments. XH and SL wrote the original
draft. The final version is ensured and approved by all
authors. Xiaohua He, Yinglu Xiao, and Shan Liu contributed
equally to this work.

Supplementary Materials

Supplementary 1. Table S1: 24 NETosis-associated genes
were identified from the literature.

Supplementary 2. Figure S1: the flow chart of our study.
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