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Abstract 
 
Individuals with Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are at increased risk for fragility 
fractures. Bone mineral density (BMD) is decreased in T1DM but often normal or even elevated in T2DM when 
compared with age-matched non-DM populations. However, bone turnover is decreased in both T1DM and T2DM. The 
pathophysiologic mechanisms leading to bone fragility is multifactorial, and potentially leads to reduced bone formation, 
altered bone microstructure and decreased bone strength. Interestingly, different antidiabetic treatments may influence 
fracture risk due to effects on glycemic control, triggering of hypoglycemic events or osteoblastogenesis. 
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INTRODUCTION 
 
Diabetes mellitus (DM) is a chronic metabolic non‑
communicable disease with increasing global prevalence. 
By 2015, there were over 415 million adults living with 
DM, and this number is expected to increase to 642 
million by 2040.1 Apart from the major DM‑related 
complications such as cardiovascular diseases, 
osteoporotic fracture is increasingly recognized as an 
important complication of type 1 DM (T1DM) and type 2 
DM (T2DM) in both men and women.2 Worldwide, over 9 
million osteoporotic fractures occur annually, and the 
effect of reduced bone mineral density (BMD), including 
osteoporosis, is predicted to result in over 5 million 
disability adjusted life years (DALY) and 188,000 deaths 
each year. The incidence of hip fractures in individuals 
with T1DM was 383 per 100,000, six‑fold higher than the 
overall incidence of hip fracture in the age‑matched, non‑
diabetic population.3 The odds ratio of vertebral fracture 
in T2DM was 1,86 and 4,73 in women and men,4 
respectively, with a relative risk of 1,83 (95% CI: 1,25‑
1,53).5 These studies were largely done using the cross‑
sectional design and showed only associations rather than 
causality of DM and the incidence of fracture. However, 
taken together, these data indeed show the increased 
fracture risk in individuals with DM. The presence of 
microvascular complications in DM have also been 
associated with reduction of BMD in T1DM5 and with 
bone micro‑architectural abnormalities in T2DM.6‑9 

 
Increasing evidence shows the interaction between plasma 
glucose levels and bone metabolism, revealing 
mechanisms through which bone fragility may develop in 
DM. Whether this interaction translates into increased risk 
for fragility fractures and decreased BMD in all DM 
populations remains unclear. Studies reported conflicting 
findings of changes in BMD. Whereas BMD is decreased in 
T1DM,10‑15 it is either increased or unchanged in T2DM.16‑21 
Intriguingly, a meta‑analysis found that both DM types 
are associated with increased risk of hip fracture.2 In this 
review, we discuss bone metabolism and remodeling, the 
pathophysiologic mechanisms by which bone fragility 
may occur in DM, and the effects of glucose‑lowering 
drugs on bone health. 
 
Bone Metabolism and Remodeling 
 
The structural components of bone consist of a largely 
mineralized extracellular matrix, collagen, and cells. Bone 
is a living organ that is continuously being remodeled, in a 
process that involves a balance in the tearing down of 
bone structure (bone resorption) and its rebuilding (bone 
formation). This resorption and formation allows for the 
repair of micro‑fractures and the modification of structure 
in response to stress.22 Bone resorption is initiated by 
osteoclasts, which attach to bone surface and secrete acid 
and hydrolytic enzymes that resorb bone, releasing 
minerals and collagen fragments.23 After osteoclastic 

resorption is completed, a reversal phase takes place in 
which mononuclear cells prepare the bone surface for new 
osteoblasts to begin bone formation by laying down a 
layer of glycoprotein‑rich material to which the osteoblasts 
can adhere.24 Bone formation is subsequently initiated by 
osteoblasts, which produced type I collagen and other 
proteins, such as osteocalcin, which then form osteoid, a 
substrate for which mineralization can occur. The newly 
formed osteoid then begins to accumulate matrix 
molecules and mineralize.22 In healthy adults, bone 
resorption and formation is a tightly balanced process. 
Both high or low rates of remodeling with an imbalanced 
bone resorption and formation can be associated with 
decreased or increased bone mass.  
 
The synthesis of type I collagen during the bone 
formation phase involves the intertwining of one alpha‑2 
and two alpha‑1 polypeptide chains to form a helical 
structure known as procollagen, followed by cleavage of 
their amino‑terminal and carboxy‑terminal peptides to 
form tropocollagen. The N‑telopeptide (NTX) is the 
pyridinoline crosslink in the N‑telopeptide region that 
joins alpha‑1 chains to alpha‑2 chains,25 whereas the C‑
telopeptide (CTX) is a fragment of the alpha‑1 peptide 
with an isomerized bond between the aspartate and the 
glycine from the carboxytelopeptide region.26 NTX and 
CTX, together with the bone‑specific alkaline 
phosphatase and amino terminal propeptide of type 1 
procollagen (P1NP) are the most clinically useful 
markers of bone turnover.27,28 Osteoblasts produce 
osteocalcin, which is also used as a marker of bone 
formation.29 Furthermore, bone resorption results in the 
release of bone mineral and the collagen‑rich osteoid, 
whereas osteoid formation involves the production of the 
byproducts of collagen and other proteins. These 
substances may be released in the circulation, and can be 
measured in serum and urine to provide information on 
the rate of bone resorption and formation, and are 
collectively termed in the clinic as "bone turnover 
markers" (BTM)23 (Table 1). 
 
Fracture Risk and Diabetes Mellitus 
 
Fracture risk is significantly higher in both T1DM and 
T2DM populations when compared to the general 
population.2 The incidence of hip fracture in individuals 
with T1DM were reported to be six times higher than in 
the population (mean age 65 years) and 2,5‑fold higher 
than in the T2DM population.3 
 
T1DM 
A meta‑analysis of 5 studies reported that T1DM is 
associated with an overall relative risk (RR) of 8,9 (95% 
CI 7,1–11,2) for hip fractures when compared with an 
age‑matched nondiabetic population.2 Most studies in 
young and older, male and female individuals with 
T1DM reported a decrease in BMD at the radius and 
femur.30‑38 This decrease ranges from 22 to 37%.5 
Individuals with T1DM showed decreased trabecular 

and/or cortical volumetric BMD at the distal radius or 
tibia compared with non‑diabetic controls,30,39‑43 and 
some studies reported the associations of these 
alterations with poor glycemic control.40, 41  
 
T2DM 
The risk of hip fracture is particularly increased in 
individuals with T2DM.21,44,45 The risk is even higher in 
those treated with insulin3,46 and poor glycemic control,47 
as reflected by high HbA1c levels, which may indicate the 
more advanced disease state. Studies have also reported 
increased fracture risk in individuals with more 
hypoglycemic episodes.48 A meta‑analysis of four cohorts 
showed that the RR of hip fractures reached 2,7 (95% CI, 
1,7‑4,4).2 The risks for other fractures appear to also 
increase in T2DM compared to healthy individuals, such 
as fractures of the wrist 49 and foot,21,50 as well as of the 
vertebrae.4  
 
Although earlier studies reported lower or unchanged 
BMD, recent large studies found that in T2DM, in 
contrast with T1DM, BMD is increased when compared 
to controls.20,49, 51‑60 Furthermore, this increase in BMD 
remained after adjustment for body weight and 
composition,55, 60 and ranges between 5 to 10% above age‑
matched, non‑diabetic controls.50 Bone fragility depends 
not only on the reduction in bone mineral mass, as 
reflected by BMD, but also from changes to the bone 
microstructure and the components of the bone material. 
This is likely to account for the increased risk of fracture 
despite the increased BMD seen in individuals with 
T2DM. Indeed, MRI studies revealed greater cortical 
porosity in individuals with T2DM compared with non‑
diabetic controls,61,62 a finding repeated by a study using 
quantitative CT (Xtreme‑CT), especially in those with 
fractures and/or microvascular complications.6‑9 Recent 
diagnostic advances enable the measurement of in vivo 
bone material strength (BMS) by the minimally invasive, 
bone microindentation testing.7,63 Postmenopausal 
women with T2DM demonstrated lower BMS and 
greater radial cortical porosity. Poor BMS was correlated 
with poor long‑term glycemic control over the past 10 
years.7 A study in a similar population with fragility 
fractures suggests that severe deficits in cortical bone 
quality, as depicted by an increase in porosity, is a likely 
cause of fragility fractures.8 Regardless of the difference 
in BMD alterations between T1DM and T2DM, DM alone 
has been shown to be predictive of increased post‑
fracture mortality risk during hospitalization64 and up to 
one year after discharge65,66 in individuals with hip 
fracture.  
 
Mechanisms of DM-induced Bone Fragility 
 
The mechanisms of DM‑induced bone fragility in T1DM 
and T2DM are complex and only partially overlap.67 
Individuals with T1DM are mainly experiencing β‑cell 
failure and low levels of IGF1which disrupt the function of 
osteoblasts during growth. As a result, low peak bone 
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to controls.20,49, 51‑60 Furthermore, this increase in BMD 
remained after adjustment for body weight and 
composition,55, 60 and ranges between 5 to 10% above age‑
matched, non‑diabetic controls.50 Bone fragility depends 
not only on the reduction in bone mineral mass, as 
reflected by BMD, but also from changes to the bone 
microstructure and the components of the bone material. 
This is likely to account for the increased risk of fracture 
despite the increased BMD seen in individuals with 
T2DM. Indeed, MRI studies revealed greater cortical 
porosity in individuals with T2DM compared with non‑
diabetic controls,61,62 a finding repeated by a study using 
quantitative CT (Xtreme‑CT), especially in those with 
fractures and/or microvascular complications.6‑9 Recent 
diagnostic advances enable the measurement of in vivo 
bone material strength (BMS) by the minimally invasive, 
bone microindentation testing.7,63 Postmenopausal 
women with T2DM demonstrated lower BMS and 
greater radial cortical porosity. Poor BMS was correlated 
with poor long‑term glycemic control over the past 10 
years.7 A study in a similar population with fragility 
fractures suggests that severe deficits in cortical bone 
quality, as depicted by an increase in porosity, is a likely 
cause of fragility fractures.8 Regardless of the difference 
in BMD alterations between T1DM and T2DM, DM alone 
has been shown to be predictive of increased post‑
fracture mortality risk during hospitalization64 and up to 
one year after discharge65,66 in individuals with hip 
fracture.  
 
Mechanisms of DM-induced Bone Fragility 
 
The mechanisms of DM‑induced bone fragility in T1DM 
and T2DM are complex and only partially overlap.67 
Individuals with T1DM are mainly experiencing β‑cell 
failure and low levels of IGF1which disrupt the function of 
osteoblasts during growth. As a result, low peak bone 
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Abstract 
 
Individuals with Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are at increased risk for fragility 
fractures. Bone mineral density (BMD) is decreased in T1DM but often normal or even elevated in T2DM when 
compared with age-matched non-DM populations. However, bone turnover is decreased in both T1DM and T2DM. The 
pathophysiologic mechanisms leading to bone fragility is multifactorial, and potentially leads to reduced bone formation, 
altered bone microstructure and decreased bone strength. Interestingly, different antidiabetic treatments may influence 
fracture risk due to effects on glycemic control, triggering of hypoglycemic events or osteoblastogenesis. 
 
KeyÊwords:ÊboneÊmetabolism,ÊdiabetesÊmellitus,ÊboneÊremodeling,Êbiomarkers 

 
INTRODUCTION 
 
Diabetes mellitus (DM) is a chronic metabolic non‑
communicable disease with increasing global prevalence. 
By 2015, there were over 415 million adults living with 
DM, and this number is expected to increase to 642 
million by 2040.1 Apart from the major DM‑related 
complications such as cardiovascular diseases, 
osteoporotic fracture is increasingly recognized as an 
important complication of type 1 DM (T1DM) and type 2 
DM (T2DM) in both men and women.2 Worldwide, over 9 
million osteoporotic fractures occur annually, and the 
effect of reduced bone mineral density (BMD), including 
osteoporosis, is predicted to result in over 5 million 
disability adjusted life years (DALY) and 188,000 deaths 
each year. The incidence of hip fractures in individuals 
with T1DM was 383 per 100,000, six‑fold higher than the 
overall incidence of hip fracture in the age‑matched, non‑
diabetic population.3 The odds ratio of vertebral fracture 
in T2DM was 1,86 and 4,73 in women and men,4 
respectively, with a relative risk of 1,83 (95% CI: 1,25‑
1,53).5 These studies were largely done using the cross‑
sectional design and showed only associations rather than 
causality of DM and the incidence of fracture. However, 
taken together, these data indeed show the increased 
fracture risk in individuals with DM. The presence of 
microvascular complications in DM have also been 
associated with reduction of BMD in T1DM5 and with 
bone micro‑architectural abnormalities in T2DM.6‑9 

 
Increasing evidence shows the interaction between plasma 
glucose levels and bone metabolism, revealing 
mechanisms through which bone fragility may develop in 
DM. Whether this interaction translates into increased risk 
for fragility fractures and decreased BMD in all DM 
populations remains unclear. Studies reported conflicting 
findings of changes in BMD. Whereas BMD is decreased in 
T1DM,10‑15 it is either increased or unchanged in T2DM.16‑21 
Intriguingly, a meta‑analysis found that both DM types 
are associated with increased risk of hip fracture.2 In this 
review, we discuss bone metabolism and remodeling, the 
pathophysiologic mechanisms by which bone fragility 
may occur in DM, and the effects of glucose‑lowering 
drugs on bone health. 
 
Bone Metabolism and Remodeling 
 
The structural components of bone consist of a largely 
mineralized extracellular matrix, collagen, and cells. Bone 
is a living organ that is continuously being remodeled, in a 
process that involves a balance in the tearing down of 
bone structure (bone resorption) and its rebuilding (bone 
formation). This resorption and formation allows for the 
repair of micro‑fractures and the modification of structure 
in response to stress.22 Bone resorption is initiated by 
osteoclasts, which attach to bone surface and secrete acid 
and hydrolytic enzymes that resorb bone, releasing 
minerals and collagen fragments.23 After osteoclastic 

resorption is completed, a reversal phase takes place in 
which mononuclear cells prepare the bone surface for new 
osteoblasts to begin bone formation by laying down a 
layer of glycoprotein‑rich material to which the osteoblasts 
can adhere.24 Bone formation is subsequently initiated by 
osteoblasts, which produced type I collagen and other 
proteins, such as osteocalcin, which then form osteoid, a 
substrate for which mineralization can occur. The newly 
formed osteoid then begins to accumulate matrix 
molecules and mineralize.22 In healthy adults, bone 
resorption and formation is a tightly balanced process. 
Both high or low rates of remodeling with an imbalanced 
bone resorption and formation can be associated with 
decreased or increased bone mass.  
 
The synthesis of type I collagen during the bone 
formation phase involves the intertwining of one alpha‑2 
and two alpha‑1 polypeptide chains to form a helical 
structure known as procollagen, followed by cleavage of 
their amino‑terminal and carboxy‑terminal peptides to 
form tropocollagen. The N‑telopeptide (NTX) is the 
pyridinoline crosslink in the N‑telopeptide region that 
joins alpha‑1 chains to alpha‑2 chains,25 whereas the C‑
telopeptide (CTX) is a fragment of the alpha‑1 peptide 
with an isomerized bond between the aspartate and the 
glycine from the carboxytelopeptide region.26 NTX and 
CTX, together with the bone‑specific alkaline 
phosphatase and amino terminal propeptide of type 1 
procollagen (P1NP) are the most clinically useful 
markers of bone turnover.27,28 Osteoblasts produce 
osteocalcin, which is also used as a marker of bone 
formation.29 Furthermore, bone resorption results in the 
release of bone mineral and the collagen‑rich osteoid, 
whereas osteoid formation involves the production of the 
byproducts of collagen and other proteins. These 
substances may be released in the circulation, and can be 
measured in serum and urine to provide information on 
the rate of bone resorption and formation, and are 
collectively termed in the clinic as "bone turnover 
markers" (BTM)23 (Table 1). 
 
Fracture Risk and Diabetes Mellitus 
 
Fracture risk is significantly higher in both T1DM and 
T2DM populations when compared to the general 
population.2 The incidence of hip fracture in individuals 
with T1DM were reported to be six times higher than in 
the population (mean age 65 years) and 2,5‑fold higher 
than in the T2DM population.3 
 
T1DM 
A meta‑analysis of 5 studies reported that T1DM is 
associated with an overall relative risk (RR) of 8,9 (95% 
CI 7,1–11,2) for hip fractures when compared with an 
age‑matched nondiabetic population.2 Most studies in 
young and older, male and female individuals with 
T1DM reported a decrease in BMD at the radius and 
femur.30‑38 This decrease ranges from 22 to 37%.5 
Individuals with T1DM showed decreased trabecular 

and/or cortical volumetric BMD at the distal radius or 
tibia compared with non‑diabetic controls,30,39‑43 and 
some studies reported the associations of these 
alterations with poor glycemic control.40, 41  
 
T2DM 
The risk of hip fracture is particularly increased in 
individuals with T2DM.21,44,45 The risk is even higher in 
those treated with insulin3,46 and poor glycemic control,47 
as reflected by high HbA1c levels, which may indicate the 
more advanced disease state. Studies have also reported 
increased fracture risk in individuals with more 
hypoglycemic episodes.48 A meta‑analysis of four cohorts 
showed that the RR of hip fractures reached 2,7 (95% CI, 
1,7‑4,4).2 The risks for other fractures appear to also 
increase in T2DM compared to healthy individuals, such 
as fractures of the wrist 49 and foot,21,50 as well as of the 
vertebrae.4  
 
Although earlier studies reported lower or unchanged 
BMD, recent large studies found that in T2DM, in 
contrast with T1DM, BMD is increased when compared 
to controls.20,49, 51‑60 Furthermore, this increase in BMD 
remained after adjustment for body weight and 
composition,55, 60 and ranges between 5 to 10% above age‑
matched, non‑diabetic controls.50 Bone fragility depends 
not only on the reduction in bone mineral mass, as 
reflected by BMD, but also from changes to the bone 
microstructure and the components of the bone material. 
This is likely to account for the increased risk of fracture 
despite the increased BMD seen in individuals with 
T2DM. Indeed, MRI studies revealed greater cortical 
porosity in individuals with T2DM compared with non‑
diabetic controls,61,62 a finding repeated by a study using 
quantitative CT (Xtreme‑CT), especially in those with 
fractures and/or microvascular complications.6‑9 Recent 
diagnostic advances enable the measurement of in vivo 
bone material strength (BMS) by the minimally invasive, 
bone microindentation testing.7,63 Postmenopausal 
women with T2DM demonstrated lower BMS and 
greater radial cortical porosity. Poor BMS was correlated 
with poor long‑term glycemic control over the past 10 
years.7 A study in a similar population with fragility 
fractures suggests that severe deficits in cortical bone 
quality, as depicted by an increase in porosity, is a likely 
cause of fragility fractures.8 Regardless of the difference 
in BMD alterations between T1DM and T2DM, DM alone 
has been shown to be predictive of increased post‑
fracture mortality risk during hospitalization64 and up to 
one year after discharge65,66 in individuals with hip 
fracture.  
 
Mechanisms of DM-induced Bone Fragility 
 
The mechanisms of DM‑induced bone fragility in T1DM 
and T2DM are complex and only partially overlap.67 
Individuals with T1DM are mainly experiencing β‑cell 
failure and low levels of IGF1which disrupt the function of 
osteoblasts during growth. As a result, low peak bone 
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mass can occur at a young age.68 In contrast, individuals 
with T2DM developed bone fragility at a later stage of the  
disease, and consequently, at a later age due to the lack of 

insulin, glucose toxicity, advanced glycation end products 
(AGEs), cytokines and adipokines that are affecting 
osteocyte, bone turnover and collagen.69  

Table 1. Bone turnover markers 

Markers Full name Origin Comment 
Source of Variability 

Renal Liver Circadian 
rhythm 

Resorption       
u-CTX Urinary carboxy-

terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-CTX110 

  X 

s-CTX Serum carboxy-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Source of variability: food consumed (so must be collected after 
an overnight fast) 
Changes in levels of s-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-CTX110 

X X X 

u-NTX Urinary amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-NTX110 

  X 

s-NTX Serum amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I, 
generated by 
cathepsin K 

Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-NTX110 

X  X 

s-ICTP or 
CTX-MMP 

Carboxy-terminal 
crosslinking 
telopeptide of type 
I collagen 

Osteoclastic hydrolysis 
of collagen generated 
by matrix 
metalloproteinases 

Specificity: collagen type I, with highest contribution probably 
from bone 
Marker is not responsive to usual treatments for osteoporosis 
Lower s-PICP to s-ICTP ratio were reported in T2DM12 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ICTP111 

X X X 

u-DPD Urinary 
deoxypyridinoline 

Proteolytic hydrolysis 
of collagen, found in 
bone 

Requires adjustment to levels of urinary creatinine 
Specificity: highest contribution from bone 
Sources of variability: UV radiation 
Changes in levels of u-DPD were reported in both T1DM and 
T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in u-DPD111 

  X 

u-PYD Urinary pyridinoline Found in bone, 
cartilage, tendon, 
blood vessels 

Requires adjustment to urinary creatinine 
Specificity: highest contribution from bone and cartilage 
Sources of variability: active arthritis and UV radiation 

 X X 

s-TRAP Serum tartrate-
resistant acid 
phosphatase 

Includes two isoforms: 
type 5a (platelets, 
erythrocytes and other 
sources) and type 5b 
(osteoclasts) 

Sources of variability: influenced by haemolysis and blood clotting 
Changes in levels of s-OC were reported in both T1DM and 
T2DM112 
Levels of s-TRAP is affected by long-term use of insulin in T1DM36 
 

  X 

Formation       
s-OC Serum osteocalcin Hydroxyapatite-binding 

protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Specificity: specific marker of osteoblast function 
Rapid degradation in serum may lead to heterogeneity of OC 
fragments measured 
Sources of variability: large inter-laboratory variation 
Changes in levels of s-OC were reported in both T1DM and T2DM 

X  X 

u-OC Urinary osteocalcin Hydroxyapatite-binding 
protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Adjusted to levels of urinary creatinine (/Cr)  
Specificity: specific marker of osteoblast function 
Changes in levels of u-OC were reported in non-insulin 
dependent DM112 

X  X 

s-ALP Serum alkaline 
phosphatase (total) 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
various tissues: liver, 
bone, intestine, spleen, 
kidney and placenta 

Specificity: non-specific for bone (about 50% is liver isoform in 
healthy individuals)  
Changes in levels of s-ALP were reported in both T1DM and 
T2DM 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ALP111 

  X 

s-BALP Serum bone-
specific alkaline 
phosphatase 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
osteoblasts 

Specificity: specific for bone, but with some cross-reactivity with 
liver isoform (up to 20%)  
Changes in levels of s-BALP were reported in T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-BALP111 

  X 

s-PICP 
 

Procollagen type I 
C propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I  
(around 90%).  
Short serum half-life.  
Regulated by hormones (thyroid, IGF-1)  
Lower s-PICP to s-ICTP ratio were reported in T2DM12 

  X 

s-PINP 
 

Procollagen type I 
N propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I A 
ssay: may recognise trimer alone (intact) or trimer and 
monomer (total PINP)  
Changes in levels of s-P1NP were reported in both T1DM and 
T2DM 

  X 

Adapted from Vasikaran et al.109 

Table 2. Studies reporting on bone turnover in individuals with DM 
Study author Participants BTM measured Comments 

Reyes-Garcia et al.; 2013110 78 T2D (43 men, 35 women),  
55 controls  

OC (ns)- RIA) (DiaSorin, Stillwater, Minnesota 
USA; normal range 1.8–6.6 ng/ml, CTX ↓ EIA 
(Elecsys ß CrossLaps, Roche Diagnostics SL, 
Barcelona, Spain; normal range 0.01–6 ng/ml)  

Vertebral fractures in 27.7% of T2D and 
21.7% of controls 
Cross-sectional 

Yamamoto et al.; 2012111 255 T2D (postmenopausal 
women and men), 240 controls  

OC↓, CTX↓ (electrochemiluminescence 
immunoassay on an automated analyzer; 
Roche Diagnostics GmbH, Mannheim, 
Germany), PTH↓ 

Excluded if serum creatinine was higher 
than normal range  

Manavalan et al.; 2012112 18 T2D PM,  
27 controls PM  

OC↓, ELISA (IDS), CTX ↓ ELISA At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013113 68 male T2D,  
68 male controls 

OC↓, CTX↓ electrochemiluminescence 
immunoassay (Roche Diagnostics GmbH, 
Mannheim, Germany).  

Renal disease excluded  
Case-control 

Ardawi et al.; 2013114 482 T2D PM women,  
482 controls PM  

LIASON autoanalyzer (DiaSorin Inc.,  
Stillwater, MN, USA)  

VF in 24.5% of T2D and none in controls  

Hamilton et al.; 2012115 26 T1D, 27 T2D  CTX ↑, OC (ns), PTH (ns)  
Akin et al.; 2003116  57 T2D PM,  

20 controls PM  
OC↓, NTX↓ BMI significantly lower in controls, fasting, 

chronic disease excluded 
Reyes-Garcia et al.; 2013110 78 T2D, 55 controls  CTX↓, PTH↓, enzyme immunoassay (EIA)  

and ELISA 
Vertebral fractures in 27.7% of T2D  
and 21.7% of controls 

Jiajue et al.; 2014117 236 T2D PM, 1055 controls PM  CTX↓, P1NP↓ Renal disease excluded  
Farr et al.; 20147 30 T2D PM, 30 controls PM  CTX↓, P1NP↓ Stage 4 and 5 chronic kidney diseases 

excluded 
MI significantly lower in controls. Performs 
microindentation 

Manavalan et al.; 2012112 18 T2D PM, 27 controls PM  Circulating OC(+) cells ↓  At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013118  68 male T2D, 68 male controls OC↓, CTX↓ Renal disease excluded  
Gaudio et al.; 2012119  40 T2D PM, 40 controls PM  CTX↓ Renal bone disease excluded  
Ardawi et al.; 2013114  482 T2D PM, 482 controls PM  IGF-1↓, sclerostin ↑, OC↓, CTX↓, P1NP↓, NTX↓ VF in 24.5% of T2D and none in controls  
Hernandez et al.; 2013120 2431 subjects of these 45 T2D  CTX and P1NP↓ in T2DM individuals  

who use statins 
PM females and older men , Coexisting 
medical disorder that might affect bone 
metabolism was excluded.  

Sarkar and Choudhury; 
2013121 

108 T2D, 50 controls OC↓ T2D was newly diagnosed.  

Movahed et. al.; 2012122 382 PM of these 102 T2D  OC↓, CTX↓ The diabetes group is a subgroup of the 
total population. 

Sosa et al.; 1996123  47 female NIDDM,  
252 female controls 

OC (ns), ALP (ns) No renal disorders 

Chen et al.; 2013124  55 T2D, 27 controls  Plasma ALP↑, OC↓ No history of metabolic bone disease  
Alkaline phosphatase (ALP), C-terminal cross-link of collagen (CTX), estimated glomerular filtration rate (eGFR), insulin-like growth factor-1 (IGF-1), 
myocardial infarction (MI), Non-insulin dependent diabetes mellitus (NIDDM), not significant (ns), tosteocalcin (OC), procollagen type 1 N-terminal 
propeptide (P1NP), postmenopausal (PM), parathyroid hormone (PTH), type 1 diabetes (T1D), type 2 diabetes (T2D), vertebral fracture (VF), 
 
Low Bone Turnover 
Most published studies in individuals with DM have 
reported low bone turnover (Table 2). Osteocalcin level, a 
marker of bone formation, is decreased in both T1DM and 
T2DM,70-72 and is negatively correlated with HBA1c level.70 
The negative correlation with HBA1c was also reported for 
CTX, a marker of bone resorption.70 When looking 
separately at T1DM and T2DM, osteocalcin levels have 
been reported to be decreased in T1DM and only 
borderline significantly decreased in T2DM.73 Similarly, 
P1NP and NTX also tended to be lower in individuals 
with DM.5 Consistently, histological study of DM found 
decreased number of osteoblasts and osteoid.74 In general, 
the processes involved in the decreased bone formation 
in T2DM include a decrease in bone quality, alterations 
of the mesenchymal cell differentiation and bone 
microcirculation, as well as changes in osteoblasts and 
osteoclasts (Figure 1). 
 
Adipokines 
Adiponectin, a protein hormone secreted by adipose 
tissue, was found to be decreased in T2DM.75 Adiponectin 
was reported to have an anabolic effect on osteoblasts and 
inhibits osteoclastic activity in vitro.76 However, clinical 
studies reported conflicting findings on whether there 
were negative correlations between adiponectin levels and 

BMD in individuals with T2DM. Leptin, another 
adipokine which is secreted by white adipose, bone 
marrow adipocytes and osteoblastic cells, was found to be 
lower in individuals with DM compared with controls. A 
negative correlation between leptin and NTX was found in 
individuals with T2DM, whereas a positive correlation 
was found with leptin and Z-scores at the distal radius, 
but not at the femoral neck or lumbar spine.77 
Interestingly, in vitro and animal studies showed that high 
glucose level increases the expression of adipogenic 
markers such as the peroxisome proliferator-activated 
receptor (PPAR)-, adipocyte fatty acid binding protein 
(aP2), resistin and adipsin, whereas it suppresses cell 
growth, mineralization, and expression of osteogenic 
markers including Runx2, collagen I, osteocalcin, 
osteonectin.78,79 Further studies are needed to precisely 
explain the role of adiponectins in affecting bone fragility. 
 
Advanced Glycation End Products (AGEs) 
Individuals with DM have increased levels of AGEs due to 
hyperglycemia and increased levels of oxidative stress.80 
The main mechanisms by which AGEs contribute to 
damaging the bone tissue are: 1) by forming cross-links 
with target protein, permanently altering cellular 
structure, and 2) by interacting with specific receptors to 
increase oxidative stress and inflammation.81 The receptor  

92 Bone Metabolism and Fracture Risk in Diabetes Mellitus

www.asean-endocrinejournal.org Vol. 32 No. 2 November 2017

Melisa Puspitasari, et al

ONLINE FIRST | October 15, 2017 | https://doi.org/10.15605/jafes.032.02.14 ONLINE FIRST | October 15, 2017 | https://doi.org/10.15605/jafes.032.02.14

mass can occur at a young age.68 In contrast, individuals 
with T2DM developed bone fragility at a later stage of the  
disease, and consequently, at a later age due to the lack of 

insulin, glucose toxicity, advanced glycation end products 
(AGEs), cytokines and adipokines that are affecting 
osteocyte, bone turnover and collagen.69  

Table 1. Bone turnover markers 

Markers Full name Origin Comment 
Source of Variability 

Renal Liver Circadian 
rhythm 

Resorption       
u-CTX Urinary carboxy-

terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-CTX110 

  X 

s-CTX Serum carboxy-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Source of variability: food consumed (so must be collected after 
an overnight fast) 
Changes in levels of s-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-CTX110 

X X X 

u-NTX Urinary amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-NTX110 

  X 

s-NTX Serum amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I, 
generated by 
cathepsin K 

Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-NTX110 

X  X 

s-ICTP or 
CTX-MMP 

Carboxy-terminal 
crosslinking 
telopeptide of type 
I collagen 

Osteoclastic hydrolysis 
of collagen generated 
by matrix 
metalloproteinases 

Specificity: collagen type I, with highest contribution probably 
from bone 
Marker is not responsive to usual treatments for osteoporosis 
Lower s-PICP to s-ICTP ratio were reported in T2DM12 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ICTP111 

X X X 

u-DPD Urinary 
deoxypyridinoline 

Proteolytic hydrolysis 
of collagen, found in 
bone 

Requires adjustment to levels of urinary creatinine 
Specificity: highest contribution from bone 
Sources of variability: UV radiation 
Changes in levels of u-DPD were reported in both T1DM and 
T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in u-DPD111 

  X 

u-PYD Urinary pyridinoline Found in bone, 
cartilage, tendon, 
blood vessels 

Requires adjustment to urinary creatinine 
Specificity: highest contribution from bone and cartilage 
Sources of variability: active arthritis and UV radiation 

 X X 

s-TRAP Serum tartrate-
resistant acid 
phosphatase 

Includes two isoforms: 
type 5a (platelets, 
erythrocytes and other 
sources) and type 5b 
(osteoclasts) 

Sources of variability: influenced by haemolysis and blood clotting 
Changes in levels of s-OC were reported in both T1DM and 
T2DM112 
Levels of s-TRAP is affected by long-term use of insulin in T1DM36 
 

  X 

Formation       
s-OC Serum osteocalcin Hydroxyapatite-binding 

protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Specificity: specific marker of osteoblast function 
Rapid degradation in serum may lead to heterogeneity of OC 
fragments measured 
Sources of variability: large inter-laboratory variation 
Changes in levels of s-OC were reported in both T1DM and T2DM 

X  X 

u-OC Urinary osteocalcin Hydroxyapatite-binding 
protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Adjusted to levels of urinary creatinine (/Cr)  
Specificity: specific marker of osteoblast function 
Changes in levels of u-OC were reported in non-insulin 
dependent DM112 

X  X 

s-ALP Serum alkaline 
phosphatase (total) 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
various tissues: liver, 
bone, intestine, spleen, 
kidney and placenta 

Specificity: non-specific for bone (about 50% is liver isoform in 
healthy individuals)  
Changes in levels of s-ALP were reported in both T1DM and 
T2DM 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ALP111 

  X 

s-BALP Serum bone-
specific alkaline 
phosphatase 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
osteoblasts 

Specificity: specific for bone, but with some cross-reactivity with 
liver isoform (up to 20%)  
Changes in levels of s-BALP were reported in T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-BALP111 

  X 

s-PICP 
 

Procollagen type I 
C propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I  
(around 90%).  
Short serum half-life.  
Regulated by hormones (thyroid, IGF-1)  
Lower s-PICP to s-ICTP ratio were reported in T2DM12 

  X 

s-PINP 
 

Procollagen type I 
N propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I A 
ssay: may recognise trimer alone (intact) or trimer and 
monomer (total PINP)  
Changes in levels of s-P1NP were reported in both T1DM and 
T2DM 

  X 

Adapted from Vasikaran et al.109 

Table 2. Studies reporting on bone turnover in individuals with DM 
Study author Participants BTM measured Comments 

Reyes-Garcia et al.; 2013110 78 T2D (43 men, 35 women),  
55 controls  

OC (ns)- RIA) (DiaSorin, Stillwater, Minnesota 
USA; normal range 1.8–6.6 ng/ml, CTX ↓ EIA 
(Elecsys ß CrossLaps, Roche Diagnostics SL, 
Barcelona, Spain; normal range 0.01–6 ng/ml)  

Vertebral fractures in 27.7% of T2D and 
21.7% of controls 
Cross-sectional 

Yamamoto et al.; 2012111 255 T2D (postmenopausal 
women and men), 240 controls  

OC↓, CTX↓ (electrochemiluminescence 
immunoassay on an automated analyzer; 
Roche Diagnostics GmbH, Mannheim, 
Germany), PTH↓ 

Excluded if serum creatinine was higher 
than normal range  

Manavalan et al.; 2012112 18 T2D PM,  
27 controls PM  

OC↓, ELISA (IDS), CTX ↓ ELISA At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013113 68 male T2D,  
68 male controls 

OC↓, CTX↓ electrochemiluminescence 
immunoassay (Roche Diagnostics GmbH, 
Mannheim, Germany).  

Renal disease excluded  
Case-control 

Ardawi et al.; 2013114 482 T2D PM women,  
482 controls PM  

LIASON autoanalyzer (DiaSorin Inc.,  
Stillwater, MN, USA)  

VF in 24.5% of T2D and none in controls  

Hamilton et al.; 2012115 26 T1D, 27 T2D  CTX ↑, OC (ns), PTH (ns)  
Akin et al.; 2003116  57 T2D PM,  

20 controls PM  
OC↓, NTX↓ BMI significantly lower in controls, fasting, 

chronic disease excluded 
Reyes-Garcia et al.; 2013110 78 T2D, 55 controls  CTX↓, PTH↓, enzyme immunoassay (EIA)  

and ELISA 
Vertebral fractures in 27.7% of T2D  
and 21.7% of controls 

Jiajue et al.; 2014117 236 T2D PM, 1055 controls PM  CTX↓, P1NP↓ Renal disease excluded  
Farr et al.; 20147 30 T2D PM, 30 controls PM  CTX↓, P1NP↓ Stage 4 and 5 chronic kidney diseases 

excluded 
MI significantly lower in controls. Performs 
microindentation 

Manavalan et al.; 2012112 18 T2D PM, 27 controls PM  Circulating OC(+) cells ↓  At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013118  68 male T2D, 68 male controls OC↓, CTX↓ Renal disease excluded  
Gaudio et al.; 2012119  40 T2D PM, 40 controls PM  CTX↓ Renal bone disease excluded  
Ardawi et al.; 2013114  482 T2D PM, 482 controls PM  IGF-1↓, sclerostin ↑, OC↓, CTX↓, P1NP↓, NTX↓ VF in 24.5% of T2D and none in controls  
Hernandez et al.; 2013120 2431 subjects of these 45 T2D  CTX and P1NP↓ in T2DM individuals  

who use statins 
PM females and older men , Coexisting 
medical disorder that might affect bone 
metabolism was excluded.  

Sarkar and Choudhury; 
2013121 

108 T2D, 50 controls OC↓ T2D was newly diagnosed.  

Movahed et. al.; 2012122 382 PM of these 102 T2D  OC↓, CTX↓ The diabetes group is a subgroup of the 
total population. 

Sosa et al.; 1996123  47 female NIDDM,  
252 female controls 

OC (ns), ALP (ns) No renal disorders 

Chen et al.; 2013124  55 T2D, 27 controls  Plasma ALP↑, OC↓ No history of metabolic bone disease  
Alkaline phosphatase (ALP), C-terminal cross-link of collagen (CTX), estimated glomerular filtration rate (eGFR), insulin-like growth factor-1 (IGF-1), 
myocardial infarction (MI), Non-insulin dependent diabetes mellitus (NIDDM), not significant (ns), tosteocalcin (OC), procollagen type 1 N-terminal 
propeptide (P1NP), postmenopausal (PM), parathyroid hormone (PTH), type 1 diabetes (T1D), type 2 diabetes (T2D), vertebral fracture (VF), 
 
Low Bone Turnover 
Most published studies in individuals with DM have 
reported low bone turnover (Table 2). Osteocalcin level, a 
marker of bone formation, is decreased in both T1DM and 
T2DM,70-72 and is negatively correlated with HBA1c level.70 
The negative correlation with HBA1c was also reported for 
CTX, a marker of bone resorption.70 When looking 
separately at T1DM and T2DM, osteocalcin levels have 
been reported to be decreased in T1DM and only 
borderline significantly decreased in T2DM.73 Similarly, 
P1NP and NTX also tended to be lower in individuals 
with DM.5 Consistently, histological study of DM found 
decreased number of osteoblasts and osteoid.74 In general, 
the processes involved in the decreased bone formation 
in T2DM include a decrease in bone quality, alterations 
of the mesenchymal cell differentiation and bone 
microcirculation, as well as changes in osteoblasts and 
osteoclasts (Figure 1). 
 
Adipokines 
Adiponectin, a protein hormone secreted by adipose 
tissue, was found to be decreased in T2DM.75 Adiponectin 
was reported to have an anabolic effect on osteoblasts and 
inhibits osteoclastic activity in vitro.76 However, clinical 
studies reported conflicting findings on whether there 
were negative correlations between adiponectin levels and 

BMD in individuals with T2DM. Leptin, another 
adipokine which is secreted by white adipose, bone 
marrow adipocytes and osteoblastic cells, was found to be 
lower in individuals with DM compared with controls. A 
negative correlation between leptin and NTX was found in 
individuals with T2DM, whereas a positive correlation 
was found with leptin and Z-scores at the distal radius, 
but not at the femoral neck or lumbar spine.77 
Interestingly, in vitro and animal studies showed that high 
glucose level increases the expression of adipogenic 
markers such as the peroxisome proliferator-activated 
receptor (PPAR)-, adipocyte fatty acid binding protein 
(aP2), resistin and adipsin, whereas it suppresses cell 
growth, mineralization, and expression of osteogenic 
markers including Runx2, collagen I, osteocalcin, 
osteonectin.78,79 Further studies are needed to precisely 
explain the role of adiponectins in affecting bone fragility. 
 
Advanced Glycation End Products (AGEs) 
Individuals with DM have increased levels of AGEs due to 
hyperglycemia and increased levels of oxidative stress.80 
The main mechanisms by which AGEs contribute to 
damaging the bone tissue are: 1) by forming cross-links 
with target protein, permanently altering cellular 
structure, and 2) by interacting with specific receptors to 
increase oxidative stress and inflammation.81 The receptor  
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mass can occur at a young age.68 In contrast, individuals 
with T2DM developed bone fragility at a later stage of the  
disease, and consequently, at a later age due to the lack of 

insulin, glucose toxicity, advanced glycation end products 
(AGEs), cytokines and adipokines that are affecting 
osteocyte, bone turnover and collagen.69  

Table 1. Bone turnover markers 

Markers Full name Origin Comment 
Source of Variability 

Renal Liver Circadian 
rhythm 

Resorption       
u-CTX Urinary carboxy-

terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-CTX110 

  X 

s-CTX Serum carboxy-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Source of variability: food consumed (so must be collected after 
an overnight fast) 
Changes in levels of s-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-CTX110 

X X X 

u-NTX Urinary amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-NTX110 

  X 

s-NTX Serum amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I, 
generated by 
cathepsin K 

Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-NTX110 

X  X 

s-ICTP or 
CTX-MMP 

Carboxy-terminal 
crosslinking 
telopeptide of type 
I collagen 

Osteoclastic hydrolysis 
of collagen generated 
by matrix 
metalloproteinases 

Specificity: collagen type I, with highest contribution probably 
from bone 
Marker is not responsive to usual treatments for osteoporosis 
Lower s-PICP to s-ICTP ratio were reported in T2DM12 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ICTP111 

X X X 

u-DPD Urinary 
deoxypyridinoline 

Proteolytic hydrolysis 
of collagen, found in 
bone 

Requires adjustment to levels of urinary creatinine 
Specificity: highest contribution from bone 
Sources of variability: UV radiation 
Changes in levels of u-DPD were reported in both T1DM and 
T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in u-DPD111 

  X 

u-PYD Urinary pyridinoline Found in bone, 
cartilage, tendon, 
blood vessels 

Requires adjustment to urinary creatinine 
Specificity: highest contribution from bone and cartilage 
Sources of variability: active arthritis and UV radiation 

 X X 

s-TRAP Serum tartrate-
resistant acid 
phosphatase 

Includes two isoforms: 
type 5a (platelets, 
erythrocytes and other 
sources) and type 5b 
(osteoclasts) 

Sources of variability: influenced by haemolysis and blood clotting 
Changes in levels of s-OC were reported in both T1DM and 
T2DM112 
Levels of s-TRAP is affected by long-term use of insulin in T1DM36 
 

  X 

Formation       
s-OC Serum osteocalcin Hydroxyapatite-binding 

protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Specificity: specific marker of osteoblast function 
Rapid degradation in serum may lead to heterogeneity of OC 
fragments measured 
Sources of variability: large inter-laboratory variation 
Changes in levels of s-OC were reported in both T1DM and T2DM 

X  X 

u-OC Urinary osteocalcin Hydroxyapatite-binding 
protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Adjusted to levels of urinary creatinine (/Cr)  
Specificity: specific marker of osteoblast function 
Changes in levels of u-OC were reported in non-insulin 
dependent DM112 

X  X 

s-ALP Serum alkaline 
phosphatase (total) 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
various tissues: liver, 
bone, intestine, spleen, 
kidney and placenta 

Specificity: non-specific for bone (about 50% is liver isoform in 
healthy individuals)  
Changes in levels of s-ALP were reported in both T1DM and 
T2DM 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ALP111 

  X 

s-BALP Serum bone-
specific alkaline 
phosphatase 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
osteoblasts 

Specificity: specific for bone, but with some cross-reactivity with 
liver isoform (up to 20%)  
Changes in levels of s-BALP were reported in T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-BALP111 

  X 

s-PICP 
 

Procollagen type I 
C propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I  
(around 90%).  
Short serum half-life.  
Regulated by hormones (thyroid, IGF-1)  
Lower s-PICP to s-ICTP ratio were reported in T2DM12 

  X 

s-PINP 
 

Procollagen type I 
N propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I A 
ssay: may recognise trimer alone (intact) or trimer and 
monomer (total PINP)  
Changes in levels of s-P1NP were reported in both T1DM and 
T2DM 

  X 

Adapted from Vasikaran et al.109 

Table 2. Studies reporting on bone turnover in individuals with DM 
Study author Participants BTM measured Comments 

Reyes-Garcia et al.; 2013110 78 T2D (43 men, 35 women),  
55 controls  

OC (ns)- RIA) (DiaSorin, Stillwater, Minnesota 
USA; normal range 1.8–6.6 ng/ml, CTX ↓ EIA 
(Elecsys ß CrossLaps, Roche Diagnostics SL, 
Barcelona, Spain; normal range 0.01–6 ng/ml)  

Vertebral fractures in 27.7% of T2D and 
21.7% of controls 
Cross-sectional 

Yamamoto et al.; 2012111 255 T2D (postmenopausal 
women and men), 240 controls  

OC↓, CTX↓ (electrochemiluminescence 
immunoassay on an automated analyzer; 
Roche Diagnostics GmbH, Mannheim, 
Germany), PTH↓ 

Excluded if serum creatinine was higher 
than normal range  

Manavalan et al.; 2012112 18 T2D PM,  
27 controls PM  

OC↓, ELISA (IDS), CTX ↓ ELISA At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013113 68 male T2D,  
68 male controls 

OC↓, CTX↓ electrochemiluminescence 
immunoassay (Roche Diagnostics GmbH, 
Mannheim, Germany).  

Renal disease excluded  
Case-control 

Ardawi et al.; 2013114 482 T2D PM women,  
482 controls PM  

LIASON autoanalyzer (DiaSorin Inc.,  
Stillwater, MN, USA)  

VF in 24.5% of T2D and none in controls  

Hamilton et al.; 2012115 26 T1D, 27 T2D  CTX ↑, OC (ns), PTH (ns)  
Akin et al.; 2003116  57 T2D PM,  

20 controls PM  
OC↓, NTX↓ BMI significantly lower in controls, fasting, 

chronic disease excluded 
Reyes-Garcia et al.; 2013110 78 T2D, 55 controls  CTX↓, PTH↓, enzyme immunoassay (EIA)  

and ELISA 
Vertebral fractures in 27.7% of T2D  
and 21.7% of controls 

Jiajue et al.; 2014117 236 T2D PM, 1055 controls PM  CTX↓, P1NP↓ Renal disease excluded  
Farr et al.; 20147 30 T2D PM, 30 controls PM  CTX↓, P1NP↓ Stage 4 and 5 chronic kidney diseases 

excluded 
MI significantly lower in controls. Performs 
microindentation 

Manavalan et al.; 2012112 18 T2D PM, 27 controls PM  Circulating OC(+) cells ↓  At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013118  68 male T2D, 68 male controls OC↓, CTX↓ Renal disease excluded  
Gaudio et al.; 2012119  40 T2D PM, 40 controls PM  CTX↓ Renal bone disease excluded  
Ardawi et al.; 2013114  482 T2D PM, 482 controls PM  IGF-1↓, sclerostin ↑, OC↓, CTX↓, P1NP↓, NTX↓ VF in 24.5% of T2D and none in controls  
Hernandez et al.; 2013120 2431 subjects of these 45 T2D  CTX and P1NP↓ in T2DM individuals  

who use statins 
PM females and older men , Coexisting 
medical disorder that might affect bone 
metabolism was excluded.  

Sarkar and Choudhury; 
2013121 

108 T2D, 50 controls OC↓ T2D was newly diagnosed.  

Movahed et. al.; 2012122 382 PM of these 102 T2D  OC↓, CTX↓ The diabetes group is a subgroup of the 
total population. 

Sosa et al.; 1996123  47 female NIDDM,  
252 female controls 

OC (ns), ALP (ns) No renal disorders 

Chen et al.; 2013124  55 T2D, 27 controls  Plasma ALP↑, OC↓ No history of metabolic bone disease  
Alkaline phosphatase (ALP), C-terminal cross-link of collagen (CTX), estimated glomerular filtration rate (eGFR), insulin-like growth factor-1 (IGF-1), 
myocardial infarction (MI), Non-insulin dependent diabetes mellitus (NIDDM), not significant (ns), tosteocalcin (OC), procollagen type 1 N-terminal 
propeptide (P1NP), postmenopausal (PM), parathyroid hormone (PTH), type 1 diabetes (T1D), type 2 diabetes (T2D), vertebral fracture (VF), 
 
Low Bone Turnover 
Most published studies in individuals with DM have 
reported low bone turnover (Table 2). Osteocalcin level, a 
marker of bone formation, is decreased in both T1DM and 
T2DM,70-72 and is negatively correlated with HBA1c level.70 
The negative correlation with HBA1c was also reported for 
CTX, a marker of bone resorption.70 When looking 
separately at T1DM and T2DM, osteocalcin levels have 
been reported to be decreased in T1DM and only 
borderline significantly decreased in T2DM.73 Similarly, 
P1NP and NTX also tended to be lower in individuals 
with DM.5 Consistently, histological study of DM found 
decreased number of osteoblasts and osteoid.74 In general, 
the processes involved in the decreased bone formation 
in T2DM include a decrease in bone quality, alterations 
of the mesenchymal cell differentiation and bone 
microcirculation, as well as changes in osteoblasts and 
osteoclasts (Figure 1). 
 
Adipokines 
Adiponectin, a protein hormone secreted by adipose 
tissue, was found to be decreased in T2DM.75 Adiponectin 
was reported to have an anabolic effect on osteoblasts and 
inhibits osteoclastic activity in vitro.76 However, clinical 
studies reported conflicting findings on whether there 
were negative correlations between adiponectin levels and 

BMD in individuals with T2DM. Leptin, another 
adipokine which is secreted by white adipose, bone 
marrow adipocytes and osteoblastic cells, was found to be 
lower in individuals with DM compared with controls. A 
negative correlation between leptin and NTX was found in 
individuals with T2DM, whereas a positive correlation 
was found with leptin and Z-scores at the distal radius, 
but not at the femoral neck or lumbar spine.77 
Interestingly, in vitro and animal studies showed that high 
glucose level increases the expression of adipogenic 
markers such as the peroxisome proliferator-activated 
receptor (PPAR)-, adipocyte fatty acid binding protein 
(aP2), resistin and adipsin, whereas it suppresses cell 
growth, mineralization, and expression of osteogenic 
markers including Runx2, collagen I, osteocalcin, 
osteonectin.78,79 Further studies are needed to precisely 
explain the role of adiponectins in affecting bone fragility. 
 
Advanced Glycation End Products (AGEs) 
Individuals with DM have increased levels of AGEs due to 
hyperglycemia and increased levels of oxidative stress.80 
The main mechanisms by which AGEs contribute to 
damaging the bone tissue are: 1) by forming cross-links 
with target protein, permanently altering cellular 
structure, and 2) by interacting with specific receptors to 
increase oxidative stress and inflammation.81 The receptor  
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mass can occur at a young age.68 In contrast, individuals 
with T2DM developed bone fragility at a later stage of the  
disease, and consequently, at a later age due to the lack of 

insulin, glucose toxicity, advanced glycation end products 
(AGEs), cytokines and adipokines that are affecting 
osteocyte, bone turnover and collagen.69  

Table 1. Bone turnover markers 

Markers Full name Origin Comment 
Source of Variability 

Renal Liver Circadian 
rhythm 

Resorption       
u-CTX Urinary carboxy-

terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-CTX110 

  X 

s-CTX Serum carboxy-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen, generated 
by cathepsin K 

Source of variability: food consumed (so must be collected after 
an overnight fast) 
Changes in levels of s-CTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-CTX110 

X X X 

u-NTX Urinary amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I 

Requires adjustment to levels of urinary creatinine 
Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of u-NTX110 

  X 

s-NTX Serum amino-
terminal cross-
linking telopeptide 
of type I collagen 

Osteoclastic hydrolysis 
of collagen type I, 
generated by 
cathepsin K 

Specificity: collagen type I, with highest contribution probably 
from bone 
Changes in levels of u-NTX were reported in both T1DM and 
T2DM 
Pioglitazone is associated with increased levels of s-NTX110 

X  X 

s-ICTP or 
CTX-MMP 

Carboxy-terminal 
crosslinking 
telopeptide of type 
I collagen 

Osteoclastic hydrolysis 
of collagen generated 
by matrix 
metalloproteinases 

Specificity: collagen type I, with highest contribution probably 
from bone 
Marker is not responsive to usual treatments for osteoporosis 
Lower s-PICP to s-ICTP ratio were reported in T2DM12 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ICTP111 

X X X 

u-DPD Urinary 
deoxypyridinoline 

Proteolytic hydrolysis 
of collagen, found in 
bone 

Requires adjustment to levels of urinary creatinine 
Specificity: highest contribution from bone 
Sources of variability: UV radiation 
Changes in levels of u-DPD were reported in both T1DM and 
T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in u-DPD111 

  X 

u-PYD Urinary pyridinoline Found in bone, 
cartilage, tendon, 
blood vessels 

Requires adjustment to urinary creatinine 
Specificity: highest contribution from bone and cartilage 
Sources of variability: active arthritis and UV radiation 

 X X 

s-TRAP Serum tartrate-
resistant acid 
phosphatase 

Includes two isoforms: 
type 5a (platelets, 
erythrocytes and other 
sources) and type 5b 
(osteoclasts) 

Sources of variability: influenced by haemolysis and blood clotting 
Changes in levels of s-OC were reported in both T1DM and 
T2DM112 
Levels of s-TRAP is affected by long-term use of insulin in T1DM36 
 

  X 

Formation       
s-OC Serum osteocalcin Hydroxyapatite-binding 

protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Specificity: specific marker of osteoblast function 
Rapid degradation in serum may lead to heterogeneity of OC 
fragments measured 
Sources of variability: large inter-laboratory variation 
Changes in levels of s-OC were reported in both T1DM and T2DM 

X  X 

u-OC Urinary osteocalcin Hydroxyapatite-binding 
protein exclusively 
synthesised by 
osteoblasts and 
odontoblasts 

Adjusted to levels of urinary creatinine (/Cr)  
Specificity: specific marker of osteoblast function 
Changes in levels of u-OC were reported in non-insulin 
dependent DM112 

X  X 

s-ALP Serum alkaline 
phosphatase (total) 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
various tissues: liver, 
bone, intestine, spleen, 
kidney and placenta 

Specificity: non-specific for bone (about 50% is liver isoform in 
healthy individuals)  
Changes in levels of s-ALP were reported in both T1DM and 
T2DM 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-ALP111 

  X 

s-BALP Serum bone-
specific alkaline 
phosphatase 

Ubiquitous, membrane 
bound tetrameric 
enzyme located on the 
outer cell surface of 
osteoblasts 

Specificity: specific for bone, but with some cross-reactivity with 
liver isoform (up to 20%)  
Changes in levels of s-BALP were reported in T2DM112 
Troglitazone use in T2DM individuals is associated with a 
decrease in s-BALP111 

  X 

s-PICP 
 

Procollagen type I 
C propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I  
(around 90%).  
Short serum half-life.  
Regulated by hormones (thyroid, IGF-1)  
Lower s-PICP to s-ICTP ratio were reported in T2DM12 

  X 

s-PINP 
 

Procollagen type I 
N propeptide 

Precursor molecules of 
collagen type I 
synthesised by 
osteoblasts 

Specificity: mostly derived from bone collagen type I A 
ssay: may recognise trimer alone (intact) or trimer and 
monomer (total PINP)  
Changes in levels of s-P1NP were reported in both T1DM and 
T2DM 

  X 

Adapted from Vasikaran et al.109 

Table 2. Studies reporting on bone turnover in individuals with DM 
Study author Participants BTM measured Comments 

Reyes-Garcia et al.; 2013110 78 T2D (43 men, 35 women),  
55 controls  

OC (ns)- RIA) (DiaSorin, Stillwater, Minnesota 
USA; normal range 1.8–6.6 ng/ml, CTX ↓ EIA 
(Elecsys ß CrossLaps, Roche Diagnostics SL, 
Barcelona, Spain; normal range 0.01–6 ng/ml)  

Vertebral fractures in 27.7% of T2D and 
21.7% of controls 
Cross-sectional 

Yamamoto et al.; 2012111 255 T2D (postmenopausal 
women and men), 240 controls  

OC↓, CTX↓ (electrochemiluminescence 
immunoassay on an automated analyzer; 
Roche Diagnostics GmbH, Mannheim, 
Germany), PTH↓ 

Excluded if serum creatinine was higher 
than normal range  

Manavalan et al.; 2012112 18 T2D PM,  
27 controls PM  

OC↓, ELISA (IDS), CTX ↓ ELISA At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013113 68 male T2D,  
68 male controls 

OC↓, CTX↓ electrochemiluminescence 
immunoassay (Roche Diagnostics GmbH, 
Mannheim, Germany).  

Renal disease excluded  
Case-control 

Ardawi et al.; 2013114 482 T2D PM women,  
482 controls PM  

LIASON autoanalyzer (DiaSorin Inc.,  
Stillwater, MN, USA)  

VF in 24.5% of T2D and none in controls  

Hamilton et al.; 2012115 26 T1D, 27 T2D  CTX ↑, OC (ns), PTH (ns)  
Akin et al.; 2003116  57 T2D PM,  

20 controls PM  
OC↓, NTX↓ BMI significantly lower in controls, fasting, 

chronic disease excluded 
Reyes-Garcia et al.; 2013110 78 T2D, 55 controls  CTX↓, PTH↓, enzyme immunoassay (EIA)  

and ELISA 
Vertebral fractures in 27.7% of T2D  
and 21.7% of controls 

Jiajue et al.; 2014117 236 T2D PM, 1055 controls PM  CTX↓, P1NP↓ Renal disease excluded  
Farr et al.; 20147 30 T2D PM, 30 controls PM  CTX↓, P1NP↓ Stage 4 and 5 chronic kidney diseases 

excluded 
MI significantly lower in controls. Performs 
microindentation 

Manavalan et al.; 2012112 18 T2D PM, 27 controls PM  Circulating OC(+) cells ↓  At least 1 year use of antiglycemic 
medication  
eGFR b 60 ml/min excluded  

Bhattoa et al.; 2013118  68 male T2D, 68 male controls OC↓, CTX↓ Renal disease excluded  
Gaudio et al.; 2012119  40 T2D PM, 40 controls PM  CTX↓ Renal bone disease excluded  
Ardawi et al.; 2013114  482 T2D PM, 482 controls PM  IGF-1↓, sclerostin ↑, OC↓, CTX↓, P1NP↓, NTX↓ VF in 24.5% of T2D and none in controls  
Hernandez et al.; 2013120 2431 subjects of these 45 T2D  CTX and P1NP↓ in T2DM individuals  

who use statins 
PM females and older men , Coexisting 
medical disorder that might affect bone 
metabolism was excluded.  

Sarkar and Choudhury; 
2013121 

108 T2D, 50 controls OC↓ T2D was newly diagnosed.  

Movahed et. al.; 2012122 382 PM of these 102 T2D  OC↓, CTX↓ The diabetes group is a subgroup of the 
total population. 

Sosa et al.; 1996123  47 female NIDDM,  
252 female controls 

OC (ns), ALP (ns) No renal disorders 

Chen et al.; 2013124  55 T2D, 27 controls  Plasma ALP↑, OC↓ No history of metabolic bone disease  
Alkaline phosphatase (ALP), C-terminal cross-link of collagen (CTX), estimated glomerular filtration rate (eGFR), insulin-like growth factor-1 (IGF-1), 
myocardial infarction (MI), Non-insulin dependent diabetes mellitus (NIDDM), not significant (ns), tosteocalcin (OC), procollagen type 1 N-terminal 
propeptide (P1NP), postmenopausal (PM), parathyroid hormone (PTH), type 1 diabetes (T1D), type 2 diabetes (T2D), vertebral fracture (VF), 
 
Low Bone Turnover 
Most published studies in individuals with DM have 
reported low bone turnover (Table 2). Osteocalcin level, a 
marker of bone formation, is decreased in both T1DM and 
T2DM,70-72 and is negatively correlated with HBA1c level.70 
The negative correlation with HBA1c was also reported for 
CTX, a marker of bone resorption.70 When looking 
separately at T1DM and T2DM, osteocalcin levels have 
been reported to be decreased in T1DM and only 
borderline significantly decreased in T2DM.73 Similarly, 
P1NP and NTX also tended to be lower in individuals 
with DM.5 Consistently, histological study of DM found 
decreased number of osteoblasts and osteoid.74 In general, 
the processes involved in the decreased bone formation 
in T2DM include a decrease in bone quality, alterations 
of the mesenchymal cell differentiation and bone 
microcirculation, as well as changes in osteoblasts and 
osteoclasts (Figure 1). 
 
Adipokines 
Adiponectin, a protein hormone secreted by adipose 
tissue, was found to be decreased in T2DM.75 Adiponectin 
was reported to have an anabolic effect on osteoblasts and 
inhibits osteoclastic activity in vitro.76 However, clinical 
studies reported conflicting findings on whether there 
were negative correlations between adiponectin levels and 

BMD in individuals with T2DM. Leptin, another 
adipokine which is secreted by white adipose, bone 
marrow adipocytes and osteoblastic cells, was found to be 
lower in individuals with DM compared with controls. A 
negative correlation between leptin and NTX was found in 
individuals with T2DM, whereas a positive correlation 
was found with leptin and Z-scores at the distal radius, 
but not at the femoral neck or lumbar spine.77 
Interestingly, in vitro and animal studies showed that high 
glucose level increases the expression of adipogenic 
markers such as the peroxisome proliferator-activated 
receptor (PPAR)-, adipocyte fatty acid binding protein 
(aP2), resistin and adipsin, whereas it suppresses cell 
growth, mineralization, and expression of osteogenic 
markers including Runx2, collagen I, osteocalcin, 
osteonectin.78,79 Further studies are needed to precisely 
explain the role of adiponectins in affecting bone fragility. 
 
Advanced Glycation End Products (AGEs) 
Individuals with DM have increased levels of AGEs due to 
hyperglycemia and increased levels of oxidative stress.80 
The main mechanisms by which AGEs contribute to 
damaging the bone tissue are: 1) by forming cross-links 
with target protein, permanently altering cellular 
structure, and 2) by interacting with specific receptors to 
increase oxidative stress and inflammation.81 The receptor  
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Figure 1. Process involved in the decrease of bone turnover and increase of fracture risk. 
 
for AGEs (RAGE) initiates the intracellular signaling 
through the binding of AGEs.82 The soluble isoform of 
RAGE (known as soluble RAGE, sRAGE) is thought to be 
produced by proteolytic cleavage of disintegrin and 
metalloproteinase domain‑containing proteins (ADAMs). 
Activation of the RAGE signaling pathway leads to a 
positive feedback loop by enhancing the NF‑kB 
expression. Subsequently, important inflammatory 
mediators, including tumor necrosis factor‑alpha (TNF‑α), 
interleukin‑1 (IL‑1), IL‑6, and C‑reactive protein (CRP) are 
upregulated through both AGE‑ and NF‑kB‑mediated 
pathways.82 Increased AGE concentration is negatively 
associated with bone density and mineralization,83 and the 
cross‑linking of AGE with collagen alters the mechanical 
properties of bone, disrupting its remodeling, increasing 
its stiffness and fragility.84‑86 Pentosidine, a well‑known 
AGE, was also shown to disrupt osteoblast 
differentiation.87 Studies found that poor glycemic control 
was associated with increased risk of fractures in 
individuals with DM, and suggest that HbA1c level of <8% 
could reduce fracture risk in individuals with DM.  
 
Insulin and IGF1 
Insulin exerts an anabolic effect on bones by promoting 
osteoblast proliferation and differentiation.88 Animal 
studies have shown that diabetic rodents have impaired 
bone formation following bone injury whereas insulin 
injection normalized it.89 Insulin deficiency, as in T1DM, is 
characterized by low levels or activity of insulin‑like 
growth factor 1 (IGF1). The stimulating activity of IGF1 on 
osteoblasts is inhibited by high concentration of AGEs or 
glucose.90,91 In contrast with T1DM, T2DM is a disease that 
mainly shows insulin resistance. It remains unclear how in 
T2DM insulin resistance and insulin deficiency at its later 
stage may affect bone metabolism and fragility.  

Pro-inflammatory cytokines  
Pro‑inflammatory cytokines have been implicated in both 
T1DM and T2DM and in the development of 
complications of both diseases. Elevated pro‑inflammatory 
cytokine levels, such as TNF and IL‑6, can activate 
osteoclastogenesis and inhibit osteoblast differentiation.92,93 
Indirectly, the reactive oxygen species generated due to 
the exposure of tissue to IL‑1, IL‑6 and TNF can affect the 
differentiation and survival of osteoclasts, osteoblasts, 
and osteocytes.  
 
Glucose-lowering Drugs and Bone Metabolism 
 
Antidiabetic treatment is aimed at achieving good glucose 
control to reduce the risk of complications. Data showed 
that 1% reduction in HBA1c levels led to 37% reduction in 
microvascular complication endpoints.94 As HBA1c, 
microvascular complications and bone fragility have been 
shown to be interrelated, it is reasonable to consider that 
optimal glucose control may reduce fracture risk. 
Individuals with poor glycemic control have increased risk 
for fractures.47,95,96 In individuals with T2DM, HBA1c levels 
7,5% were reported to have 62% higher risk for fractures 
compared to those with HBA1c levels <7,5%. The ACCORD 
trial reported that there was no substantial benefit for 
fracture prevention or BMD changes in lowering HBA1c 

below 7,5%. 
 
Insulin was shown to increase the risk of falls in insulin‑
treated individuals if their HBA1c levels were 6%. It 
appeared that more aggressive glycemic control in elderly 
individuals with long term disease might increase 
hypoglycemic events and thus the risk for falls and 
fractures.97 Metformin, the first line drug for DM, was 
found from most clinical studies to have positive or 

neutral effect on BMD and fracture risk in large 
cohorts.46,98,99 Sulfonylureas show neutral effect on BTM 
levels, and studies on its clinical effect has not been 
established.46 However, sulfonylureas should be avoided 
in individuals at risk for bone fragility due to its risk for 
inducing hypoglycemic events.67,100 Thiazolidinediones, 
which includes rosiglitazone and pioglitazone, activate 
peroxisome proliferator‑activated receptors (PPARs), 
particularly PPAR‑γ. In vitro and in vivo studies show 
increased adipogenesis and impaired osteoblastogenesis. 
Meta‑analyses confirmed an increased risk for fractures 
(OR 2.23, 95% CI 1.65–3.01101 and OR=1.94; 95%CI: 1.60‑
2.35102) in women treated with pioglitazone or 
rosiglitazone, but not in men. The evidence on the incretin‑
based treatments, GLP1 analogues and DPP4 inhibitors, 
are less conclusive.67 A meta‑analysis found that two 
different GLP1 analogues, liraglutide and exenatide, had 
protective and negative effects, respectively, on fracture 
risk. However, these studies were not designed for bone 
outcomes and differ in their design and power.103 Studies 
on DPP4 inhibitors also did not find consistent effects on 
fracture outcomes.104,105 Sodium/glucose co‑transporter 2 
(SGLT2) inhibitors are new generation antidiabetics which 
exert effects by inhibiting glucose reabsorption in the 
proximal tubule of the kidney.106 Data has also not been 
consistent in this group of drugs. While dapagliflozin and 
empagliflozin seem to have a neutral effect on bone 
turnover and BMD parameters, canagliflozin was reported 
to cause bone loss at the hips107,108 and increase the risk for 
hip fractures. 
 
CONCLUSIONS 
 
Fracture risk is known to be increased in both T1DM and 
T2DM. Levels of BTM were also lower in individuals with 
DM compared to non‑DM controls. Despite increasing 
data on the association between BMD, BTM and fracture 
in individuals with DM, there are still challenges in 
identifying those with high fracture risk. Oxidative stress, 
inflammation and the production of AGEs increase the 
risk of complications. Additionally, disturbances in bone 
collagen metabolism and bone mineralization also reduce 
bone strength, while altered fat metabolism also affects 
bone health. A population of individuals are treated with 
insulin, but its use has been associated with increased 
fracture risk.46 It remains unclear whether insulin use is 
merely a marker for the severity or duration of disease, or 
induces more hypoglycemic events that lead to falls. 
Furthermore, it is unknown whether in DM, changes in 
bone metabolism occurs earlier in the disease course. It is 
therefore important to consider the treatment approach 
and education of fall prevention in these individuals who 
are already at increased risk for fractures. Medications 
with favorable effect on bone metabolism such as 
metformin or incretin‑based treatments may be the 
preferred treatment while thiazolidinediones should be 
used with careful evaluation and patient education. 
Evaluation by use of BTM may be of benefit, but needs 

further studies in particular populations of individuals 
with DM such as premenopausal women or the 
Indonesian population.  
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Figure 1. Process involved in the decrease of bone turnover and increase of fracture risk. 
 
for AGEs (RAGE) initiates the intracellular signaling 
through the binding of AGEs.82 The soluble isoform of 
RAGE (known as soluble RAGE, sRAGE) is thought to be 
produced by proteolytic cleavage of disintegrin and 
metalloproteinase domain‑containing proteins (ADAMs). 
Activation of the RAGE signaling pathway leads to a 
positive feedback loop by enhancing the NF‑kB 
expression. Subsequently, important inflammatory 
mediators, including tumor necrosis factor‑alpha (TNF‑α), 
interleukin‑1 (IL‑1), IL‑6, and C‑reactive protein (CRP) are 
upregulated through both AGE‑ and NF‑kB‑mediated 
pathways.82 Increased AGE concentration is negatively 
associated with bone density and mineralization,83 and the 
cross‑linking of AGE with collagen alters the mechanical 
properties of bone, disrupting its remodeling, increasing 
its stiffness and fragility.84‑86 Pentosidine, a well‑known 
AGE, was also shown to disrupt osteoblast 
differentiation.87 Studies found that poor glycemic control 
was associated with increased risk of fractures in 
individuals with DM, and suggest that HbA1c level of <8% 
could reduce fracture risk in individuals with DM.  
 
Insulin and IGF1 
Insulin exerts an anabolic effect on bones by promoting 
osteoblast proliferation and differentiation.88 Animal 
studies have shown that diabetic rodents have impaired 
bone formation following bone injury whereas insulin 
injection normalized it.89 Insulin deficiency, as in T1DM, is 
characterized by low levels or activity of insulin‑like 
growth factor 1 (IGF1). The stimulating activity of IGF1 on 
osteoblasts is inhibited by high concentration of AGEs or 
glucose.90,91 In contrast with T1DM, T2DM is a disease that 
mainly shows insulin resistance. It remains unclear how in 
T2DM insulin resistance and insulin deficiency at its later 
stage may affect bone metabolism and fragility.  

Pro-inflammatory cytokines  
Pro‑inflammatory cytokines have been implicated in both 
T1DM and T2DM and in the development of 
complications of both diseases. Elevated pro‑inflammatory 
cytokine levels, such as TNF and IL‑6, can activate 
osteoclastogenesis and inhibit osteoblast differentiation.92,93 
Indirectly, the reactive oxygen species generated due to 
the exposure of tissue to IL‑1, IL‑6 and TNF can affect the 
differentiation and survival of osteoclasts, osteoblasts, 
and osteocytes.  
 
Glucose-lowering Drugs and Bone Metabolism 
 
Antidiabetic treatment is aimed at achieving good glucose 
control to reduce the risk of complications. Data showed 
that 1% reduction in HBA1c levels led to 37% reduction in 
microvascular complication endpoints.94 As HBA1c, 
microvascular complications and bone fragility have been 
shown to be interrelated, it is reasonable to consider that 
optimal glucose control may reduce fracture risk. 
Individuals with poor glycemic control have increased risk 
for fractures.47,95,96 In individuals with T2DM, HBA1c levels 
7,5% were reported to have 62% higher risk for fractures 
compared to those with HBA1c levels <7,5%. The ACCORD 
trial reported that there was no substantial benefit for 
fracture prevention or BMD changes in lowering HBA1c 

below 7,5%. 
 
Insulin was shown to increase the risk of falls in insulin‑
treated individuals if their HBA1c levels were 6%. It 
appeared that more aggressive glycemic control in elderly 
individuals with long term disease might increase 
hypoglycemic events and thus the risk for falls and 
fractures.97 Metformin, the first line drug for DM, was 
found from most clinical studies to have positive or 

neutral effect on BMD and fracture risk in large 
cohorts.46,98,99 Sulfonylureas show neutral effect on BTM 
levels, and studies on its clinical effect has not been 
established.46 However, sulfonylureas should be avoided 
in individuals at risk for bone fragility due to its risk for 
inducing hypoglycemic events.67,100 Thiazolidinediones, 
which includes rosiglitazone and pioglitazone, activate 
peroxisome proliferator‑activated receptors (PPARs), 
particularly PPAR‑γ. In vitro and in vivo studies show 
increased adipogenesis and impaired osteoblastogenesis. 
Meta‑analyses confirmed an increased risk for fractures 
(OR 2.23, 95% CI 1.65–3.01101 and OR=1.94; 95%CI: 1.60‑
2.35102) in women treated with pioglitazone or 
rosiglitazone, but not in men. The evidence on the incretin‑
based treatments, GLP1 analogues and DPP4 inhibitors, 
are less conclusive.67 A meta‑analysis found that two 
different GLP1 analogues, liraglutide and exenatide, had 
protective and negative effects, respectively, on fracture 
risk. However, these studies were not designed for bone 
outcomes and differ in their design and power.103 Studies 
on DPP4 inhibitors also did not find consistent effects on 
fracture outcomes.104,105 Sodium/glucose co‑transporter 2 
(SGLT2) inhibitors are new generation antidiabetics which 
exert effects by inhibiting glucose reabsorption in the 
proximal tubule of the kidney.106 Data has also not been 
consistent in this group of drugs. While dapagliflozin and 
empagliflozin seem to have a neutral effect on bone 
turnover and BMD parameters, canagliflozin was reported 
to cause bone loss at the hips107,108 and increase the risk for 
hip fractures. 
 
CONCLUSIONS 
 
Fracture risk is known to be increased in both T1DM and 
T2DM. Levels of BTM were also lower in individuals with 
DM compared to non‑DM controls. Despite increasing 
data on the association between BMD, BTM and fracture 
in individuals with DM, there are still challenges in 
identifying those with high fracture risk. Oxidative stress, 
inflammation and the production of AGEs increase the 
risk of complications. Additionally, disturbances in bone 
collagen metabolism and bone mineralization also reduce 
bone strength, while altered fat metabolism also affects 
bone health. A population of individuals are treated with 
insulin, but its use has been associated with increased 
fracture risk.46 It remains unclear whether insulin use is 
merely a marker for the severity or duration of disease, or 
induces more hypoglycemic events that lead to falls. 
Furthermore, it is unknown whether in DM, changes in 
bone metabolism occurs earlier in the disease course. It is 
therefore important to consider the treatment approach 
and education of fall prevention in these individuals who 
are already at increased risk for fractures. Medications 
with favorable effect on bone metabolism such as 
metformin or incretin‑based treatments may be the 
preferred treatment while thiazolidinediones should be 
used with careful evaluation and patient education. 
Evaluation by use of BTM may be of benefit, but needs 

further studies in particular populations of individuals 
with DM such as premenopausal women or the 
Indonesian population.  
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Figure 1. Process involved in the decrease of bone turnover and increase of fracture risk. 
 
for AGEs (RAGE) initiates the intracellular signaling 
through the binding of AGEs.82 The soluble isoform of 
RAGE (known as soluble RAGE, sRAGE) is thought to be 
produced by proteolytic cleavage of disintegrin and 
metalloproteinase domain‑containing proteins (ADAMs). 
Activation of the RAGE signaling pathway leads to a 
positive feedback loop by enhancing the NF‑kB 
expression. Subsequently, important inflammatory 
mediators, including tumor necrosis factor‑alpha (TNF‑α), 
interleukin‑1 (IL‑1), IL‑6, and C‑reactive protein (CRP) are 
upregulated through both AGE‑ and NF‑kB‑mediated 
pathways.82 Increased AGE concentration is negatively 
associated with bone density and mineralization,83 and the 
cross‑linking of AGE with collagen alters the mechanical 
properties of bone, disrupting its remodeling, increasing 
its stiffness and fragility.84‑86 Pentosidine, a well‑known 
AGE, was also shown to disrupt osteoblast 
differentiation.87 Studies found that poor glycemic control 
was associated with increased risk of fractures in 
individuals with DM, and suggest that HbA1c level of <8% 
could reduce fracture risk in individuals with DM.  
 
Insulin and IGF1 
Insulin exerts an anabolic effect on bones by promoting 
osteoblast proliferation and differentiation.88 Animal 
studies have shown that diabetic rodents have impaired 
bone formation following bone injury whereas insulin 
injection normalized it.89 Insulin deficiency, as in T1DM, is 
characterized by low levels or activity of insulin‑like 
growth factor 1 (IGF1). The stimulating activity of IGF1 on 
osteoblasts is inhibited by high concentration of AGEs or 
glucose.90,91 In contrast with T1DM, T2DM is a disease that 
mainly shows insulin resistance. It remains unclear how in 
T2DM insulin resistance and insulin deficiency at its later 
stage may affect bone metabolism and fragility.  

Pro-inflammatory cytokines  
Pro‑inflammatory cytokines have been implicated in both 
T1DM and T2DM and in the development of 
complications of both diseases. Elevated pro‑inflammatory 
cytokine levels, such as TNF and IL‑6, can activate 
osteoclastogenesis and inhibit osteoblast differentiation.92,93 
Indirectly, the reactive oxygen species generated due to 
the exposure of tissue to IL‑1, IL‑6 and TNF can affect the 
differentiation and survival of osteoclasts, osteoblasts, 
and osteocytes.  
 
Glucose-lowering Drugs and Bone Metabolism 
 
Antidiabetic treatment is aimed at achieving good glucose 
control to reduce the risk of complications. Data showed 
that 1% reduction in HBA1c levels led to 37% reduction in 
microvascular complication endpoints.94 As HBA1c, 
microvascular complications and bone fragility have been 
shown to be interrelated, it is reasonable to consider that 
optimal glucose control may reduce fracture risk. 
Individuals with poor glycemic control have increased risk 
for fractures.47,95,96 In individuals with T2DM, HBA1c levels 
7,5% were reported to have 62% higher risk for fractures 
compared to those with HBA1c levels <7,5%. The ACCORD 
trial reported that there was no substantial benefit for 
fracture prevention or BMD changes in lowering HBA1c 

below 7,5%. 
 
Insulin was shown to increase the risk of falls in insulin‑
treated individuals if their HBA1c levels were 6%. It 
appeared that more aggressive glycemic control in elderly 
individuals with long term disease might increase 
hypoglycemic events and thus the risk for falls and 
fractures.97 Metformin, the first line drug for DM, was 
found from most clinical studies to have positive or 

neutral effect on BMD and fracture risk in large 
cohorts.46,98,99 Sulfonylureas show neutral effect on BTM 
levels, and studies on its clinical effect has not been 
established.46 However, sulfonylureas should be avoided 
in individuals at risk for bone fragility due to its risk for 
inducing hypoglycemic events.67,100 Thiazolidinediones, 
which includes rosiglitazone and pioglitazone, activate 
peroxisome proliferator‑activated receptors (PPARs), 
particularly PPAR‑γ. In vitro and in vivo studies show 
increased adipogenesis and impaired osteoblastogenesis. 
Meta‑analyses confirmed an increased risk for fractures 
(OR 2.23, 95% CI 1.65–3.01101 and OR=1.94; 95%CI: 1.60‑
2.35102) in women treated with pioglitazone or 
rosiglitazone, but not in men. The evidence on the incretin‑
based treatments, GLP1 analogues and DPP4 inhibitors, 
are less conclusive.67 A meta‑analysis found that two 
different GLP1 analogues, liraglutide and exenatide, had 
protective and negative effects, respectively, on fracture 
risk. However, these studies were not designed for bone 
outcomes and differ in their design and power.103 Studies 
on DPP4 inhibitors also did not find consistent effects on 
fracture outcomes.104,105 Sodium/glucose co‑transporter 2 
(SGLT2) inhibitors are new generation antidiabetics which 
exert effects by inhibiting glucose reabsorption in the 
proximal tubule of the kidney.106 Data has also not been 
consistent in this group of drugs. While dapagliflozin and 
empagliflozin seem to have a neutral effect on bone 
turnover and BMD parameters, canagliflozin was reported 
to cause bone loss at the hips107,108 and increase the risk for 
hip fractures. 
 
CONCLUSIONS 
 
Fracture risk is known to be increased in both T1DM and 
T2DM. Levels of BTM were also lower in individuals with 
DM compared to non‑DM controls. Despite increasing 
data on the association between BMD, BTM and fracture 
in individuals with DM, there are still challenges in 
identifying those with high fracture risk. Oxidative stress, 
inflammation and the production of AGEs increase the 
risk of complications. Additionally, disturbances in bone 
collagen metabolism and bone mineralization also reduce 
bone strength, while altered fat metabolism also affects 
bone health. A population of individuals are treated with 
insulin, but its use has been associated with increased 
fracture risk.46 It remains unclear whether insulin use is 
merely a marker for the severity or duration of disease, or 
induces more hypoglycemic events that lead to falls. 
Furthermore, it is unknown whether in DM, changes in 
bone metabolism occurs earlier in the disease course. It is 
therefore important to consider the treatment approach 
and education of fall prevention in these individuals who 
are already at increased risk for fractures. Medications 
with favorable effect on bone metabolism such as 
metformin or incretin‑based treatments may be the 
preferred treatment while thiazolidinediones should be 
used with careful evaluation and patient education. 
Evaluation by use of BTM may be of benefit, but needs 

further studies in particular populations of individuals 
with DM such as premenopausal women or the 
Indonesian population.  
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Figure 1. Process involved in the decrease of bone turnover and increase of fracture risk. 
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particularly PPAR‑γ. In vitro and in vivo studies show 
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Fracture risk is known to be increased in both T1DM and 
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DM compared to non‑DM controls. Despite increasing 
data on the association between BMD, BTM and fracture 
in individuals with DM, there are still challenges in 
identifying those with high fracture risk. Oxidative stress, 
inflammation and the production of AGEs increase the 
risk of complications. Additionally, disturbances in bone 
collagen metabolism and bone mineralization also reduce 
bone strength, while altered fat metabolism also affects 
bone health. A population of individuals are treated with 
insulin, but its use has been associated with increased 
fracture risk.46 It remains unclear whether insulin use is 
merely a marker for the severity or duration of disease, or 
induces more hypoglycemic events that lead to falls. 
Furthermore, it is unknown whether in DM, changes in 
bone metabolism occurs earlier in the disease course. It is 
therefore important to consider the treatment approach 
and education of fall prevention in these individuals who 
are already at increased risk for fractures. Medications 
with favorable effect on bone metabolism such as 
metformin or incretin‑based treatments may be the 
preferred treatment while thiazolidinediones should be 
used with careful evaluation and patient education. 
Evaluation by use of BTM may be of benefit, but needs 

further studies in particular populations of individuals 
with DM such as premenopausal women or the 
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