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Abstract: The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane
thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation
that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear,
and whether PTS-PTSO can promote gut health by altering the microbiota and exert protection against
enteric pathogens needs further investigation. Here, we explored the antioxidant activity of PTS-
PTSO in murine macrophages in vitro, and in an in vivo model of bacterial infection with the bacterial
pathogen Citrobacter rodentium. PTS-PTSO attenuated reactive oxygen species in lipopolysaccharide-
stimulated macrophages in a nuclear factor erythroid factor 2-related factor 2 (Nrf2)-dependent
manner, decreased nitric oxide levels both in macrophages in vitro and in the sera of mice fed PTS-
PTSO, and had putatively beneficial effects on the commensal gut microbiota. Importantly, PTS-PTSO
decreased faecal C. rodentium counts, concomitant with upregulation of Nrf2-related genes in colon
tissue. Thus, PTS-PTSO mediates Nrf2-mediated antioxidant activity and modulates gut microbiota,
which may protect the host against C. rodentium colonization. Our results provide further insight into
how PTS-PTSO and related bioactive dietary compounds may reduce enteric infections.

Keywords: propyl propane thiosulfinate; propyl propane thiosulfonate; antioxidant activity;
Citrobacter rodentium; nuclear factor erythroid factor 2-related factor 2

1. Introduction

Enteropathogenic Escherichia coli (EPEC) are important human gut pathogens, which
cause intestinal oxidative stress, severe diarrhea, and mortality, mainly in children. Severe
cases may be treated with antimicrobials. However, the overuse of antibiotics not only
causes drug-resistance, but also impairs normal gastrointestinal function, increasing the
risk of metabolic disorders and inflammation [1]. Finding alternatives to current antibiotics
is, therefore, a priority.

The murine enteric pathogen Citrobacter rodentium (C. rodentium) shares virulence
mechanisms encoded from a pathogenicity island termed locus of enterocyte effacement
(LEE) with EPEC, as well as enterohaemorrhagic E. coli (EHEH) and, like these E. coli
types, it mainly affects the distal large intestine with low-level inflammation [2,3]. It has,
therefore, been widely used as a model to study the pathogenicity of these pathotypes. Most
studies indicate that host defenses against C. rodentium are connected to epithelial barrier
function, the host gut microbiota and anti-inflammatory responses [3,4]. Typically, more
reactive oxygen species (ROS) and pro-inflammatory cytokines such as IL-6, TNFα, and
IL-17 are observed in C. rodentium-infected mice than in controls, together with decreased
Lactobacillus spp. populations in the gut, suggesting that these factors can be potential
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targets, which may affect C. rodentium clearance [5]. Thus, compounds that modulate
host oxidative stress, inflammatory responses, and/or the commensal microbiota, may be
promising strategies for regulating resistance to infection.

Compounds from plants that are commonly found in dietary supplements have been
reported to improve the outcome of intestinal diseases with a lower risk of drug-resistance,
and have been reported to maintain the intestinal balance by regulating the commensal
bacteria and gut immune responses, thereby promoting health and reducing disease [6].
Among the natural herbs, garlic (Allium sativum L.) has been used for thousands of years
because of its medical effects, and its characteristic flavor and odor as a food additive [7].
It is reported that garlic can inhibit bacterial growth, including the growth of methicillin-
resistant Staphylococcus aureus, Helicobacter pylori and E. coli [8,9]. Moreover, the anti-cancer,
antifungal and immune-regulatory properties of garlic have also attracted attention. Major
organosulfur compounds, such as allicin and alliin, are assumed to be responsible for these
biological functions [10]. When garlic is crushed or processed, the enzyme alliinase will
be released and this can react with Propiin (S-propyl-L-cysteine sulfoxide) to form propyl
propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO), two organosulfur
compounds that are normally found together in high amounts in garlic extracts [11]. As
secondary metabolites from garlic, PTS and PTSO exhibit potent antimicrobial effects
against Salmonella enterica, E.coli and other enterobacteria [12]. Therefore, PTS and PTSO
have been used both as a anti-bacterial material for industrial packaging and also as an
dietary additive, where they may alleviate obesity-associated systemic inflammation, as
well as improving intestinal microbiota homeostasis, indicating their potential use as novel
treatments for inflammatory diseases and metabolic syndrome [13,14]. Thus, PTS-PTSO
may influence EPEC and EHEC colonization in the gut through various mechanisms.

Recently, we demonstrated that PTS-PTSO has anti-inflammatory activity in murine
macrophages in vitro, and attenuates inflammation caused by enteric helminth infection,
altering the expression of genetic pathways involved in immune function and oxidative
stress [15]. However, the mechanism(s) of antioxidant activities need to be further inves-
tigated, and the ability of these compounds to regulate the gut environment and protect
enteric bacterial pathogens, including C. rodentium in mice, remains unclear. We hypothe-
sized that PTS-PTSO exerts antioxidant properties that can modulate the gut environment
to minimize inflammation and protect the host against enteric infection. Here, we show
that PTS-PTSO reduced ROS and nitric oxide (NO) levels in lipopolysaccharide (LPS)-
activated murine macrophages and regulated the murine gut microbiota (GM) composition.
Moreover, PTS-PTSO reduced the faecal load of C. rodentium in experimentally challenged
mice. Notably, PTS-PTSO enhanced the expression of antioxidant proteins related to Nrf2
signaling in both uninfected and infected mice. These results demonstrate that PTS-PTSO
exerts strong Nrf2-mediated antioxidant signaling properties and can also protect the host
against enteric infection, potentially through the antioxidant activity of PTS-PTSO. Thus,
our data can aid in the design of dietary supplements based on garlic or related bioactive
compounds to reinforce the robustness of the host to cope with intestinal challenges.

2. Materials and Methods
2.1. Garlic Metabolites

The garlic product was provided by Pancosma SA (Rolle, Switzerland). It contains
40% PTS-PTSO (of which 80% consists of PTSO, and 20% PTS; Figure 1). The remainder
of the extract solution consists of the solvent polysorbate-80. The stated experimental
concentrations refer to final PTS-PTSO concentration used in assays or animal experiments.
In all experiments, control cells and control mice were treated with an equivalent amount
of polysorbate-80 as the PTS-PTSO-treated groups.
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2.2. Cell Culture

RAW264.7 macrophages (ATCC-TIB-71) were cultured in DMEM medium (supple-
mented with 10% fetal bovine serum and 100 U/mL penicillin and 100 µg/mL streptomycin,
all from Sigma-Aldrich). As previously described [16], RAW264.7 cells were split into
24-well plates for PTS-PTSO and LPS stimulation. After 2 h of incubation for appropriate
cell attachment, 5 µM of the Nrf2 inhibitor ML385 (Sigma-Aldrich, Schnelldorf, Germany)
was added for 2 h followed by 20 µM PTS-PTSO and 500 ng/mL LPS for 24 h stimulation,
then ROS and NO production were measured.

2.3. Reactive Oxygen Species Assay

ROS production in RAW264.7 cells was measured using the fluorescent dye DCFH-DA
(Sigma-Aldrich), as described previously [16]. In brief, cells were washed with serum-
free DMEM medium, then 10 µM DCFH-DA was transferred onto the cells for 30 min
incubation at 37 ◦C, 5% CO2. Next, cells were washed 2–3 times with serum-free medium,
then detached with Accutase (Sigma-Aldrich) for ROS measurement by flow cytometry
(Accuri C6, BD biosciences, San Jose, CA, USA).

2.4. Nitric Oxide Assay

NO accumulation in cells and serum was measured by the Griess reagent (Abcam,
Cambridge, UK). Cell lysate or sera were prepared with cold nitrite assay buffer for 10 min
on ice; then, the supernatant was collected after centrifuging at 10,000× g for 5 min.
100 µL Griess buffer was added to the supernatant for a 10 min incubation period, and the
absorbance was measured at 540 nm.

2.5. Western Blot

Cells were washed twice with cold PBS (Sigma-Aldrich); then, RIPA buffer (Ther-
moFisher Scientific, Waltham, MA, USA) with Halt Protease Inhibitor was added onto
the cells for lysis. The supernatant was collected by centrifuging at 10,000× g for 10 min.
Protein in supernatant with loading buffer (Thermo Scientific) was separated on an iBolt
4–12% bis-tris gel (Invitrogen, Waltham, MA, USA), then transferred to nitrocellulose
membrane using the iBlot 2 Transfer Stack and iBlot 2 Gel Transfer Device according to
the manufacturer’s instructions. The total protein of each sample was quantified through
REVERT™ Total Protein Stain kit (Li-COR, Lincoln, NE, USA) at 700nm. Subsequently,
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blocking was conducted by Intercept® (TBS) Blocking Buffer (Li-COR, Lincoln, NE, USA)
for 0.5 h–1 h, and the membrane was probed with rabbit anti-mouse PRDX1 (1:2000, Pro-
teintech, Manchester, UK) and rabbit anti-mouse HO-1 (1:2000, Cell Signaling Technology,
Frankfurt, Germany) at 4 ◦C, overnight. Then, the membrane was washed with TBST buffer
(Li-COR, Lincoln, NE, USA), and incubated with secondary antibody (goat anti-rabbit,
1:30,000) for 1 h. The protein was detected and analyzed using LI-COR Odyssey® Imagers
(Li-COR, Lincoln, NE, USA) at 700 nm and 800 nm. Relative normalized protein was
calculated according to REVERT™ Total Protein Stain Normalization protocol.

2.6. Animal Experiments

Mice experimentation was approved by the Experimental Animal Unit, University of
Copenhagen, and conducted in line with the guidelines of the Danish Animal Experimen-
tation Inspectorate (License number 2020-15-0201-00465). Female mice (C57BL/6 strain,
6–8 weeks of age; Enivgo, The Netherlands) were used and housed in individually venti-
lated cages with ad libitum access to mouse chow (DF-30, SAFE, Augy, France). Mice were
administered PTS-PTSO in drinking water at a dosage of 1 mg/kg body weight, based on
an intake of 4 mL water/mouse/day. Mice in the untreated groups received an equivalent
amount of polysorbate 80 in the drinking water to the intervention groups. For infection
studies, C. rodentium (strain DBS100; ATCC 51459) was grown overnight in LB broth, and
mice were gavaged with 109 CFU/mouse, with the dose confirmed retrospectively by serial
dilution and plating on McConkey agar. Mice were sacrificed at the indicated timepoints by
cervical dislocation, and faeces were collected from the colon for GM analysis (see below)
or assessment of C. rodentium burden by homogenization of faeces in PBS before serial
dilution and plating on McConkey agar overnight at 37 ◦C to determine CFU/g faeces.
Colonic tissues were stored in RNAlater for RNA extraction, blood was collected prior to
euthanasia and serum was harvested for analysis of NO or glutathione production (study
design shown below in Figure 1).

2.7. Faecal Microbiota Analysis

The Bead-Beat Micro AX Gravity kit (A&A Biotechnology, Gdansk, Poland) was used
for faecal DNA extraction in accordance with the manufacturer’s instructions. Additionally,
lysozyme and mutanolysin were supplemented in lysis buffer for stronger bacterial cell
wall degradation before DNA extraction. The 16S rRNA gene V3-region was amplified and
sequenced as previously described [16,17]. The raw dataset containing pair-ended reads
was merged and trimmed, and zero-radius operational taxonomic units (zOTU) obtained
using the Greengenes (13.8) 16S rRNA gene collection as a reference database. Further
analysis was conducted using the Quantitative Insight into Microbial Ecology open-source
software package QIIME 2 (v2019.4.0). Taxonomical assignments were obtained using
the EZtaxon for 16S rRNA gene database. For subsequent analyses within this dataset,
samples were normalized to 7000 reads. Principal Coordinates Analysis (PCoA) was
performed on Bray–Curtis distances and differences in treatments evaluated with analysis
of similarities (ANOSIM).

2.8. Total Glutathione Assessment

Total glutathione levels of serum of mice were measured using the Glutathione
GSH/GSSG Assay kit (Sigma-Aldrich, Schnelldorf, Germany) according to manufacturer’s
protocol. In brief, 5% meta-phosphoric acid solution was used to remove protein from
samples following centrifuge at 14,000× g for 5 min. Supernatant was collected to mix
with assay buffer and working reagent for glutathione assay. OD value of each sample and
standard at 412 nm at zero and 10 min was measured; then, the results were calculated by
the following formula:

GSHTotal (µM) = (∆ODSample − ∆ODBlank) × DF/Slope (µM−1)

∆OD: OD10min − OD0min, DF: dilution factor, Slope: standard curve.
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2.9. Quantitative Real-Time PCR

RNA from colonic tissue was extracted using RNeasy kits (Qiagen, Copenhagen, Den-
mark), and cDNA synthesis (QuantiTect Reverse Transcription Kit, Qiagen) was performed
according to manufacturer’s protocols, as previously described [16]. Primers are listed in
Table 1. PerfeCTa SYBR Green FastMIX Low ROX (Quanta Bioscience, Gaithersburg, MD,
USA) was used for qPCR using the following program: initial denaturation step at 95 ◦C
for 2 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 20 s. Relative expression
was calculated using the ∆∆CT method using Gapdh as a reference gene.

Table 1. Primers used for qPCR.

Genes GeneBank Accession Primer Sequence (5-3 Forward/Reverse)

Nrf2 AH006764.2 F: CGAGATATACGCAGGAGAGGTAAGA
R: GCTCGACAATGTTCTCCAGCTT

Keap1 AB020063.1 F: CAACTTCGCGGAGCAGATCG
R: AGCTGGCAGTGTGACAGGTT

Nqo1 NM_008706.5 F: CATCCTGCGTTTCTGTGGCT
R: TCTCCTCCCAGACGGTTTCC

Gpx2 U62658.1 F: CAAGTATGTCCGACCTGGGG
R: GGGTAGGGCAGCTTGTCTTT

Hmox1 NM_010442.2 F: GAACCCAGTCTATGCCCCAC
R: GCGTGCAAGGGATGATTTCC

Muc2 NM_023566.4 F: GTCCTGACCAAGAGCGAACA
R: TTGAAGGCCACCACGTTCTT

Nos2 NM_010927.4 F: GGTGAAGGGACTGAGCTGTT
R: TGCACTTCTGCTCCAAATCCA

Gapdh BC023196.2 F: TATGTCGTGGAGTCTACTGGT
R: GAGTTGTCATATTTCTCGTGG

2.10. Statistical Analysis

Statistical analysis was determined by one way ANOVA or t-test with Graph Pad
Prism (Version 8.0, Grahpad Prism, San Diego, CA, USA). Weight gain and gene expression
were analyzed by two-way ANOVA (infection and diet), with p value < 0.05 considered
significant. Changes in relative distribution of zOTUs were determined with the G-test of
independence (based on Bonferroni-corrected p value < 0.05), followed by t-tests. All data
were represented as means ± standard error of mean (SEM).

3. Results
3.1. PTS-PTSO Decreases Reactive Oxygen Species and Nitric Oxide Production in Macrophages

ROS and NO are involved in many physiological processes, especially oxidative dam-
age, apoptosis and inflammation [18–20]. We have previously shown that PTS-PTSO limits
inflammatory cytokine production and upregulates genes involved in antioxidant responses
in mouse macrophages in vitro [15]. To confirm the functional antioxidant activities of
PTS-PTSO, we first stimulated RAW264.7 cells with 20µM PTS-PTSO as well as with LPS,
with or without the Nrf2 inhibitor ML385. As shown in Figure 2, LPS significantly increased
ROS level and NO production, and PTS-PTSO tended to inhibit ROS release as well as
substantially decrease NO levels. Importantly, the Nrf2 inhibitor significantly prevented
the PTS-PTSO’s ability to reduce ROS production, indicating that a major mechanism of
the antioxidant activity of PTS-PTSO is its functioning as an Nrf2 activator. In contrast,
ML385 treatment had no effect on NO levels, suggesting that PTS-PTSO induces different
pathways to regulate ROS production and NO release. To explore whether PTS-PTSO also
induced the expression of Nrf2-related proteins in RAW264.7 cells, we quantified heme
oxygenase 1 (HO-1) and Peroxiredoxin 1 (PRDX1) levels as antioxidant proteins involving
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in oxidative stress and inflammation in response to ROS [21,22]. An increasing trend was
shown in PTS-PTSO-stimulated cells; however, there were no statistical differences in the
expression of PRDX1 and HO-1 (Figure 3). Collectively, these data show that PTS-PTSO
inhibits the production of LPS-induced oxidative stress in macrophages whilst tending to
increase the production of proteins involved in antioxidant responses.
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Figure 2. PTS-PTSO inhibits reactive oxygen species (ROS) production and nitric oxide (NO) release
in murine macrophages. (A) ROS level in RAW264.7 cells stimulated with PTS-PTSO (20 µM) + LPS
or PTS-PTSO + LPS combined with Nrf2 inhibitor ML385 (5 µM), n = 6 replicates per treatment.
(B) NO production in RAW264.7 cells stimulated with PTS-PTSO (20 µM) + LPS or PTS-PTSO + LPS
combined with Nrf2 inhibitor ML385 (5 µM), n = 4 replicates per treatment. Data bars represent mean
± SEM. ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.001.

3.2. PTS-PTSO Modulates Serum Nitric Oxide and the Faecal Microbiota Composition in Mice

Having established that PTS-PTSO exerted significant functional activity in in vitro
cellular models, we next explored whether in vivo intake in mice affected oxidative stress
responses and the gut microbiota community structure. First, to explore the antioxidant
ability of PTS-PTSO in vivo, serum NO levels were analyzed, which revealed that PTS-
PTSO intake for 2 weeks significantly decreased NO production (p < 0.05), confirming the
results of the in vitro assays (Figure 4A). Next, 16S rRNA gene amplicon-based sequencing
was conducted to analyze faecal microbial communities to explore the effects of PTS-
PTSO on the murine gut microenvironment. Mice were administered PTS-PTSO (1 mg/kg
body weight), or vehicle control, in drinking water for 14 days and faecal samples were
collected for analysis. The results indicated that PTS-PTSO significantly changed the faecal
microbiota composition (p = 0.035 by ANOSIM; Figure 4B). PTS-PTSO was associated with
a significantly increased abundance of Lactobacillus johnsonii, and tended to also increase the
abundance of other unclassified members of the Lactobacillus genus, (Figure 4C). In contrast,
Ligilactobacillus animalis tended to decrease in abundance, whilst we also noted a trend of
a reduction in members of the Clostridiales order and Lachnospiraceae family (Figure 4C).
Thus, consumption of PTS-PTSO reduced oxidative stress in vivo, and the enrichment
of lactobacilli may indicate a modification of the GM towards a composition putatively
associated with reduced inflammation.



Antioxidants 2022, 11, 2033 7 of 14

Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

Figure 3. PTS-PTSO does not affect antioxidant protein expression of HO-1 and PRDX1 in murine 

macrophages. Western blot was conducted to assess HO-1 and PRDX1 protein expression. (A) Sig-

nal normalized to total protein of HO-1 in RAW264.7 cells stimulated with PTS-PTSO and LPS. n = 

6 replicates per treatment group (B) Signal normalized to total protein of PRDX1 in RAW264.7 cells 

stimulated with PTS-PTSO and LPS, n = 8 replicates per treatment. 

3.2. PTS-PTSO Modulates Serum Nitric Oxide and the Faecal Microbiota Composition in Mice 

Having established that PTS-PTSO exerted significant functional activity in in vitro 

cellular models, we next explored whether in vivo intake in mice affected oxidative stress 

responses and the gut microbiota community structure. First, to explore the antioxidant 

ability of PTS-PTSO in vivo, serum NO levels were analyzed, which revealed that PTS-

PTSO intake for 2 weeks significantly decreased NO production (p < 0.05), confirming the 

results of the in vitro assays (Figure 4A). Next, 16S rRNA gene amplicon-based sequenc-

ing was conducted to analyze faecal microbial communities to explore the effects of PTS-

PTSO on the murine gut microenvironment. Mice were administered PTS-PTSO (1 mg/kg 

body weight), or vehicle control, in drinking water for 14 days and faecal samples were 

collected for analysis. The results indicated that PTS-PTSO significantly changed the fae-

cal microbiota composition (p = 0.035 by ANOSIM; Figure 4B). PTS-PTSO was associated 

with a significantly increased abundance of Lactobacillus johnsonii, and tended to also in-

crease the abundance of other unclassified members of the Lactobacillus genus, (Figure 4C). 

In contrast, Ligilactobacillus animalis tended to decrease in abundance, whilst we also noted 

a trend of a reduction in members of the Clostridiales order and Lachnospiraceae family (Fig-

Figure 3. PTS-PTSO does not affect antioxidant protein expression of HO-1 and PRDX1 in
murine macrophages. Western blot was conducted to assess HO-1 and PRDX1 protein expres-
sion. (A) Signal normalized to total protein of HO-1 in RAW264.7 cells stimulated with PTS-PTSO
and LPS. n = 6 replicates per treatment group (B) Signal normalized to total protein of PRDX1 in
RAW264.7 cells stimulated with PTS-PTSO and LPS, n = 8 replicates per treatment.
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3.3. PTS-PTSO Reduces Faecal Excretion of Citrobacter Rodentium

Given the potentially beneficial effects of PTS-PTSO on the gut environment, we next
investigated its effects on enteric pathogen infection. Mice received 1 mg/kg PTS-PTSO
(or vehicle control) in drinking water for 7 days prior to infection, and then continued
to receive the supplemented water during a 6-day infection period with C. rodentium. In
parallel, uninfected mice received the same treatments. Compared with uninfected mice,
C. rodentium-infected mice tended to have a lower growth rate during infection (Figure 5A;
p = 0.07), and so did the groups dosed with PTS-PTSO (p = 0.15). Moreover, PTS-PTSO
resulted in a reduction in C. rodentium burdens in the faeces (Figure 5B; p = 0.06). Thus,
PTS-PTSO supplementation tended to reduce C. rodentium colonisation.
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3.4. PTS-PTSO Increases Nrf2-Related Gene Expression in Mouse Colonic Tissue

C. rodentium and other enteric pathogens are known to increase oxidative stress in
the intestine [23,24]. Mice fed diets deficient in the natural antioxidants selenium and
vitamin E have increased C. rodentium burdens, together with the increased inflammation
and expression of oxidative stress proteins, suggesting that the modulation of oxidative
stress responses by dietary components may potentially contribute to the lower pathogen
burdens [23]. Given the modulatory effects of ROS production and Nrf2 signaling in
PTS-PTSO stimulated cells in vitro, we further explored the expression of Nrf2 related
genes in vivo in C. rodentium-infected mice. At day 6 p.i., the total serum glutathione
level was not different in any of the treatment groups (Figure 6A). Nos2 expression was
upregulated in the colon of C. rodentium infected mice but significantly restricted by PTS-
PTSO intake, as well as in uninfected mice (Figure 6B). There was a significant interaction
between diet and infection for the antioxidant genes Hmox1 and Keap1, with PTS-PTSO
inducing expression in infected mice that was significantly higher than for the other
groups. Similarly, the expression of Nqo1, encoding NAD(P)H Quinone Dehydrogenase
1, an enzyme with cytoprotective properties against oxidative stress regulated by Nrf2
pathway [25], was upregulated by PTS-PTSO in both uninfected mice and infected mice.
Gpx2 expression also tended to be elevated in PTS-PTSO treated mice, and was significantly
higher in infected mice than uninfected mice (Figure 6B). Muc2 and Nrf2 expression were
expressed at a relatively high level by PTS-PTSO in infected mice compared to others.
Taken together, these data suggest that PTS-PTSO consumption was related to the increased
expression of genes downstream Nrf2 signaling in the colon, which was particularly evident
during infection with C. rodentium, suggesting that intake of these garlic metabolites had a
pronounced role in regulating enteric inflammation and infection in this model.



Antioxidants 2022, 11, 2033 10 of 14

Antioxidants 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

Figure 6. PTS-PTSO induces tendency of localized antioxidant response related to Nrf2 signaling 

against C. rodentium. (A) Total glutathione level of serum in naïve or C. rodentium infected mice 

treated with water or 1 mg/kg PTS-PTSO at 6 days p.i. (B) Relative gene expression of Nos2, Gpx2, 

Nrf2, Nqo1, Muc2, Hmox1 and Keap1. Data bars represent mean ± SEM. n = 6 per group. * p < 0.05. 

4. Discussion 

Enteric infections with bacteria, viruses, and parasites are a major cause of morbidity 

in animals and humans, especially in developing countries, [26,27]. Numerous studies 

have suggested that gut commensal residents and diet supplementation both promote in-

testinal health by regulating immune responses and metabolism [28]. For example, PTS-

PTSO has been shown to lower levels of enteropathogens in broiler chickens, and the ileal 

histological structure and productive parameters were improved, demonstrating that 

PTS-PTSO may be a beneficial alternative treatment option in the control of pathogenic 

bacteria [29]. Our previous work suggested that PTS-PTSO regulates inflammatory re-

sponses in vitro and enteric parasite-induced inflammation in vivo [15]. However, it re-

mains unclear whether PTS-PTSO is effective against intestinal bacterial infection and has 

an impact on antioxidant activity. Here, we conducted antioxidative assays and a faecal 

microbiota analysis of PTS-PTSO, showing that PTS-PTSO suppresses C. rodentium faecal 

load in mice, and there is a modulatory effect of PTS-PTSO on Nrf2-signaling-based anti-

oxidant activity both in vitro and during C. rodentium colonization in the colon. 

ROS mediates many biological functions, such as energy metabolism and excessive 

ROS can interact with lipid, DNA, proteins to induce oxidative damage, and promote pro-

inflammatory signaling activation under stress [30,31]. It is well-known that Nrf2 is a cru-

cial transcription factor against oxidative stress by binding to antioxidant response ele-

ments (AREs) to induce antioxidant proteins, and thereby removing ROS from damaged 

cells [32]. In this study, a significant increase in ROS was observed in LPS-activated cells 

Figure 6. PTS-PTSO induces tendency of localized antioxidant response related to Nrf2 signaling
against C. rodentium. (A) Total glutathione level of serum in naïve or C. rodentium infected mice
treated with water or 1 mg/kg PTS-PTSO at 6 days p.i. (B) Relative gene expression of Nos2, Gpx2,
Nrf2, Nqo1, Muc2, Hmox1 and Keap1. Data bars represent mean ± SEM. n = 6 per group. * p < 0.05.

4. Discussion

Enteric infections with bacteria, viruses, and parasites are a major cause of morbidity
in animals and humans, especially in developing countries, [26,27]. Numerous studies have
suggested that gut commensal residents and diet supplementation both promote intestinal
health by regulating immune responses and metabolism [28]. For example, PTS-PTSO has
been shown to lower levels of enteropathogens in broiler chickens, and the ileal histological
structure and productive parameters were improved, demonstrating that PTS-PTSO may
be a beneficial alternative treatment option in the control of pathogenic bacteria [29]. Our
previous work suggested that PTS-PTSO regulates inflammatory responses in vitro and
enteric parasite-induced inflammation in vivo [15]. However, it remains unclear whether
PTS-PTSO is effective against intestinal bacterial infection and has an impact on antioxidant
activity. Here, we conducted antioxidative assays and a faecal microbiota analysis of PTS-
PTSO, showing that PTS-PTSO suppresses C. rodentium faecal load in mice, and there is a
modulatory effect of PTS-PTSO on Nrf2-signaling-based antioxidant activity both in vitro
and during C. rodentium colonization in the colon.

ROS mediates many biological functions, such as energy metabolism and excessive
ROS can interact with lipid, DNA, proteins to induce oxidative damage, and promote pro-
inflammatory signaling activation under stress [30,31]. It is well-known that Nrf2 is a crucial
transcription factor against oxidative stress by binding to antioxidant response elements
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(AREs) to induce antioxidant proteins, and thereby removing ROS from damaged cells [32].
In this study, a significant increase in ROS was observed in LPS-activated cells treated
with PTS-PTSO and ML385 compared to LPS-activated cells stimulated with PTS-PTSO
only, indicating that PTS-PTSO exerts antioxidant effects by inhibiting intracellular ROS
via Nrf2-induced signaling. Meanwhile, NO induced by inducible nitric oxide synthase
(iNOS), has been recognized as a main factor in the control of infectious diseases, tumor
development and immune responses [33,34]. In our results, the Nrf2 signaling inhibitor
ML385 had no effect on NO production mediated by PTS-PTSO, suggesting that PTS-PTSO
may target other sites to decrease NO release in LPS-activated macrophages rather than
Nrf2 signaling. In contrast, PTS-PTSO had only minor effects on the expression of the
antioxidant proteins HO-1 and PRDX1.

Commensal residents in the gut have previously been shown to regulate intestinal
mucosa homeostasis and cytokine production against oxidative stress by releasing metabo-
lites such as short-chain fatty acids, which change the microbiota composition towards
more beneficial taxa, thereby maintaining metabolic and immune homeostasis, as well
as intestinal barrier integrity [35]. The main bacterial phyla in the mouse colon comprise
Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria [36]. Here, we found an enrichment
of L. johnsonii as a result of PTS-PTSO intake, whilst members of the Clostridiales order
and other unclassified Lachnospiraceae family members tended to decrease in abundance.
Some lactobacilli are well-known for their beneficial health protective properties, such as
by modulating oxidative stress through the downregulation of ROS-forming enzymes [37].
Importantly, L. johnsonii has the ability to alleviate pro-inflammatory mediators includ-
ing NO secretion, which is consistent with the decreased serum NO level in PTS-PTSO
treated mice [38,39]. Thus, PTS-PTSO supplement has a beneficial effect in vivo, and it may
potentially explain the reduced serum NO.

Our previous study investigated the effects of PTS-PTSO against enteric helminth
infections using T. muris, and we reported no differences in T. muris burdens, although
PTS-PTSO altered inflammation-related genes and pathways [15]. In the current study,
C. rodentium infection seemed to induce lower weight gains, and PTS-PTSO could not
mitigate this decrease. Importantly, faecal counts of C. rodentium were almost significantly
lower in PTS-PTSO treated mice compared to in control mice (p = 0.06). We hypothesized
that PTS-PTSO supplementation might affect C. rodentium infection through Nrf2-related
signaling affecting levels of the antioxidant molecule glutathione, as well as by altering
the gene expression levels of Nos2, Gpx2, Nqo1 and Keap1, Hmox1 or by altering mucus
secretion (Muc2). Interestingly, we found no difference in total glutathione concentration
observed in serum. The total glutathione concentration is a major marker of oxidative
stress, made up of reduced and oxidized forms involved in multiple redox balances and
xenobiotic metabolism [40]. Nrf2 signaling also plays a role in reducing oxidative damage
by regulating genes including Nos2, Gpx2, Keap1, Nqo1 and Hmox1 [41]. Interestingly, the
decreased expression of nitric oxide synthase gene, Nos2, was observed, which may explain
the reduced serum NO level. The tendency of up-regulation of the other genes in cells of
the gut (Gpx2, Keap1, Nqo1 and Hmox1) in PTS-PTSO fed mice was consistent with enhanced
antioxidant activity seen in the cell study, but this effect might be localized, rather than
systemic. Importantly, the activity against C. rodentium seemed to correlate with Nrf2
related signaling. However, further experiments are necessary to determine whether this
has a causative role in the health-promoting effects of PTS-PTSO. Overall, PTS-PTSO may
hold potential as a functional food component against infectious pathogens, but we cannot
conclude whether the underlying mechanisms are related only to the antioxidant responses
or include changes in the mucus layer as well as in the gut microbiota. Further attention
will also be important to determine the most effective means of reaching the levels of
PTS-PTSO intake that are necessary to show biological effects. Whilst a moderately high
level of garlic consumption in humans has been shown to result in PTS intake approaching
0.1 mg/kg body weight [42], this is still somewhat lower than the dosages used in our
current experiments. Thus, it may be more feasible to use dietary supplementation with
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purified forms of PTS-PTSO, as is increasingly being performed, with some success, in
livestock production [43].

5. Conclusions

PTS-PTSO show potential for reducing anti-oxidative stress in the gut through Nrf2
signaling, and, thus, the regulation of mediators of ROS and NO release, as well as com-
mensal microbiota composition. In addition, PTS-PTSO potentially develop anti-intestinal
bacteria ability, which is likely related to Nrf2 signaling. These results provide further
insights into PTS-PTSO and related molecules as a supplement that may benefit gut health.
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