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Abstract. [Purpose] Gait training that increases non-paretic step length in stroke patients increases the propul-
sive force of the paretic leg. However, it limits knee flexion during the swing phase of gait, and this may cause gait 
disturbances such as worsening of gait pattern and increased risk of falling. Therefore, this study aimed to investi-
gate the effects of increasing non-paretic step length on the joint movement and muscle activity of a paretic lower 
limb during hemiparetic gait. [Participants and Methods] A total of 15 hemiparetic patients with chronic stroke were 
enrolled in this study. Spatiotemporal parameters, along with kinematic and electromyography data of their paretic 
lower limbs, were measured during a 10-m distance overground walking. Two walking conditions were assessed: 
normal (comfortable gait) and non-paretic-long (gait with increased non-paretic step length) conditions. [Results] 
Under the non-paretic-long condition, the trailing limb angle was larger than under the normal condition. However, 
no significant difference was observed in the knee flexion angle during the swing phase. [Conclusion] Increasing 
non-paretic step length during gait is unlikely to limit knee flexion during the swing phase and can safely improve 
the propulsive force of a paretic leg.
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INTRODUCTION

The walking ability of stroke patients is often reduced, and their activities of daily living are limited by reduced walking 
speed and distance. The propulsive force of the paretic lower limb strongly influences the walking speed and distance1, 2), 
and improves the propulsive force of the paretic lower limb is important to enhance the walking ability. Factors used to 
determine the propulsive force include ankle plantarflexion moment and trailing limb angle (TLA; the angle between the 
vertical and straight lines from the greater trochanter to the fifth metatarsal head)3) to improve propulsive force; thus, the 
hip extension angle should be increased at the terminal stance. Clark et al.4) reported that increasing the nonparetic (NP) 
step length during walking increased the propulsive force of the paretic lower limb by lengthening the horizontal distance 
between the backward-positioned paretic foot and the pelvis and concluded that gait training by increasing the NP step length 
is useful. However, changes in paretic leg movements during the swing phase due to an increased NP step length have not 
been investigated.
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In the swing phase, foot clearance is maintained by knee flexion. The limitation of knee flexion should be avoided because 
it increases the risk of falling and energy costs5). Lewek et al.6) observed overactivity of the knee extensor muscles in stroke 
patients by rapidly extending the paretic hip using the Biodex System 3, suggesting that rapid hip extension during gait may 
cause overactivity of the knee extensor muscles and limit knee flexion during the swing phase. Further, they considered that 
stroke patients may limit the hip extension angle to minimize overactivity of the knee extensors during walking7). Therefore, 
gait training that increases NP step length increases the propulsive force of the paretic lower limb; however, it limits knee 
flexion during the swing phase, which may cause new gait disturbances, such as increasing the risk of falling and compromis-
ing gait stability, thereby greatly impairing the daily living activities8). Clarifying the relationship between the change in NP 
step length and the kinematics of the paretic swing phase is expected to aid in the planning of rehabilitation programs that 
improve propulsive force while taking gait disorders into account. Therefore, this study aimed to investigate the effects of 
increasing the NP step length on the joint movement and muscle activity of the paretic lower limb in a hemiparetic gait. The 
hypothesis was that an increased NP step length would force paretic hip extension, induce quadriceps overactivity, and limit 
knee flexion during the swing phase.

PARTICIPANTS AND METHODS

Of the 41 hemiparetic patients with chronic stroke who used our short-term intensive rehabilitation program during Octo-
ber 2019–August 2020, 15 patients who met the following inclusion criteria were included (61.7 ± 9.4 years; 67.5 ± 14.8 kg; 
166.3 ± 10.7 cm). The inclusion criteria were (1) hemiplegia due to stroke, (2) at least 6 months post-stroke, (3) sufficient 
passive knee joint range of motion (0–100°), and (4) the ability to walk unaided or with the use of a T-cane at a monitored 
level or higher. Exclusion criteria were (1) history of lower limb joint surgery, (2) respiratory or cardiovascular symptoms 
while walking, and (3) dementia with a Mini-Mental State Examination score of ≤23. This study was approved by the Ethi-
cal Review Committee of Nittazuka Medical Welfare Center (approval no. Nittazuka Ethics 2019-42), and all participants 
provided written informed consent.

Physical function assessment was evaluated using Fugl–Meyer assessment of lower extremity (FMA); Motricity Index 
(MI)9); modified Ashworth Scale (MAS) for hip flexors, knee extensors, and ankle plantar flexors; and range of motion for 
hip extension and ankle dorsiflexion. Gait assessment was based on spatiotemporal parameters, with the kinematic and 
Electromyography (EMG) data of the paretic lower limb, which was measured during a 10-m-distance overground walking. 
The evaluation was performed by walking alone, and the use of a T-cane or a short leg brace (Orthop AFO) was allowed only 
a risk of falling exists. According to previous studies4), the following two walking conditions were used: normal (comfortable 
gait) and NP-long (gait with increased NP step length). In the NP-long condition, participants were explained that “Please 
increase your nonparetic step length as long as you did not lose balance while walking”. The order of walking conditions 
was normal, NP-long, and a 10-min walking practice period was provided before performing the NP-long. Participants were 
allowed to walk at their own speed during NP-long because the defined walking speed might result in an unnatural gait.

An Electromyography system TelemyoDTS (Noraxon Inc., Scottsdale, AZ, USA) and a 3D motion analysis system Myo-
motion (Noraxon Inc.) were used for measurements. Electromyography sampling frequency was 1,500 Hz, and the band-pass 
filter was 10–500 Hz. In this study, the rectus femoris, vastus lateralis, biceps femoris, tibialis anterior, medial head of 
gastrocnemius, and soleus on the paretic side were targeted, referring to the Surface ElectroMyoGraphy for the Non-invasive 
Assessment of Muscles10). After the skin impedance was lowered to <10 kΩ by skin processing, silver chloride surface 
electrodes (Noraxon Inc.) were applied with a 2-cm distance between electrodes. Myomotion is a measuring instrument that 
calculates angles and angular velocities from motion sensors with built-in combinations of gyro-, acceleration, and magnetic 
sensors. Myomotion sampling frequency was 100 Hz. Motion sensors were attached to the sacrum, bilateral thighs, shanks, 
and foot. Zero calibration to determine joint angle information was performed in standing position. Moreover, reflective 
markers were placed on the paretic greater trochanter and the fifth metatarsal head. A video camera (sampling frequency 
30 Hz) was located 5 m from the midpoint of the walking path as a peripheral device. All devices were synchronized using 
synchronization and optical signals. All participants had three sessions of normal, followed by three sessions of NP-long.

MR3 (Noraxon Inc.) was used for analysis. Data used in the analysis were for three gait cycles at the halfway point of 
a 10-m walk. At first, the raw EMG waveform was full-wave rectified. Next, the initial contact and toe-off of both lower 
limbs were determined based on the acceleration information from MR3 and EMG of one gait cycle was considered to be 
100%, and three gait cycles were additionally averaged. The gait phase was divided into the loading response, single support, 
pre-swing, and swing phase. The second half of the single support phase was defined as the latter 50% of the single support 
phase11), and the early swing phase was defined as the period from the toe-off to the maximum knee flexion12). EMG data 
analysis was normalized by calculating the mean amplitude of each gait phase and dividing by the mean amplitude of the 
entire gait cycle11). Kinematic data were extracted for the peak hip extension angle and peak extension angular velocity dur-
ing the second half of the single-support phase; the peak hip and knee flexion angular velocity and peak ankle plantar flexion 
angular velocity during the pre-swing; the knee flexion angle and knee flexion angular velocity at the toe-off; and the peak 
knee flexion angle during the swing phase.

Gait speed was calculated using a stopwatch, and gait cycle rate and cadence were calculated using MR3. The step length 
and stride were calculated from a 1-m calibration scale set at the center of the gait path using ImageJ image processing 
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software (National Institutes of Health, Bethesda, MD, USA). In addition, the TLA at toe-off was calculated13). Kinematic 
and EMG data were averaged over nine gait cycles, while step length, stride, and TLA were averaged over the three gait 
cycles. The statistical software Bell Curve for Excel was used to compare the normal and NP-long gait parameters using the 
Wilcoxon signed-rank test. The significance level was p<0.05. The effect size (ES) of each dataset was calculated, and r=0.1 
was defined as a small ES, 0.3 as a medium ES, and 0.5 as a large ES14).

RESULTS

All the participants were males. FMA average was 22.3 ± 3.7 points, indicating moderate motor paralysis. All participants 
had spasticity (MAS ≥1) in the hip flexors, knee extensors, and ankle plantar flexors. Of the 15 participants, 8 used a T-cane 
and 4 used an ankle -foot orthosis (Table 1). In the spatiotemporal parameters, NP-long showed a significant increase in the 
gait speed (p<0.05, ES=0.81), stride (p<0.05, ES=0.79), and nonparetic step length (p<0.05, ES=0.88) compared with normal 
(Table 2). In the kinematic data, NP-long showed a significant increase in the peak hip extension angle (p<0.05, ES=0.88) and 
peak extension angular velocity (p<0.05, ES=0.76) in the second half of the single-support phase compared with normal. No 
significant differences were found in the peak knee flexion angle during the swing phase. Moreover, a significant increase in 
TLA (p<0.05, ES=0.85) was observed (Table 3). In the EMG data, NP-long showed a significant increase in the rectus femo-
ris (p<0.05, ES=0.57) and soleus (p<0.05, ES=0.63) activities during the pre-swing phase compared with normal (Table 4).

Table 1.  Participant characteristics

Age (years) 61.7 ± 9.4
Gender (female/male) 0/15
Months of onset 73.9 ± 57.4
Type of stroke (CI/ICH) 5/10
Paretic side (right/left) 11/4
Fugl-Meyer assessment LE 22.3 ± 3.7
Motricity Index Hip 74 (0)

Knee 74 (26)
Ankle 56 (25)

MAS Hip flexors 1 (0.25)
Knee extensors 1.5 (1)
Ankle plantar flexors 1.5 (0.5)

ROM Hip extension (degree) 10.9 ± 5.4
Ankle dorsiflexion (degree) 5.5 ± 4.9

Assistive device (none/T-cane/AFO) 6/8/4
Mean ± SD; median (quartile deviation).
CI: cerebral infarction; ICH: intracerebral hemorrhag; LE: 
lower extremity; MAS: modified Ashworth Scale; AFO: an-
kle-foot orthosis.

Table 2.  Spatiotemporal parameters

Normal NP-long ES
LR % 13.2 ± 4.2 11.0 ± 3.8 * 0.56
SS % 31.2 ± 6.0 33.1 ± 5.7 * 0.56
PSw % 15.0 ± 5.5 12.6 ± 6.1 ** 0.87
Sw % 40.6 ± 4.2 43.2 ± 3.9 ** 0.84
Cadence steps/min 87.6 ± 17.8 85.3 ± 18.1 0.43
Gait cycle time s 1.44 ± 0.37 1.42 ± 0.52 0.22
Gait speed m/s 0.61 ± 0.35 0.73 ± 0.42 ** 0.81
Stride cm 93.0 ± 26.1 109.4 ± 29.6 ** 0.79
Step length paretic cm 46.7 ± 13.3 48.1 ± 16.0 0.29

nonparetic cm 46.3 ± 14.0 61.3 ± 16.6 ** 0.88
Mean ± SD; *p<0.05; **p<0.01; ES: effect size; Normal: comfortable gait; NP-long: 
gait with increased non-paretic step length; LR: loading response phase; SS: single 
support phase; PSw: pre-swing phase; Sw: Swing phase.
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DISCUSSION

In this study, we compared and investigated the effects of the increased NP step length on paretic leg movements in 
hemiparetic patients with chronic stroke, using spatiotemporal parameters and kinematic and EMG data. The results showed 
that the peak hip extension angle and peak hip extension angular velocity during the second half of the single support phase 
and TLA were increased, and the rectus femoris activity increased during the pre-swing phase; however, the peak knee 
flexion angle during the swing phase was unchanged. Contrary to our hypothesis, increasing the NP step length did not limit 
knee flexion during the swing phase and increased TLA.

During the second half of the single-support phase, the peak hip extension angle and the peak extension angular velocity 
increased, as did the TLA at toe-off. Similar to a previous study4), this result may be due to increased horizontal distance be-
tween the pelvis and paretic foot by increasing the NP step length. Because participants had spasticity in hip flexors and knee 

Table 3.  Kinematic data

Normal NP-long ES
Late SS Hip Peak extension angle ° 7.5 ± 5.2 10.2 ± 5.3 ** 0.88

Peak extension anguler velocity deg/s 49.8 ± 27.1 62.7 ± 36.3 ** 0.76
PSw Hip Peak flexion angular velocity deg/s 101.6 ± 42.7 85.6 ± 38.6 * 0.54

Knee Peak flexion angular velocity deg/s 215.5 ± 82.6 196.1 ± 89.9 0.37
Ankle Peak plantar flexion angular velocity deg/s 145.0 ± 103.3 181.3 ± 115.0 ** 0.78

Toe-off Knee Flexion angle ° 26.9 ± 11.0 24.0 ± 9.4 0.35
Flexion angular velocity deg/s 134.8 ± 112.2 153.8 ± 100.5 0.34

Sw Knee Peak flexion angle ° 35.3 ± 16.8 36.9 ± 16.0 0.29
Trailing Limb Angle (TLA) ° 13.7 ± 6.7 18.7 ± 8.7 ** 0.85

Mean ± SD; *p<0.05; **p<0.01; ES: effect size; Normal: comfortable gait; NP-long: gait with increased non-
paretic step length; Late SS: second half of single support phase; PSw: pre-swing phase; Sw: swing phase.

Table 4.  EMG data (%)

Normal NP-long ES
RF Late SS 107.1 ± 38.1 113.4 ± 37.0 0.16

PSw 81.6 ± 32.4 99.1 ± 45.6 * 0.57
Esw 80.1 ± 44.0 76.9 ± 41.8 0.10

VL Late SS 114.3 ± 58.3 125.2 ± 38.7 0.31
PSw 64.1 ± 39.1 70.2 ± 48.7 0.22
Esw 29.7 ± 17.3 29.4 ± 17.1 0.19

BF Late SS 125.9 ± 36.4 122.3 ± 38.2 0.09
PSw 63.0 ± 28.4 70.5 ± 37.6 0.29
Esw 36.3 ± 19.1 36.4 ± 20.6 0.03

TA Late SS 90.4 ± 39.8 93.3 ± 32.1 0.29
PSw 105.0 ± 31.2 110.7 ± 41.8 0.28
Esw 120.2 ± 48.7 103.9 ± 32.9 0.29

MG Late SS 154.5 ± 32.4 148.8 ± 34.9 0.31
PSw 90.2 ± 36.9 113.2 ± 45.2 0.34
Esw 55.8 ± 27.4 60.1 ± 31.1 0.16

Sol Late SS 171.6 ± 50.3 159.6 ± 45.6 0.31
PSw 81.5 ± 33.4 99.2 ± 42.9 * 0.63
Esw 59.0 ± 33.5 63.6 ± 36.4 0.06

Mean ± SD; *p<0.05; EMG: electromyography; ES: effect size; Nor-
mal: comfortable gait; NP-long: gait with increased non-paretic step 
length: RF: rectus femoris; VL: vastus lateralis; BF: biceps femoris; 
TA: tibialis anterior; MG: medial head of gastrocnemius; Sol: so-
leus; Late SS: second half of single support phase; PSw: pre-swing 
phase; Esw: early swing phase.
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extensors, an increase in hip extension angular velocity was presumed to increase the rectus femoris activity, but no changes 
in rectus femoris activity were observed during the second half of the single-support phase. Lewek et al.6) reported heterony-
mous reflexes from hip flexors to knee extensors produced by passive paretic hip extension (extension angular velocity 60°/s, 
90°/s, and 120°/s) in stroke patients; however, the peak hip extension angular velocity in the second half of the single-support 
phase was normal, 49.8 ± 27.1°/s and NP-long, 62.7 ± 36.3°/s, which were lower than the hip extension angular velocity set 
by Lewek et al. This suggests that NP-long increased the peak hip extension angular velocity, although the original gait speed 
was slower and below the angular velocity at which the stretch reflex was elicited, no changes in rectus femoris activity were 
observed. In the pre-swing phase, the rectus femoris activity increased, and the hip flexion angular velocity decreased. The 
rectus femoris in the pre-swing phase assists in the advancement of the lower limb through its hip flexion action15); however, 
the rectus femoris in the hip extension range is reported to have a hip extension action16). In the NP-long, the rectus femoris 
is overactivated to advance the lower limb from hip extension and the hip flexion angular velocity may be decreased by the 
force applied in the hip extension direction. The soleus activity and ankle plantarflexion angular velocity increased during 
the pre-swing phase. Smooth weight transfer from the posterior to the anterior leg is necessary during the pre-swing phase. 
NP-long required more weight transfer to the anteriorly positioned nonparetic lower extremity than the normal, which may 
have resulted in increased soleus activity and ankle plantarflexion angular velocity. No changes were observed in the knee 
flexion angular velocity at toe-off and the peak knee flexion angle during the swing phase. Previous studies have reported not 
only rectus femoris overactivity but also insufficient ankle push off17) as a factor limiting the knee flexion.

In the present study, increased soleus activity and ankle plantar flexion angular velocity were observed during the pre-
swing phase, in addition to increased rectus femoris activity. In normal gait, the shank tilts forward and the knee flexes due 
to plantar flexor muscle activity during the pre-swing phase, suggesting that increased rectus femoris activity during the 
pre-swing phase was a factor that decreased the knee flexion angle during the swing phase, whereas increased soleus activity 
during the same period contributed to increased knee flexion angle, which may explain why the knee flexion angle did not 
change during the swing phase.

In this study showed that increasing the NP step length during gait increased the hip extension angle and TLA, rectus 
femoris, and soleus activity during the pre-swing phase but did not limit the peak knee flexion angle during the swing phase in 
hemiparetic patients with chronic stroke. Therefore, increasing the NP step length during gait was suggested to unlikely limit 
the knee flexion during the swing phase and can safely improve the propulsive force of the paretic leg. A limitation of this 
study is that we did not measure healthy participants; thus, we cannot say that our results are characteristics of hemiparetic 
patients with chronic stroke. As for the gait speed, gait pattern and use of ankle -foot orthoses may influence the results, 
but this study did not determine the effects of these factors. Further studies are needed to increase the number of healthy 
participants and stroke patients.
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