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Abstract: Esca is a grapevine disease known for centuries which pertains to the group of so-called
vine trunk diseases. Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum
(P. aleophilum) are the two main fungal pathogens associated with esca. Novel fibrous materials
with antifungal properties based on poly(3-hydroxybutyrate) (PHB), polyvinylpyrrolidone (PVP)
and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ) were developed. One-pot electrospinning
(“in” strategy) or electrospinning in conjunction with electrospraying (“on” strategy) were applied
to obtain the materials. The materials’ morphology and their surface chemical composition were
examined using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and
attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). CQ incorporated in
the bulk of the fibers or in PVP particles deposited on the fibers was in the amorphous phase, which
was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The
in vitro release of CQ depended on the composition of the electrospun materials and on their design.
The performed microbiological screening revealed that, unlike the non-loaded mats, the fibrous
mats loaded with CQ were effective in inhibiting the growth of the pathogenic P. chlamydospora and
P. aleophilum fungi. Therefore, the created materials are promising as active dressings for grapevine
protection against esca.

Keywords: 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol); poly(3-hydroxybutyrate); polyvinylpyrroli-
done; electrospinning; electrospraying; antifungal activity; Phaeoacremonium aleophilum;
Phaeomoniella chlamydospora

1. Introduction

Esca is a grape disease known since antiquity which pertains to the so-called grapevine
trunk diseases leading to the fading of leaves and limbs and to entire trees wilting [1–3].
The two main fungal pathogens that have been associated with esca are Phaeomoniella
chlamydosporum (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum) [4,5].
Mostly, the entire vineyard must be replanted, as fungal spores are airborne and infect other
vines mainly through wounds caused during pruning. Esca induces huge economic losses
by reducing the yield of the vine and its longevity [6]. Up to now, sodium arsenite, a popular
fungicide, has been used as an agent to effectively combat against esca disease. Recently,
this fungicide has been recognized as carcinogenic and at present has been banned [7].
Thus, in practice, it turns out that there are no effective approaches to fighting against
esca. Currently, solely preventive approaches are used [8]. Therefore, there is a need to
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develop novel active substances and effective materials which are non-toxic and efficient in
protecting the vine plants against esca.

Electrospinning is a feasible and beneficial method for the fabrication of fibers having
diameters in the micrometer or nanometer range using an external electric field applied to a
polymer-containing solution or melt [9,10]. Recently, fibrous polymeric materials obtained
by electrospinning have aroused considerable interest due to their superb properties, such
as a large specific surface area, high porosity and three-dimensional structure. Therefore,
they are prospective candidates for a variety of applications: in medicine and pharmacy as
wound dressings [11]; drug delivery systems [12]; as tissue engineering scaffolds [13]; as
filtration membranes; in cosmetics; as protective clothing; the design of nanosensors; in
electronics; and in agriculture [14].

At the present time, there are a limited number of publications reporting the fabri-
cation of electrospun materials for grapevine protection against esca disease. Sett et al.
have reported the creation of fibers based on a biodegradable rayon membrane onto which
nanofibers from soy protein, polyvinyl alcohol and polycaprolactone were electrospun [15].
These materials were designed for physically blocking the infiltration of pathogenic spores.
Unfortunately, physical hampering was found to be unsatisfactory in combating esca
disease [16]. Therefore, electrospun poly(butyleneadipate-co-terephthalate) materials con-
taining a polymer additive with antifungal activity polyhexamethylene guanidine have
been proposed for active protection against penetration of P. chlamydospora spores causing
esca [16]. However, the authors have underlined the necessity of a more appropriate
selection of polymers and more effective antifungal additives.

Recently, it has been reported by some of us that eco-friendly fibrous material com-
posed of poly(3-hydroxybutyrate) (PHB), TiO2-anatase nanoparticles and chitosan with
low molecular weight prepared using simultaneous electrospinning and electrospraying
displayed good antifungal activity against P. chlamydospora [17].

The 8-hydroxyquinoline derivatives exhibit diverse biological activities: antitumor,
antiviral, neuroprotective, antimicrobial, and antifungal [18–20]. They also have low toxicity
to humans. Some of us have reported the successful encapsulation of 8-hydroxyquinolines
in electrospun materials based on cellulose derivative and poly(ethylene glycol) [21] and
polylactide [22] to obtain materials that provide effective protection by impeding the
entrance and growth of fungal spores on vine plants.

In this study, 5-chloro-7-iodo-8-hydroxyquinoline (CQ) was selected as a model com-
pound belonging to the group of 8-hydroxyquinoline. Currently, it is used as an active
compound in topical medications to treatment diverse skin infections. CQ has good antimi-
crobial [23,24], antifungal [24,25] and antitumor activity [26], and has a potential beneficial
effect in the treatment of Parkinson’s, Alzheimer’s and Huntington’s diseases [27–29].
When incorporated into electrospun polymeric materials, this compound can impart bene-
ficial biological properties.

Among the polymers suitable for applications in agriculture, aliphatic polyesters
such as polyhydroxyalkanoates, poly(lactic acid) and their copolymers are of considerable
interest. PHB is particularly promising. It is a thermoplastic, hydrophobic polymer which
possesses physical properties very close to polypropylene. In addition, PHB is biodegrad-
able, non-toxic, and UV resistant [30–32]. PHB can be easily electrospun and the obtained
fibrous materials have good mechanical properties.

Polyvinylpyrrolidone (PVP) was chosen for use in the fibrous materials applied for
agricultural purposes because it is a non-toxic, biocompatible, biodegradable, and pH-stable
nonionogenic water-soluble polymer [33,34]. It has been proved that fibrous materials
based on PVP are suitable for the delivery of poorly water-soluble biologically active
compounds, because PVP diminish crystal formation in the loaded biologically active
compounds and increases their dissolution rate in aqueous medium [35–37].

Until now, there have been no literature reports presenting the preparation of fibrous
materials based on PHB and PVP containing CQ.
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In this study, we have studied the preparation of novel antifungal materials based
on PHB and PVP containing CQ of different designs. Two types of CQ-containing fi-
brous materials were fabricated using one-step electrospinning (type “in”) or simultaneous
electrospinning and electrospraying (type “on”). Thus, the obtained mats were fully mor-
phologically, physico-chemically and structurally characterized. In view of the potential
use of the CQ-containing fibrous materials as active dressings for grapevine protection
against esca disease, their antifungal activity against P. chlamydospora and P. aleophilum
fungal species was evaluated.

2. Materials and Methods
2.1. Materials

In the present study the following polymers were used: poly(3-hydroxybutyrate)
(Scheme 1a) (PHB, 330,000 g.mol−1, Biomer, Schwalbach, Germany) and polyvinylpyrroli-
done (Scheme 1b) (PVP K25; Fluka, Buchs, Switzerland) with Mr = 24,000 g.mol−1.
5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) (CQ) (Scheme 1c) was purchased from
Sigma-Aldrich, Buchs, Switzerland. N,N-Dimethylformamide (DMF) (Merck, Darmstadt,
Germany), chloroform (Merck, Darmstadt, Germany), acetone (Sigma-Aldrich, Buchs,
Switzerland) and dimethyl sulfoxide (Merck, Darmstadt, Germany) were of an analytical
grade of purity. The microbiological growth media was potato dextrose agar medium
(Merck, Darmstadt, Germany).
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Scheme 1. Structure of (a) the poly(3-hydroxybutyrate) (PHB), (b) polyvinylpyrrolidone (PVP) and
(c) 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) (CQ) used in the present study.

2.2. Fabrication of the Mats
2.2.1. Fabrication of PVP,CQinPHB Mats by Electrospinning

PHB spinning solution with a polymer concentration of 10 wt.% in CHCl3/DMF
(4/1 v/v) was prepared for the fabrication of the PHB fibers. For that purpose, heating
at 60 ◦C using a reflux condenser was used. PHB/PVP fibers will be further denoted
as PVPinPHB, where a PHB/PVP weight ratio is 90/10 at a total polymer concentration
of 10 wt.% (CHCl3/DMF (4/1 v/v)). The fibrous mats containing CQ in the bulk will
be further indicated as PVP,CQinPHB. For their fabrication, mixed solutions of CQ and
PHB/PVP (90/10 w/w) in CHCl3/DMF (4/1 v/v) at a total polymer concentration of
10 wt.% and CQ concentration of 10% (% in weight to PHB/PVP content) were used.

The prepared solutions were loaded separately into plastic syringe (5 mL) placed
horizontally in syringe pump [NE-300 Just InfusionTM Syringe Pump (New Era Pump
Systems Inc., Farmingdale, NY, USA)] and were delivered at a constant feed rate of 2 mL/h.
The used tip-to-collector distance was 25 cm at a constant collector rotation speed of
1400 rpm. The used voltage was 25 kV ensured by a custom-made high voltage power
supply. Finally, the obtained fibrous mats were additionally dried under a reduced pressure
at 30 ◦C for 8 h to remove any residual solvents.

The dynamic viscosity of the spinning solutions was measured using a Bookfield
DV-II+ programmable viscometer (Middleboro, MA, USA) for cone/plate option equipped
with a sample thermostat cup and a cone spindle, at 25 ± 0.1 ◦C.
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2.2.2. Fabrication of PVP,CQonPHB Mats by Electrospinning in Conjunction
with Electrospraying

The electrospun PHB fibrous materials decorated with PVP particles containing CQ
were further denoted as PVP,CQonPHB. These materials were fabricated by simultaneous
electrospinning and electrospraying. PVP,CQonPHB mats were prepared using a PHB
spinning solution with concentration 10 wt.% in CHCl3/DMF (4/1 v/v) for electrospinning
and a mixed solution of CQ and PVP in ethanol/DMSO (4/1 v/v) at a polymer concen-
tration of 4 wt.% and CQ concentration of 10 wt.% (with respect to the PVP weight) for
electrospraying. The prepared PHB and PVP,CQ solutions were loaded in two separate
syringes. The syringes were placed in two infusion pumps (NE-300 Just InfusionTM Sy-
ringe Pump from New Era Pump Systems Inc. (Farmingdale, NY, USA)), located on both
sides of the collector at an angle of 180◦. The PHB solution was delivered at a controlled
feed rate of 2.0 mL/h, and that of PVP,CQ at 3 mL/h. The tip-to-collector distance was
25 cm for the electrospinning of the PHB solution and 15 cm for the electrospraying of the
PVP,CQ solution. The electrospinning and electrospraying were carried out at a voltage
of 25 kV using a common high-voltage power supply. The fibers decorated with particles
were collected onto aluminum foil fixed to a grounded drum rotating with a speed of
1400 rpm. PVP,CQonPHB mats were placed under reduced pressure at 25 ◦C to remove
solvent residues.

2.3. Characterization of the Mats

The detailed morphological analysis of the fabricated fibrous materials was performed
using scanning electron microscopy (SEM). Prior to observation all the samples were
vacuum-coated with gold for 60 s in Jeol JFC-1200 fine coater and were analyzed by Jeol
JSM-5510 (JEOL Co. Ltd., Tokyo, Japan). The mean fiber diameter and the standard
deviation were assessed by measuring at least 30 fibers from SEM images using Image J
software [38].

X-ray diffraction analysis (XRD) was performed to assess the crystalline structure
of the fabricated fibrous materials. D8 Bruker Advance powder diffractometer (Bruker,
Billerica, MA, USA) with a filtered CuKα radiation source and a luminescent detector was
used to record the XRD patterns in the range 2θ range from 5◦ to 60◦ (step of 0.02◦ and
counting time of 1 s/step).

To characterize the fabricated fibrous materials, attenuated total reflection Fourier
transform infrared (ATR-FTIR) spectroscopy was carried out. The spectra were recorded
on IRAffinity-1 spectrophotometer (Shimadzu Co., Kyoto, Japan) equipped with an ATR
attachment with diamond crystal. The spectra were scanned in the mid-IR range from 600 to
4000 cm−1. The resolution of the spectra was 4 cm−1, and the scans were repeated 50 times.
The spectra were corrected for H2O and CO2 using an IRsolution internal software.

X-ray Photoelectron Spectroscopy (XPS) was performed to investigate the surface
chemical composition of the obtained fibrous materials. ESCALAB-MkII (ThermoFisher Sci-
entific, Waltham, MA, USA) spectrometer using Mg Kα excitation equipped with ultrahigh-
vacuum (UHV) chamber was used.

Differential scanning calorimetry (DSC) was carried out on DSC Q200 equipment
(TA Instruments, New Castle, DE, USA) in the temperature range of 0 to 220 ◦C with a
heating rate of 10 ◦C/min under nitrogen flow. The melting temperatures (Tm) and fusion
enthalpies (∆Hm) were obtained from the DSC endotherms (first heating run). Following
Equation (1) was used to determine the crystallinity degree of PHB (χPHB

c ,%) into the fibers:

χPHB
c , % =

[
∆HPHB

m

∆HPHB,0
m ×WPHB

]
× 100 (1)

where ∆H0
m was the fusion enthalpy of 100% crystalline PHB (∆HPHB,0

m = 146.6 J/g [39]);
∆Hm was the melting enthalpy of PHB during the heating cycle; WPHB was the mass
fraction of PHB in the materials.
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Static water contact angle of the fibrous materials was assessed using an Easy Drop
DSA20E Krűss GmbH apparatus (Hamburg, Germany). A sessile drop of deionized water
(volume-10 µL) was deposited onto the surface of the fibrous samples and the average
value of the contact angle was determined 10 min after droplet deposition by computer
analysis. 20 measurements for each sample were performed.

2.4. In Vitro CQ Release from the Fibrous Mats

CQ release was studied in vitro at temperature of 25 ◦C in acetate buffer medium
(CH3COONa/CH3COOH) containing Tween 80 (acetate buffer/Tween 80 = 99/1 v/v), at
pH 3.6 and ionic strength of 0.1. 60 mg of CQ-containing mat was immersed in 100 mL of
buffer solution under stirring at 100 rpm in a thermally controlled shaking water bath (JU-
LABO SW23, Allentown, PA, USA). At definite time intervals, aliquots were withdrawn and
the amount of CQ released was determined by a DU 800 UV–vis spectrophotometer (Beck-
man Coulter, Brea, CA, USA) at a wavelength of 315 nm. The withdrawn volumes were
replaced with fresh buffer solution. Calibration curves (correlation coefficient R = 0.999)
were used to determine the released CQ. The release was repeated three times and the data
were averaged.

2.5. In Vitro Antifungal Assay

In the present study the fungi P. chlamydospora CBS 239.74 and P. aleophilum CBS
631.94 purchased from Westerdijk Fungal Biodiversity Institute (Utrecht, Netherlands)
were used. The minimum inhibitory concentration (MIC) of CQ against the two used fungi
was assessed. A preculture of the different fungi was grown for seven days on potato
dextrose agar medium (PDA, Merck, Darmstadt, Germany) at 28 ◦C. Spores were harvested
by disposable L-shaped spreaders after flooding the culture with sterile water. The tested
CQ was dissolved in DMSO at an initial concentration of 0.010 g/mL. Additional solutions
were obtained by the serial dilution method. A total of 10 µL of each dilution was added
to 990 µL of sterile potato dextrose broth in Eppendorf tubes. The resulting mixture was
inoculated with 50 mL of spore suspension and incubated at 28 ◦C for 96 h. The detection
of the fungal growth was performed using microscopic observation.

The antifungal activity of the samples from PHB, PVPinPHB (blank control), PVP,CQinPHB
and PVP,CQonPHB was assessed by the disk-diffusion method described by
Falcón-Piñeiro et al. [40] with some modifications. The effect on mycelial growth of P. chlamy-
dospora CBS 239.74 and P. aleophilum CBS 631.94 was determined as follows: Discs with
diameters of 17 mm were cut from all the fabricated fibrous materials. Then, they were
placed in the Petri dishes (with diameters of 90 mm) previously inoculated with 0.1 mL
of suspension of fungi culture (1 × 105 cells/mL). The Petri dishes with fibrous sam-
ples were incubated for 96 h at 28 ◦C and finally the inhibition zones around each disk
were determined.

3. Results and Discussion
3.1. Fabrication and Characterization of Fibrous Materials

The combining of the beneficial properties of the aliphatic polyester PHB and of water-
soluble polymer PVP with the antifungal properties of CQ is a favorable strategy for the
fabrication of novel fibrous materials appropriate for diverse applications in agriculture.

In this study, for the fabrication of fibrous materials from PHB and PVP containing
CQ of diverse design, two different approaches were developed: one-step electrospinning
of fibers from a solution of PHB, PVP and CQ (“in” strategy, Figure 1a) and electrospinning
of a PHB solution in conjunction with electrospraying of a PVP,CQ solution (“on” strategy,
Figure 1b).
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Figure 1. Schematic representation of fibers: (a) PVPinPHB fiber loaded with CQ in the bulk
(PVP,CQinPHB) and (b) PHB fiber decorated with PVP,CQ particles on the surface (PVP,CQonPHB).

The electrospinning of solutions of PHB, PVP and CQ in a CHCl3/DMF solvent system
(4/1 v/v) at a total polymer concentration of 10 wt.% led to the formation of cylindrical and
defect-free fibers (Figure 2b). PHB (Figure 2c) and PVPinPHB fibers (90:10 w/w) (Figure 2a)
were also obtained using the selected conditions. The mean diameter of the PHB fibers was
760± 200 nm. The addition of PVP to the PHB solutions imparted a decrease in the average
fiber diameters to 480 ± 110 nm (Figure 2a,c). This effect is most likely due to a decrease
in the viscosity of the PHB solution from 180 cP to 110 cP with the addition of PVP. When
CQ (10 wt.%) was added to the PHB/PVP solution, the average fiber diameter changed
only negligible (Figure 2b)—from 480 ± 110 nm for the PVPinPHB mat to 470 ± 110 for the
PVP,CQinPHB mat. This might be attributed to the slight decrease in the viscosity of the
PHB/PVP solution from 110 cP to 100 cP on adding of CQ to the solution.

Polymers 2022, 13, x FOR PEER REVIEW 6 of 17 
 

 

for the fabrication of novel fibrous materials appropriate for diverse applications in ag-

riculture. 

In this study, for the fabrication of fibrous materials from PHB and PVP containing 

CQ of diverse design, two different approaches were developed: one-step electrospin-

ning of fibers from a solution of PHB, PVP and CQ (“in” strategy, Figure 1a) and elec-

trospinning of a PHB solution in conjunction with electrospraying of a PVP,CQ solution 

(“on” strategy, Figure 1b). 

 

(a) 

 

(b) 

Figure 1. Schematic representation of fibers: (a) PVPinPHB fiber loaded with CQ in the bulk 

(PVP,CQinPHB) and (b) PHB fiber decorated with PVP,CQ particles on the surface 

(PVP,CQonPHB). 

The electrospinning of solutions of PHB, PVP and CQ in a CHCl3/DMF solvent sys-

tem (4/1 v/v) at a total polymer concentration of 10 wt.% led to the formation of cylin-

drical and defect-free fibers (Figure 2b). PHB (Figure 2c) and PVPinPHB fibers (90:10 

w/w) (Figure 2a) were also obtained using the selected conditions. The mean diameter of 

the PHB fibers was 760 ± 200 nm. The addition of PVP to the PHB solutions imparted a 

decrease in the average fiber diameters to 480 ± 110 nm (Figure 2a,c). This effect is most 

likely due to a decrease in the viscosity of the PHB solution from 180 cP to 110 cP with the 

addition of PVP. When CQ (10 wt.%) was added to the PHB/PVP solution, the average 

fiber diameter changed only negligible (Figure 2b)—from 480 ± 110 nm for the PVPinPHB 

mat to 470 ± 110 for the PVP,CQinPHB mat. This might be attributed to the slight de-

crease in the viscosity of the PHB/PVP solution from 110 cP to 100 cP on adding of CQ to 

the solution. 

PHB fibers decorated with PVP,CQ particles were obtained by performing simul-

taneous electrospinning and electrospraying. SEM micrographs of PVP,CQonPHB mats 

are presented in Figure 2d. It is evident that the particles of PVP,CQ deposited on the 

PHB fibers had spherical shape. The average particle size for the PVP,CQonPHB mats 

was 490 ± 150 nm (Figure 2d). 

  
(a) (b) 

Polymers 2022, 13, x FOR PEER REVIEW 7 of 17 
 

 

  
(c) (d) 

Figure 2. SEM micrographs of the fibers of: (a) PVPinPHB; (b) PVP,CQinPHB; (c) PHB; and (d) 

PVP,CQonPHB. Magnification ×2500. 

For confirmation of the chemical structure of the CQ-containing fibrous material, 

ATR-FTIR spectroscopy was carried out (Figure 3). In the ATR-FTIR spectra of PVPin-

PHB mats, in addition to the absorption characteristic bands of PHB (1721 cm−1—νC=O 

[35]; 1279, 1229, 1180 cm−1—νas C–O–C in the crystalline and amorphous phases [41,42]), a 

band appeared at 1663 cm−1, characteristic for νC=O vibrations from the PVP (Figure 3b 

and Supplementary Material, Figure S1). In the case of the PVP,CQinPHB mat, the band 

for C=O stretching vibrations of PVP was shifted towards the higher wavenumbers to 

1668 cm−1 (by 5 cm−1) compared to the spectrum of the neat PVPinPHB mat (1663 cm−1) 

(Figure 3b,c). This is in conformity with previous reports for other PVP-based fibrous 

materials loaded with natural phenolic compounds [43,44]. This shift is most likely due to 

an intermolecular interaction based on hydrogen bonds between PVP and CQ. In the case 

of CQ-containing fibers, the appearance of characteristic bands for CQ [45] (stretching 

vibration bands of the CQ ring (1576 cm−1 and 1489 cm−1) and bands at 808 cm−1 for the 

benzene ring (γAr-H, out-of-plane bending vibrations) and at 783 cm−1 for aromatic C–H 

bonds) was observed, thus demonstrating the successful incorporation of CQ into the 

mats (Figure 3c). In the spectrum of the mat, obtained by simultaneous electrospinning of 

a PHB solution and electrospraying of a PVP,CQ solution, a shift of the band for C=O 

stretching vibrations of PVP from 1663 cm−1 (for PVPinPHB mat, Figure 3b) to 1667 cm−1 

(Figure 3d) was registered. This might be explained by interactions between PVP and 

CQ. The appearance of new bands for C=C stretching vibrations of CQ at 1576 cm−1 and 

1489 cm−1, as well as two bands at 808 cm−1 (for γAr-H, out-of-plane bending vibrations) 

and at 783 cm−1 (for aromatic C–H bonds) was also observed, which was an indication of 

the incorporation of CQ in the particles on the PHB mat surface. 

Figure 2. SEM micrographs of the fibers of: (a) PVPinPHB; (b) PVP,CQinPHB; (c) PHB; and
(d) PVP,CQonPHB. Magnification ×2500.



Polymers 2022, 14, 367 7 of 17

PHB fibers decorated with PVP,CQ particles were obtained by performing simulta-
neous electrospinning and electrospraying. SEM micrographs of PVP,CQonPHB mats are
presented in Figure 2d. It is evident that the particles of PVP,CQ deposited on the PHB
fibers had spherical shape. The average particle size for the PVP,CQonPHB mats was
490 ± 150 nm (Figure 2d).

For confirmation of the chemical structure of the CQ-containing fibrous material,
ATR-FTIR spectroscopy was carried out (Figure 3). In the ATR-FTIR spectra of PVPinPHB
mats, in addition to the absorption characteristic bands of PHB (1721 cm−1—νC=O [35];
1279, 1229, 1180 cm−1—νas C–O–C in the crystalline and amorphous phases [41,42]), a band
appeared at 1663 cm−1, characteristic for νC=O vibrations from the PVP (Figure 3b and
Supplementary Material, Figure S1). In the case of the PVP,CQinPHB mat, the band for C=O
stretching vibrations of PVP was shifted towards the higher wavenumbers to 1668 cm−1

(by 5 cm−1) compared to the spectrum of the neat PVPinPHB mat (1663 cm−1) (Figure 3b,c).
This is in conformity with previous reports for other PVP-based fibrous materials loaded
with natural phenolic compounds [43,44]. This shift is most likely due to an intermolecular
interaction based on hydrogen bonds between PVP and CQ. In the case of CQ-containing
fibers, the appearance of characteristic bands for CQ [45] (stretching vibration bands of the
CQ ring (1576 cm−1 and 1489 cm−1) and bands at 808 cm−1 for the benzene ring (γAr-H,
out-of-plane bending vibrations) and at 783 cm−1 for aromatic C–H bonds) was observed,
thus demonstrating the successful incorporation of CQ into the mats (Figure 3c). In the
spectrum of the mat, obtained by simultaneous electrospinning of a PHB solution and
electrospraying of a PVP,CQ solution, a shift of the band for C=O stretching vibrations
of PVP from 1663 cm−1 (for PVPinPHB mat, Figure 3b) to 1667 cm−1 (Figure 3d) was
registered. This might be explained by interactions between PVP and CQ. The appearance
of new bands for C=C stretching vibrations of CQ at 1576 cm−1 and 1489 cm−1, as well as
two bands at 808 cm−1 (for γAr-H, out-of-plane bending vibrations) and at 783 cm−1 (for
aromatic C–H bonds) was also observed, which was an indication of the incorporation of
CQ in the particles on the PHB mat surface.

The hydrophilic/hydrophobic characteristics of fibrous mats can greatly influence
the adhesion and growth of pathogenic fungi in plants. It was of interest to measure the
water contact angle of the obtained fibrous materials. We have found that the PHB mat was
hydrophobic (water contact angle of 123.3◦ ± 1.6◦) (Figure 4a). The water contact angle
value of the PHB fibrous material determined experimentally by us was in good agreement
with those reported in the literature values by other authors [46]. The incorporation of
10 wt.% water-soluble polymer PVP resulted in a slight decrease in the hydrophobicity of
the mats (the value of the water contact angle was 115.7◦ ± 1.7◦, Figure 4b). The presence
of CQ in the PVP,CQinPHB fibers did not result in a change in the water contact angle
values (Figure 4c). Moreover, we have find out that the mats fabricated by electrospinning
of PHB solution in conjunction with electrospraying of PVP,CQ were hydrophilic. Their
water contact angles were 0◦ (Figure 4d).
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The thermal behavior of the PVP,CQinPHB and PVP,CQonPHB mats was studied by
DSC analyses (Figure 5). An endothermic peak at 170 ◦C; for Tm of PHB was detected in
the thermogram of the PHB fibers (Figure 5b). Furthermore, in the thermograms of the
PVP,CQinPHB mats a 3 cm−1 shift of the Tm for PHB towards a lower temperature to 167 ◦C
was observed (Figure 5d). The crystallinity degree of PHB in PVP,CQinPHB mats (37%) did
not change significantly compared to that of the PVPinPHB mats (42%). It can be assumed
that when CQ is incorporated in the bulk of the PVPinPHB mat, interactions occur between
PHB, PVP and CQ, resulting in the diminishing of Tm of PHB. An endothermic peak at
170 ◦C ascribed to PHB melting was registered in the thermograms of the mats obtained by
electrospinning in conjunction with electrospraying (Figure 5e). The crystallinity degree of
PHB in PVP,CQonPHB mats was 42%, a value that coincides with the crystallinity degree
of the PHB fibers (42%). In the cases of PVP powder (Figure 5a), and of fibrous mats
containing PVP in the bulk of the mat or on its surface, a broad endothermic peak was
detected between 25 ◦C and 100 ◦C, due to loss of moisture (Figure 5c–e). Moreover, in the
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thermograms of the PVP,CQinPHB mats no peak at 176 ◦C corresponding to CQ melting
was observed (Figure 5d). This demonstrated that CQ incorporated in the fibers was in the
amorphous state. It can be seen that CQ incorporated in the particles deposited on the PHB
fibers was also in the amorphous state (Figure 5e).
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It is known that crystallinity affects the release of biologically active compounds. The
crystallinity of the fabricated fibrous materials was studied by XRD analysis. Figure 6
shows the XRD patterns of PHB, PVPinPHB, PVP,CQinPHB, PVP,CQonPHB mats and of
CQ powder. In XRD graph of the PHB and PVPinPHB fibrous materials only diffractions
due to the crystalline phase of PHB (2θ = 13.6◦, 17.0◦, 20.1◦, 22.1◦, 25.6◦ and 27.2◦) were
registered. In the cases of PVP,CQinPHB and PVP,CQonPHB mats (Figure 6c,d) the main
diffractions attributed to the crystalline phase of CQ were not observed (2θ = 6.3◦, 12.8◦,
20.4◦, 21.7◦ and 24.6◦), thus demonstrating that CQ loaded into the mats or in the PVP
particles on the PHB fibers was in the amorphous state. Thus, the obtained results were in
conformity with the results obtained by the DSC analyses.

In order to elucidate the effect of PVP on the crystallinity of CQ in CQ-loaded
PVPinPHB fibrous materials, the XRD patterns of CQinPHB mats were also recorded.
As seen in Figure S2 (Supporting Materials) in the case of CQinPHB mats, in addition to the
diffractions due to the crystalline phase of PHB, the evidence of diffractions corresponding
to the crystalline phase of CQ was registered as well. This indicated that, in this case,
CQ was in the crystalline state. Therefore, the findings showing the presence of CQ in
CQ-containing PVPinPHB mats (both “in” and “on” types) in the amorphous state are
consistent with the literature data on diminishing the formation of crystals from drugs
interacting with PVP [43,47].
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The successful incorporation of CQ into the PVPinPHB mat surface or into the PVP
particles deposited on the PHB mat surface was also confirmed by XPS analyses (Figure 7
and Supplementary Material, Figure S3). The appearance of N1s peaks in the spectra
of the PVP,CQinPHB mats was observed at 399.2 eV due to -N-C=O from PVP and at
400.0 eV characteristic of -N-C from CQ [48] (Figure 7c). Moreover, the spectra displayed
the appearance of an I3d peak—at 620.7 eV (I3d5/2) and at 632.2 eV (I3d3/2), attributed to the
presence of CQ in the mat surface (Figure 7d). Cl2p (at 201.8 eV (Cl2p1/2) and at 200.2 eV
(Cl2p3/2) (Figure 7e) peaks were also detected confirming the incorporation of CQ in the
PVP,CQinPHB mat surface. Five peaks were detected in the detailed C1s spectrum of the
PVP,CQinPHB mat (Figure 7a). The signal at 285 eV was ascribed to -C-H or -C-C- from
PHB, PVP and from CQ, and that at 286.5 eV was attributed to -C-O-C, -C-OH from PHB,
to -C-N-C=O from PVP and also to -C-N and -C-OH from CQ. The peak at 287.4 eV was
corresponding to -N-C=O from PVP and at 288.9 eV to -O-C=O from PHB. The presence of a
peak at 290.4 eV for the π→π* shake-up satellite due to the aromatic ring of the incorporated
CQ was registered. Four components demonstrated the detailed O1s spectrum—at 531.5 eV
ascribed to -N-C=O from PVP, at 532.0 eV to -C=O from PHB, at 532.5 eV to -C-OH from
CQ and at 533.2 to -C-OH and -C-O from PHB (Figure 7b). The presence of the detected
peaks are in accordance with the structure of the PVP,CQinPHB fibrous material.

The theoretical ratio of the peak area for the respective carbon atoms was [C-C/C-
H]/[C-O/C-OH/C-N-C=O/C-N/C-OH]/[N-C=O]/[O-C=O]/[π→π*] = 50.3/27.2/1.3/20.2/1.0,
while the experimental ratio was 50.6/27.4/1.2/20.2/0.6. Therefore, the largest area was
registered for the peak of the carbon atoms engaged in the C-C/C-H bonds. The obtained
results were in conformity with the hydrophobicity of the surface of the PVP,CQinPHB
fibrous material. The value of the water contact angle was 115.5◦ ± 1.1◦ (Figure 4c).
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Significant differences in the expanded C1s spectrum of the PVP,CQonPHB mat were
registered in comparison to the C1s spectrum of the PHB mat (Supplementary Material,
Figures S3a and S4a). Supplementary Material, Figure S3a presented two new peaks at
287.3 eV ascribed to -N-C=O from PVP and at 290.4 eV to the π→π* shake-up satellite of
the CQ aromatic ring. There was also an increase in the intensity of the peak at 286.4 eV
ascribed to -C-O-C and -C-OH from PHB, to -C-N-C=O from PVP, as well as to -C-N
and -C-OH from CQ. In the detailed O1s spectrum of PVP,CQonPHB fibrous material, the
presence of two new peaks was identified—at 531.6 eV, corresponding to -N-C=O from PVP
and at 532.6 eV, ascribed to -C-OH from CQ (Supplementary Material, Figure S3b). The
comparison of the detailed N1s spectrum of these fibrous materials with that of the PHB
mats revealed the presence of two new components—at 399.1 eV characteristic for -N-C=O
from PVP and at 400.0 eV due to -N-C from CQ (Supplementary Material, Figure S3c).
The presence of peaks for N1s, I3d (at 620.7 eV (I3d5/2) and at 632.2 eV (I3d3/2)) and Cl2p



Polymers 2022, 14, 367 13 of 17

(at 201.6 eV (Cl2p1/2) and at 200.0 eV (Cl2p3/2)) (Supplementary Material, Figure S3c–e)
confirmed the incorporation of CQ into PVP particles deposited on the surface of PHB mat.

3.2. In Vitro CQ Release Studies

The in vitro study of the CQ release from PVP,CQinPHB and PVP,CQonPHB mats
was assessed spectrophotometrically in acetate buffer (pH 3.6) containing Tween 80 (99/1
v/v), for 48 h at 25 ◦C. These fibrous materials containing the water-soluble polymer PVP
showed rapid initial release with subsequent gradual release profile (Figure 8).
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As seen from Figure 8, CQ was released faster and in a greater amount when incorpo-
rated into PVP particles that are deposited on the PHB fiber surface than when incorporated
in the PVPinPHB fibers. About 78.6% and 64% of the loaded CQ was released in the initial
840 min in the case of PVP,CQonPHB and PVP,CQinPHB mats, respectively (Figure 8). The
amount of CQ released from the PVP,CQinPHB mats for 2880 min was ca. 83.5%. For
PVP,CQonPHB fibrous materials the total amount of CQ released in 2880 min was 96%.
This result might be due to the difference in the diffusion of CQ incorporated in the bulk of
the fibers and the diffusion of CQ through the PVP particles deposited on the fiber surface.
The obtained results from the CQ release studies showed that the CQ release from the
fibrous materials was assisted by the presence of PVP in the fibrous materials or on their
surface. These results are consistent with our previous findings on an increase in the rate of
release of 8-hydroxyquinoline derivatives from other fibrous systems upon incorporation
of a water-soluble polymer [21,22]. In the present study, using one-pot electrospinning or
electrospinning in conjunction with electrospraying, fibrous materials of diverse design
and with different CQ release profiles were fabricated. The obtained results show that the
CQ-containing materials are perspective candidates for application in agriculture as active
dressings for grapevine protection from fungal pathogens.

3.3. Antifungal Assay

8-hydroxyquinoline derivatives are known for their good antibacterial and antifungal
properties [49]. Among the 8-hydroxyquinoline derivatives, CQ manifested the ability to
inhibit the growth of a large number of fungi [24,25].
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Until now, no data on the antifungal activity of CQ, as well as of fibrous materials
containing this biologically active compound against P. chlamydospora and P. aleophilum,
which are the main fungal species causing esca disease, have been reported.

Therefore, we have studied the antifungal activity of fibrous materials loaded with CQ
by performing microbiological assays against the fungi P. chlamydospora and P. aleophilum.
The diameters of the inhibition zone around the fibrous discs and MIC values for CQ
against the two used fungi were determined as well. The MIC values were 10 and 1 µg/mL,
respectively. The growth of P. chlamydospora and P. aleophilum was studied for the time
period of 96 h. As can be seen from Figure 9a,c,e,g, the PHB and PVPinPHB mats did not
show any significant antifungal effect.
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mat; (c,g)-PHB mat; and (d,h)-PVP,CQonPHB mat; scale bar = 10 mm.

In contrast, CQ-containing mats exhibited antifungal activity against these fungi and
well-defined zones of inhibition of fungal cell growth were detected (Figure 9b,d,f,h). These
well-defined zones illustrated that the release profile of CQ provided a sufficient amount of
the biologically active compound even in the initial experiment stages. The values of the
mean diameter of the inhibition zones for PVP,CQinPHB and PVP,CQonPHB mats for the
tests against P. chlamydospora did not differ significantly: 44.2 ± 1.1 mm and 45.0 ± 1.3 mm,
respectively (Figure 9b,d). For the tests against P. aleophilum, the diameters of the zones
of inhibition around PVP,CQinPHB and PVP,CQonPHB fibrous materials were 36.7 ± 1.9
and 41.2 ± 3.0 cm, respectively (Figure 9f,h). The obtained results indicated that the
incorporated CQ imparted good antifungal activity against species P. chlamydospora and
P. aleophilum to the mats.

The antifungal activity of CQ against Candida spp. and dermatophytes was suggested to
be due mainly to damage of the cell wall, resulting in the death of fungal cells [50]. However,
up to now the mechanism of action of CQ in fungal cells has not been fully clarified. There
are no data in the literature on the mechanism of action of CQ against fungal cells of
P. chlamydospora and P. aleophilum. We hypothesize that the observed antifungal activity of
CQ-containing fibrous materials against the fungi P. chlamydospora and P. aleophilum is most
likely due to their damaging effect on the fungal cell wall.
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4. Conclusions

Novel fibrous materials containing CQ of different design were fabricated by electro-
spinning (“in” strategy) or by electrospinning in conjunction with electrospraying (“on”
strategy). It was demonstrated that the presence of PVP capable of forming hydrogen bonds
with CQ facilitated the release of CQ from the mats. The release of CQ from PVP,CQonPHB
fibrous materials was faster than the release from the PVP,CQinPHB fibrous materials. We
found that CQ was an agent with good efficacy against the fungal pathogens P. chlamy-
dospora and P. aleophilum (MIC were 10 µg/mL and 1 µg/mL, respectively). Furthermore,
CQ-containing fibrous materials (both “in” and “on” types) exhibited significant antifungal
activity against P. chlamydospora and P. aleophilum. All these results clearly reveal that the
prepared fibrous materials are promising as active dressings for the protection of grapevine
against two main esca-causing fungal pathogens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14030367/s1, Figure S1: ATR-FTIR spectra of PHB mat, Figure S2: XRD patterns of PHB
mat, CQ and CQinPHB mat, Figure S3: XPS peak fittings for PVP,CQonPHB mat, Figure S4: XPS peak
fittings for PHB mat.
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