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Abstract: Ionizing radiation (IR) is known to cause fetal programming, but the physiological effects
of low-dose IR are not fully understood. This study examined the effect of low (50 mGy) to non-lethal
(300 and 1000 mGy) radiation exposure during late gestation on cardiac metabolism and oxidative
stress in adult offspring. Pregnant C57BL/6J mice were exposed to 50, 300, or 1000 mGy of gamma ra-
diation or Sham irradiation on gestational day 15. Sixteen weeks after birth, 18F-Fluorodeoxyglucose
(FDG) uptake was examined in the offspring using Positron Emission Tomography imaging. Western
blot was used to determine changes in oxidative stress, antioxidants, and insulin signaling related
proteins. Male and female offspring from irradiated dams had lower body weights when compared
to the Sham. 1000 mGy female offspring demonstrated a significant increase in 18F-FDG uptake,
glycogen content, and oxidative stress. 300 and 1000 mGy female mice exhibited increased superox-
ide dismutase activity, decreased glutathione peroxidase activity, and decreased reduced/oxidized
glutathione ratio. We conclude that non-lethal radiation during late gestation can alter glucose uptake
and increase oxidative stress in female offspring. These data provide evidence that low doses of IR
during the third trimester are not harmful but higher, non-lethal doses can alter cardiac metabolism
later in life and sex may have a role in fetal programming.

Keywords: low-dose radiation; cardiac; antioxidants; oxidative stress

1. Introduction

An unfavorable fetal environment can affect growth and development of the fetus,
and these changes can persist throughout life, which is commonly referred to as fetal
programming. Adverse fetal environment can also result in changed placental morphology,
low birth weight, and accelerated growth, which have been linked to many diseases
later, including cardiovascular disease, cancer, diabetes mellitus, coronary heart disease,
and hypertension [1–5]. Exposure to a variety of stressors during pregnancy can lead
to low birth weight [6]. Stressors have the ability to activate the hypothalamic-pituitary-
adrenal (HPA) axis [2,7]. Activation of the HPA axis can result in increased glucocorticoid
production [2,7], which is known to cause insulin resistance and could result in altered
cardiac glucose metabolism [8,9].
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One type of stressor that has been shown to alter the HPA axis function is ionizing
radiation (IR) [10,11]. Human exposure to high doses of radiation is uncommon outside of
radiotherapy and nuclear disasters whereas low-dose exposures are more common [12].
Pregnant women can be exposed to IR from different sources, including medical diagnostic
imaging, which can expose them to low levels (≤0.1 Gy) of IR. A typical CT scan can
expose an individual to about 10 mSv of IR; the Canadian Nuclear Safety Commission
defines 100 mSv as the lowest dose to cause cancer, and 1000 mSv is the lowest dose
that may cause acute radiation syndrome in humans. 50 mSv is the annual radiation
dose limit for nuclear workers in Canada [13]. According to the United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR), low-dose radiation is any
dose below 100 mGy [12]. However, there is no consensus on what is a high versus low
dose of radiation when it relates to fetal programming. Mice have been shown to be more
radioresistant than humans; therefore, the dose used in rodent studies has to take into
account this difference [14,15]. For the purposes of this study, 50 mGy is low whereas 300
and 1000 mGy is classified as a non-lethal dose.

While high-dose exposure to IR in mice is known to cause malformations in the
developing fetus, the impact of low-dose exposure that may be comparable to doses
humans receive during medical imaging is unclear. The effects of IR on fetal development
depend on the time and dose received. Radiation risks are most notable in the first trimester
during which organogenesis occurs, and the fetus is most susceptible to the teratogenic
effects of IR, resulting in adverse effects that include growth restriction, microcephaly, and
behavioral defects [16]. Radiation risks are comparatively less in the second and least in
the third trimester. However, recent studies have reported that the third trimester also
presents a critical gestational period whereby changes in the in-utero environment can
influence the cells to change their phenotype, resulting in adaptation of cellular function
that may have long-lasting implications commonly referred to as fetal programming [17].
High IR doses are known to be detrimental in mice during fetal development and during
organogenesis [18,19]. This has been shown to result in growth retardation, cleft palate,
altered brain development, and behavioral changes [20–22].

IR can be dangerous to the human body since exposure causes an increase in reactive
oxygen species (ROS), and if the levels of ROS overwhelm the cells antioxidant defenses,
oxidative stress can occur [23–25]. The absorption of IR can directly disrupt atomic struc-
tures producing chemical and biological changes or can indirectly generate ROS through
the radiolysis of water [26]. Cells respond to increased ROS by upregulating the expression
of cellular antioxidant defenses, and treatment with antioxidants has been shown to reduce
radiation-induced oxidative damage [27–29]. In addition, it has been shown in animal
studies that low-dose radiation (LDR) exposure activates endogenous antioxidant defense
systems that can reduce the oxidative damage produced by ROS [30,31]. This adaptive
response has been observed in many cellular processes, including cell survival, gene mu-
tations, and immune response [32–34]. Although there is emerging evidence that LDR
exposure during late gestation can cause fetal programming [35], it is unclear whether the
cellular programming is mediated in part by oxidative stress, what the outcome of LDR on
adult heart glucose metabolism is, and if LDR induces an adaptive antioxidant response.

Under normal conditions, the heart primarily uses free fatty acid oxidation as its
major source of energy and will store glucose as glycogen to use when there is a need
for high energy output [36]. During chronic stress including cardiac hypertrophy, there
is a shift from fatty acid oxidation to glucose utilization, which is associated with an
increase in glycolysis [37]. The increase in glycolysis may lead to an imbalance between
glucose uptake and oxidation, which has been implicated in cardiac diseases associated
with redox imbalance and contractile dysfunction [37]. Moreover, alterations to glucose
metabolism at a young age may contribute to severe metabolic dysfunction such as diabetes
and metabolic syndrome later life [38]. Insulin-induced activation of protein kinase B (Akt)
provides cardioprotection by regulating a variety of downstream signaling molecules [39].
One downstream protein of interest is glycogen synthase kinase 3-β (GSK3β), which can
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regulate glycogen synthesis and negatively regulate cardiac hypertrophy [40,41]. It is
unclear whether in utero exposure to IR can affect the adult offspring’s cardiac glucose
uptake and insulin signaling proteins.

The aim of this study is to determine if there is a dose response from exposure to IR
during late gestation and how IR affects postnatal adult cardiac metabolism and oxidative
stress in a mouse model of fetal programming. We hypothesize that low doses of IR
exposure in utero will not have adverse outcomes in the adult offspring since radiation
hormesis has been shown in low doses.

2. Materials and Methods
2.1. Animal Care and Experimental Groups

Animal use protocols were approved by the Lakehead University Animal Care Com-
mittee and the Animal Research Ethics Board at McMaster University, and 7–8-week-old
male and female C57BL/6J mice were obtained from Jackson Laboratory (Bar Harbor,
Maine, USA). Animals were maintained on a 12:12 h light:dark cycle and allowed food and
water ad-libitum. Housing temperature was controlled, at 20–22 ◦C. The mice were given
one week to acclimate without disruption prior to breeding, putting the mice at 8–9 weeks
of age at the time of breeding. Two female mice were moved to a cage with a single housed
male (breeding was performed 2:1) and left to breed overnight. Vaginal plug was used to
determine the first day of gestation, and females were singly housed after breeding. We
randomized the breeding pairs in an attempt to avoid parental biases. Due to the radiation
exposure, only first-time dams were used. Pregnant mice were Sham irradiated or received
50, 300 or 1000 mGy of whole-body gamma radiation (662 keV energy) using a cesium-137
source (Taylor Radiobiology Source) on gestational day 15 at McMaster University. Day
15 of gestation was chosen because previous fetal programming studies, including our
own, have shown that exposure during the third trimester, usually gestational days 15 to
19, induces observable changes in offspring [42,43]. Briefly, pregnant mice were placed
under the source for irradiation in their home cage for the required time and radiation
was delivered at a nominal dose rate of 10 mGy/min. Sham-irradiated mice were placed
under the source for 20 min (with the source off) then moved to the control room for the
remainder of the longest irradiation time. All animals were restricted for food and water
consumption for the duration of irradiation. The fetal dose was verified by using the
thermoluminescent dosimeters as previously described by our group [44]. A maximum
of 2 male and 2 female offspring from one dam was used in this study to control for any
maternal biased effects. Offspring were transported to Lakehead University animal facility
when they reached adulthood, and cardiac tissues and plasma were collected when the
offspring reached 16–20 weeks of age and stored at−80 ◦C until further analysis. Offspring
from each group were also injected with either saline or 0.5 U HumulinR 15 min prior to
tissue collection to investigate insulin-related signaling proteins.

2.2. Tissue Preparation

Tissues were ground into a powder using a mortar and pestle and were kept frozen
during preparation using liquid nitrogen. Frozen powder was weighed to the desired
amount and was chemically lysed with Pathscan (25 mM Tris pH 7.5, 150 mM NaCl,
1mM EDTA, 1% Triton X) containing a protease inhibitor cocktail (1:100; Sigma-Aldrich,
Oakville, ON, Canada), sodium orthovanadate (1:100; Abcam, Danvers, MA, USA), and
sodium fluoride (40 uL/mL; Fischer Scientific, Waltham, MA, USA). The tissues were
further disrupted using the Tissue Lyser (Qiagen, Redwood City, CA, USA) for 2 min at
20Hz. Samples were then centrifuged for 10 min at 16,000× g, and the supernatant was
stored at −80 ◦C. To quantify the amount of protein in each sample, the BCA protein assay
(PierceTM, Waltham, MA, USA) was used. Following manufacturers protocol, the samples
absorbances were compared to BSA standards to determine the concentration. Protein
samples were stored at −80 ◦C for biochemical assays.
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2.3. Positron Emission Tomography

Fasted glucose uptake was assessed using 18F-fluorodeoxyglucose (18F-FDG) obtained
from the local cyclotron (Thunder Bay Regional Health Sciences Centre Cyclotron and
Radiopharmacy, Thunder Bay, ON, Canada). Mice were moved to new cages without food
5 h before the first scan. Approximately 20 µCi of 18F-FDG in sterile saline was given to
each mouse intraperitoneally. One hour after 18F-FDG injection, mice were anaesthetized
with 1.5% isoflurane and were imaged in a G4 PET/X-ray scanner (Sofie Biosciences, Culver
City, CA, USA). Each mouse underwent a 10 min scan, and images were analyzed using
VivoQuantTM (Version 1.23, Invicro, Boston, MA, USA). Glucose uptake was reported as
maximum standardized uptake value (SUVmax).

2.4. Glycogen Content

Cardiac glycogen content was assessed using the EnzyChromTM Glycogen assay
kit (Bioassay Systems, Hayward, CA, USA) according to manufacturer’s instructions.
Glycogen concentration expressed as microgram per ml was determined by using standards
and by subtracting the sample blank to account for presence of glucose in the sample.

2.5. Antioxidant Enzyme Activity

Catalase activity was determined spectrophotometrically by using the method of
Beers and Sizer as described by Aebi [45] and was expressed as nmol/min/mg of protein.
This method measures the exponential breakdown of H2O2 (Sigma-Aldrich, Oakville, ON,
Canada) at 240 nm in the presence of cellular homogenate. Superoxide dismutase (SOD) ac-
tivity was measured spectrophotometrically as described by Marklund and was expressed
as USOD/mg of protein. The autoxidation of pyrogallol (Sigma-Aldrich, Oakville, ON,
Canada) is sustained by hydroxyl radical, which is inhibited by SOD. The inhibition of this
process can be measured to determine SOD concentration in the sample [46]. Glutathione
peroxidase (GPx) activity was measured by using the spectrophotometric method of Paglia
and Valentine. 1U of GPx activity was defined as the amount of protein that oxidized
1 µmol of reduced NADPH (Sigma-Aldrich, Oakville, ON, Canada) per minute. Results
are expressed as mmol/mg of protein [47].

2.6. NADPH Oxidase Enzyme Activity

NADPH oxidase activity was determined spectrophotometrically by the rate of
NADPH consumption over 20 min at 340 nm, and the rate of the reaction was expressed as
µmol/min/mg of protein (Sigma-Aldrich, Oakville, ON, Canada) [48].

2.7. Total ROS Content

Total amount of ROS was measured by the oxidation of the DCFDA fluorochrome
(Sigma 35848), which is esterified by cellular esterase’s to DCFH, and this is oxidized to
DCF in the presence of reactive species [49]. The subsequent fluorescence was measured
using the FLUOrstar OPTIMA (BMG Labtech, Ortenberg, Germany) and was presented as
nmol/mg of DCF.

2.8. Redox Ratio

A glutathione assay kit (Cayman Chemical, Ann Arbor, MI, USA) was used to measure
the reduced glutathione (GSH) and oxidized glutathione (GSSG) levels as per the manufac-
turer’s protocol. The reaction between GSH and DTNB (5,5′-dithio-bis-2-nitrobenzoic acid)
results in a coloured product TNB (5-thio-2-nitrobenzoic acid). The absorbance of TNB was
measured at 405 nm spectrophotometrically. Glutathione redox ratio was expressed as a
ratio of GSH to GSSG.

2.9. Western Blot

Protein from cardiac tissue samples were boiled at 95 ◦C for 5 min in Laemmli buffer
and subjected to SDS-page electrophoresis. Proteins were transferred to a nitrocellu-
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lose membrane using a Trans-blot apparatus (Bio-Rad, Mississauga, ON, Canada). The
membrane was blocked with 5% milk for 1 h. Membranes were then incubated with
the appropriate primary antibody overnight at 4 ◦C. Following washing in 1× Tween-
Tris buffered saline (TBST; pH 7.4), the membrane was incubated with the appropriate
horseradish peroxidase conjugated secondary antibody for 1 h. Following chemilumines-
cent imaging, the membrane was stripped and re-blotted accordingly. ImageJ software
was used to quantify band density. Ponceau S (Fisher Scientific, Branchburg, NJ, USA)
staining was used to demonstrate equal loading. Several heart lysates were repeated across
gels as loading controls. The dilutions of the antibodies were as follows: pAkt/panAkt
(1:1000, Cell Signaling Technologies, Danvers, MA, USA), pGSK3β/tGSK3β (1:1000, Cell
Signaling Technologies, Danvers, MA, USA), anti-catalase (1:1000; Sigma-Aldrich, Oakville,
ON, Canada), anti-MnSOD (1:2500; Millipore, Billerica, MA, USA), and anti-GPx (1:5000;
Abcam, Danvers, MA, USA). Anti-rabbit IgG (1:1000–1:5000; Millipore, Burlington, MA,
USA) secondary antibody was used for all primary antibodies except for catalase, for which
we used anti-mouse IgG (1:4000; Millipore, Burlington, MA, USA).

2.10. Plasma Cytokine Concentration

Plasma cytokine (interleukin (IL)-1β, IL-10, IL-6, tumour necrosis factor alpha (TNF-α),
and IL-12p70) levels were determined by using the BD cytometric bead array (CBA) Flex Set
kits (BD Pharmingen, San Diego, CA, USA). Briefly, samples were prepared by following
the manufacturers protocol, then subjected to flow cytometry (BD FACS Canto II), and
samples were analyzed using FCAP Array v3.

2.11. Statistical Analysis

Data was presented as the mean ± standard error of the mean (SEM). Data was ana-
lyzed using the one way-ANOVA test and the Fisher’s LSD post hoc test (GraphPad Prism
6 software, San Diego, CA, USA). A two way-ANOVA was used to analyze experiments
using insulin as a second variable. Comparisons with p-values ≤ 0.05 were considered
significantly different.

3. Results
3.1. Body and Heart Weight

Offspring were weighed before being euthanized at 16–20 weeks old. Male body
weights from the 50 mGy and 1000 mGy groups were significantly decreased as compared
to the Sham and 300 mGy groups (Table 1). Male heart weights were significantly lower in
the 1000 mGy group compared to the Sham and 300 mGy groups, but when normalized to
body weight there were no differences in heart weight between groups (Table 1). Female
offspring in the 50, 300, and 1000 mGy groups had significantly reduced body weights
compared to Sham group. 50 mGy female offspring heart weights were significantly
lower than Sham, and 1000 mGy was significantly lower than Sham and 300 mGy groups
(Table 1).

Table 1. Male and female body, heart weights, and heart/body ratios in offspring after receiving Sham, 50, 300, or 1000 mGy
gamma radiation in utero.

Sham 50 mGy 300 mGy 1000 mGy

Male Body Weight (g) 30.63 ± 0.83 28.11 ± 0.45 a 30.47 ± 0.82 b 26.79 ± 0.57 ac

Female Body Weight (g) 22.95 ± 0.63 21.26 ± 0.93 a 21.69 ± 0.34 a 20.71 ± 0.53 a

Male Heart Weight (mg) 118.3 ± 3.46 115.7 ± 2.65 123.7 ± 2.95 109.3 ± 3.19 ac

Female Heart Weight (mg) 98.82 ± 2.43 92.17 ± 1.47 a 96.23 ± 1.62 89.79 ± 1.63 ac

Male Heart/Body Weight (mg/g) 3.87 ± 0.071 4.11 ± 0.11 4.08 ± 0.084 4.08 ± 0.063
Female Heart/Body Weight (mg/g) 4.31 ± 0.067 4.34 ± 0.056 4.44 ± 0.063 4.35 ± 0.062

Data are expressed as mean ± SEM. a—is significantly different than Sham, b—is significantly different than 50 mGy, c—is significantly
different than 300 mGy, and p ≤ 0.05. n = 11–19 per group.
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3.2. Cardiac Glucose Uptake, Storage, and Insulin Signaling

Offspring underwent PET imaging at 16–20 weeks of age to measure glucose uptake.
There was no significant difference in cardiac glucose uptake between male offspring
exposed to different doses of IR in utero (Figure 1A–C). In the female offspring, the
1000 mGy group had significantly higher cardiac glucose uptake than all three other groups
(Figure 1B,D). The heart primarily converts glucose to glycogen and stores it for when the
heart needs a burst of energy [37]. We therefore determined if glucose uptake resulted in
increased glycogen stores. Glucose storage as glycogen in male offspring was significantly
lowered in 50 mGy and 300 mGy IR groups compared to Sham (Figure 2A). Glycogen was
significantly increased in the 300 mGy and 1000 mGy groups compared to both Sham and
50 mGy female offspring (Figure 2B). Following insulin stimulation, phosphorylation and
expression of Akt and GSK3β signaling proteins were measured to determine if insulin
signaling was affected by IR. The presence of insulin can influence the amount of glucose
being taken up in the heart [50,51]. Between radiation groups, phosphorylated Akt at
SER473 (pAkt), panAkt (total Akt), and the ratio of pAkt/panAkt were not changed in
the male heart tissues (Figure 3A–C). Insulin increased pAkt compared to the vehicle
injection only in the Sham group (Figure 3A). In female offspring heart tissues, pAkt was
only significantly increased in the 1000 mGy group compared to 50 mGy when insulin
stimulated (Figure 4A) as well as compared to its respective vehicle group. panAkt and the
ratio of pAkt/panAkt were not altered from fetal IR exposure (Figure 4B,C). Phosphorylated
and total GSK3β protein expression was not significantly changed in either male or female
heart tissues (Figures 5 and 6). Insulin only increased pGSK3β in the 1000 mGy group
compared to vehicle injection (Figure 6A).

3.3. Antioxidant and Oxidative Stress Status

IR has been shown to increase the production of ROS, which can lead to the damage
of proteins and DNA [26]. Oxidative stress is also associated with metabolic dysfunction,
and studies have shown that oxidants can result in impaired insulin mediated glucose
uptake [52]. Endogenous antioxidant activity was measured to determine if prenatal
exposure to IR during the last trimester would induce an adaptive antioxidant response to
the expected increase in ROS. Catalase and SOD enzyme activities were not altered due
to prenatal IR exposure in male offspring (Figure 7A,B). GPx activity was increased in
the 300 mGy group compared to Sham and 50 mGy groups (Figure 7C). Total ROS level
was decreased in the 300 mGy and 1000 mGy groups compared to the 50 mGy group in
male offspring (Figure 7D). NADPH oxidase (one of the major sources of ROS) activity
was not changed due to IR exposure in any of the groups (Figure 7E). In female offspring,
catalase activity was not altered by IR exposure (Figure 8A). SOD activity was significantly
increased in the 300 mGy and 1000 mGy groups compared to the Sham and 50 mGy groups
(Figure 8B). GPx activity was significantly reduced in the 300 mGy group compared to the
50 mGy group, and the 1000 mGy group was significantly reduced compared to the Sham
and 50 mGy groups (Figure 8C). Total ROS level was increased in 50 mGy and 1000 mGy
groups compared to the Sham and 300 mGy groups (Figure 8D). NADPH oxidase activity
was not significantly increased after IR exposure but did seem to have a trend to increase
as IR dose increased (Figure 8E). Redox ratio measured as GSH/GSSG was used as a
marker of oxidative stress where an increase in the ratio indicates increased oxidative stress
and vice versa. In male offspring, there was no significant change in reduced or oxidized
glutathione levels or the redox ratio (Table 2). In female offspring, GSSG was significantly
increased in 300 mGy group compared to Sham (Table 2). GSSG was also significantly
increased in the 1000 mGy group compared to all other groups (Table 2). GSH/GSSG was
significantly decreased in the 300 mGy group compared to Sham and 50 mGy groups, and
the 1000 mGy group was significantly different from all other groups (Table 2). Altered
antioxidant enzyme activity was not accompanied by a change in the antioxidant protein
expression in either male or female heart tissues (Figures 9 and 10).
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Figure 1. Cardiac glucose uptake in mice after receiving Sham, 50, 300, or 1000 mGy gamma radiation in utero. Repre-
sentative PET scans demonstrating 18F-FDG uptake in male (A) and female (B) offspring cardiac tissue as denoted by the 
white arrow. Quantitative analysis for 18F-FDG PET image measured as maximum standardized uptake value (SUVmax) 
in males (C) and females (D). Data are expressed as mean ± SEM. a—significantly different to Sham, b—significantly 
different to 50 mGy, c—significantly different to 300 mGy, and p ≤ 0.05. n = 11–19 per group. 

Figure 1. Cardiac glucose uptake in mice after receiving Sham, 50, 300, or 1000 mGy gamma radiation in utero. Representa-
tive PET scans demonstrating 18F-FDG uptake in male (A) and female (B) offspring cardiac tissue as denoted by the white
arrow. Quantitative analysis for 18F-FDG PET image measured as maximum standardized uptake value (SUVmax) in males
(C) and females (D). Data are expressed as mean ± SEM. a—significantly different to Sham, b—significantly different to
50 mGy, c—significantly different to 300 mGy, and p ≤ 0.05. n = 11–19 per group.
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Figure 2. Cardiac glycogen content. (A) male and (B) female offspring cardiac glycogen levels. Data are expressed as 
mean ± SEM. a—is significantly different as compared to Sham, and b—is significantly different as compared to 50 mGy, 
p ≤ 0.05. n = 11–19 per group. 

 
Figure 3. Representative western blot (A) and quantified band density (relative protein expression in arbitrary units) for 
phosphorylated Akt (pAkt) (B), Pan Akt (panAkt) (C), and the ratio of phosphorylated protein to total protein (D) in 
hearts of male offspring. Results were normalized to loading controls (samples repeated on each gel) to account for dif-
ferences between gels and Ponceau S staining was used as a marker of equal protein loading. Data are presented as mean 
± SEM. *, denotes significantly different between vehicle and insulin injection, and p ≤ 0.05. n = 11–13 per group. 

Figure 2. Cardiac glycogen content. (A) male and (B) female offspring cardiac glycogen levels. Data are expressed as mean± SEM.
a—is significantly different as compared to Sham, and b—is significantly different as compared to 50 mGy, p ≤ 0.05.
n = 11–19 per group.
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*, denotes significantly different between vehicle and insulin injection, and p ≤ 0.05. n = 11–13 per group.
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*, denotes significantly different between vehicle and insulin injections, b—is significantly different from 50 mGy group, and
p ≤ 0.05. n = 11–19 per group.
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Figure 5. Representative western blot (A) and quantified band density (relative protein expression in arbitrary units) for
phosphorylated GSK3β (pGSK3β) (B), total GSK3β (tGSK3β) (C), and the ratio of phosphorylated protein to total protein
(D) in male offspring hearts. Results were normalized to loading controls (samples repeated on each gel) to account for
differences between gels, and Ponceau S staining was used as a marker of equal protein loading. Data are presented as a
mean ± SEM. n = 11–13 per group.
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Figure 6. Representative western blot (A) and quantified band density (relative protein expression in arbitrary units) for
phosphorylated GSK3β (pGSK3β) (B), total GSK3β (tGSK3β) (C), and the ratio of phosphorylated protein to total protein
(D) in hearts of female offspring. Results were normalized to loading controls (samples repeated on each gel) to account for
differences between gels, and Ponceau S staining was used as a marker of equal protein loading. Data are presented as a
mean ± SEM. *, denotes significantly different between vehicle and insulin injections, and p ≤ 0.05. n = 11–19 per group.
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Figure 7. Antioxidant and oxidative stress status. Enzyme activity of the antioxidants (A) catalase, (B) superoxide dismutase
(SOD), and (C) glutathione peroxidase (GPx); and (D) total reactive oxygen species expressed as mmol/mg of DCF; and
(E) NADPH oxidase activity in male offspring heart tissues. Data are presented as a mean ± SEM. a—is significantly
different than control, and b—is significantly different than 50 mGy, p ≤ 0.05. n = 11–13 except (E), n = 7–13 per group.
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Figure 8. Antioxidant and oxidative stress status. Enzyme activity of the antioxidants (A) catalase, (B) superoxide dismutase
(SOD), and (C) glutathione peroxidase (GPx); and (D) total reactive oxygen species expressed as mmol/mg of DCF; and
(E) NADPH oxidase activity in female offspring heart tissues. Data are presented as a mean ± SEM. a—is significantly
different than control, b—is significantly different than 50 mGy, and c—is significantly different from 300 mGy, p ≤ 0.05.
n = 11–19 except (E) where n = 8–9 per group.

Table 2. Cardiac reduced (GSH) and oxidized glutathione (GSSG) levels, and redox ratio (GSH/GSSG) in male and female
offspring after being exposed to 50 mGy, 300 mGy, or 1000 mGy gamma radiation in utero.

Sham 50 mGy 300 mGy 1000 mGy

Male GSH (µM) 106.2 ± 4.15 114.3 ± 18.72 100.2 ± 9.62 105.3 ± 6.94
Male GSSG (µM) 60.97 ± 4.82 66.75 ± 7.42 55.88 ± 4.88 60.72 ± 3.76
Male GSH/GSSG 1.84 ± 0.15 1.96 ± 0.33 1.955 ± 0.26 1.80 ± 0.15
Female GSH (µM) 96.76 ± 5.57 98.32 ± 5.32 83.4 ± 4.86 86.68 ± 6.94
Female GSSG (µM) 35.13 ± 3.034 42.24 ± 3.79 55.57 ± 5.67 a 86.82 ± 5.62 abc

Female GSH/GSSG 2.95 ± 0.30 2.56 ± 0.37 1.779 ± 0.21 ab 1.05 ± 0.10 abc

a—is significantly different from Sham, b—is significantly different from 50 mGy, and c—is significantly different from 300 mGy, p ≤ 0.05.
n = 11–19 per group. Data are presented as a mean ± SEM.

3.4. Circulating Cytokines

Plasma cytokines were assessed to determine if prenatal exposure to IR was able to
induce an immune response in adult offspring. IL-10 was significantly increased in the
1000 mGy male group when compared to Sham and 50 mGy groups (Figure 11A). TNFα
and IL-12p70 were significantly lower in the male 300 mGy and 1000 mGy groups when
compared to Sham and 50 mGy (Figure 11A). In both male and female offspring, IL-1β and
IL-6 were undetectable. TNFα was significantly increased in the 300 mGy group compared
to all other groups and in the 1000 mGy compared to 50 mGy group (Figure 11B). IL-12p70
was significantly increased in the 300 mGy group compared to Sham and 50 mGy groups
while was undetectable in the 1000 mGy group (Figure 11B).
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Figure 9. Representative western blot (A–C) and quantified band density (D–F) (relative protein expression in arbitrary
units) for (A) catalase, (B) manganese superoxide dismutase (MnSOD), and (C) glutathione peroxidase 1 (GPx1) in male
offspring cardiac tissues. Results were normalized to loading controls (samples repeated on each gel) to account for
differences between gels, and Ponceau S staining was used as a marker of equal protein loading. Data are presented as a
mean ± SEM. n = 11–13 per group.
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Figure 10. Representative western blot (A–C) and quantified band density (D–F) (relative protein expression in arbitrary
units) for (A) catalase, (B) manganese superoxide dismutase (MnSOD), and (C) glutathione peroxidase 1 (GPx1) in female
offspring cardiac tissues. Results were normalized to loading controls (samples repeated on each gel) to account for
differences between gels, and Ponceau S staining was used as a marker of equal protein loading. Data are presented as a
mean ± SEM. n = 11–19 per group.
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concentrations of cytokines. Data are presented as a mean ± SEM. a—is significantly different from Sham, b—is signifi-
cantly different from 50 mGy, and c—is significantly different from 300 mGy, p ≤ 0.05. n = 11–19 per group. 
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Figure 11. Plasma cytokine concentration in offspring after being exposed to IR in utero. (A) male and (B) female plasma
concentrations of cytokines. Data are presented as a mean± SEM. a—is significantly different from Sham, b—is significantly
different from 50 mGy, and c—is significantly different from 300 mGy, p ≤ 0.05. n = 11–19 per group.
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4. Discussion and Conclusions

An adverse fetal environment can result in programming that causes developmental
changes that can persist through to adulthood. IR exposure during fetal development is
known to cause malformations and growth restriction when exposed during organogen-
esis [53]. IR exposure in human fetuses during late gestation has been shown to cause
growth restriction, reduced brain function, and miscarriage at high doses, but exposure
below 50 mGy shows no adverse health effects to the fetus [17,53–55]. Moreover IR pro-
duces oxidative stress, suggesting that there is a potential role for IR in developmental
programming due to an overlapping mechanism of action [16].

In our study, cardiac glucose uptake, glycogen storage, insulin signaling proteins,
and oxidative stress markers were assessed in 16–20 weeks-old male and female offspring
after receiving low to non-lethal doses of IR in utero during late gestation. The results of
our study demonstrate that non-lethal radiation (300–1000 mGy) affected glucose uptake,
storage, and antioxidant potential in female offspring but did not have the same effect at
low doses (50 mGy) or in male offspring. The significant differences between males and
females seen in this study are not entirely unexpected based on previous literature that
reported sex differences in the fetal programming of cardiovascular and metabolic function
in both animal and human studies [56–58]. Although the underlying mechanism of the
sex differences remains unknown, it can be speculated that differences in sex hormone
concentrations between males and females may play a role. In this regard, a modulatory
role of testosterone on glucose metabolism has also been reported [59].

Maternal stress during pregnancy has been shown to cause low birth weight, which is
associated with cardiovascular disease and type-2 diabetes [60]. Radiation therapy has also
been associated with cardiovascular disease as a long term side effect [61,62]. The long-term
effects of fetal LDR exposure on the cardiovascular system have yet to be fully understood.
In this study, the 1000 mGy dose IR exposure resulted in lower overall adult body weight. In
males, the 1000 mGy group had reduced heart weight, but this was accompanied by lower
body weight. We have previously reported a reduction in body weight in the 1000 mGy
group [44]. Previous studies have reported a correlation between low birth weight or
restricted growth in offspring and an increased incidence of cardiovascular disease in
adulthood. A low birth weight at higher doses is a well-documented phenomenon of fetal
programming. We did not measure birth weights of the offsprings and maternal body
weights prior to weaning to reduce handling stress and prevent cannibalism. Previously,
decreased heart weight has been observed in a rat model of fetal programming where there
were no differences in the heart weight to body weight ratio [63].

Fasted glucose uptake was not altered by IR in male offspring but was increased in
female offspring 1000 mGy group. We have also previously reported increased 18F-FDG
uptake in brown adipose tissue in female offspring of irradiated dams [42]. 1000 mGy
female offspring also demonstrated an increase in glycogen stores, whereas males showed
a significant decrease in the 50 and 300 mGy groups. Both glucose uptake and glycogen
content remained unchanged in the 1000 mGy male offspring compared to the Sham group.
Future Investigation into the role of regulatory enzymes involved in gluconeogenesis
may provide some insight regarding these differences. Altered glucose uptake and glyco-
gen stores have been associated with cardiac hypertrophy resulting in impaired cardiac
function [37]. Depletion of glycogen stores has also been associated with impaired contrac-
tility and relaxation [36]. Previous studies have shown sex differences in glucose uptake
and utilization where women were more insulin-sensitive [64] and had reduced glucose
utilization than males [65]. Foryst-Ludwig et al., (2011) demonstrated reduced glucose
uptake in female mice, while glucose uptake did not change in male mice after exercise [66].
Moreover, the difference in cardiac glucose uptake between the two sexes was not accom-
panied by a change in glycogen content. Furthermore, some studies have reported that
females are more radiosensitive than males [67,68], which may explain the difference in
glucose metabolism between male and female offsprings in our study. Pogribny et al. have
also demonstrated that the effects of radiations are sex-, dose-, and tissue-dependent [69].
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Insulin regulates glucose uptake by binding to the insulin receptors, eventually resulting
in the phosphorylation of Akt [48,70]. In this study, data from male offspring showed
that insulin had an effect on Sham mice, but the mechanism behind unchanged levels in
radiation group remains to be investigated in the future. This study also demonstrated
that the increase in glucose uptake and glycogen stores is not related to the Akt signaling
pathway in female offspring.

IR causes the formation of ROS, and in excess can cause DNA, cell membrane, and
organelle damage [26]. Oxidative stress is also associated with metabolic dysfunction,
and studies have shown that oxidants can result in impaired insulin mediated glucose
uptake [52,71]. Low to non-lethal radiation exposure during late gestation demonstrated
an increase in the GPx activity in the 300 mGy group compared to Sham and 50 mGy
groups as well as a decrease in total ROS level in the 300 mGy and 1000 mGy groups in
male offspring cardiac tissues. However, female offspring cardiac tissues demonstrated
evidence of redox imbalance. Increase in the SOD activity and decrease in the redox ratio
suggest that the antioxidant defense system is upregulated in female 1000 mGy group. The
altered redox ratio could be related to the decrease in GPx activity. While SOD is the first
line of defense against ROS mediated damage, GPx is an important antioxidant enzyme
in the heart and in the presence of GSH, GPx catalyzes the reduction of peroxides [72].
In the 1000 mGy group, the concentration of GSSG is nearly doubled compared to Sham,
suggesting increased ROS scavenging by glutathione in that group compared to the Sham
mice. This suggests that cardiac redox homeostasis is sex-specific and may depend on the
degree of oxidative stress. Some studies also suggest that there may be delayed effects
from IR in the heart [73]. In this regard, the antioxidant response demonstrated here may
eventually be exhausted, and oxidative stress could still occur resulting in disease much
later in life [74]. Increased ROS and the depletion of endogenous antioxidant defense
system have been reported in heart diseases, including hypertension and diabetes [74,75].
Taken together, the changes in antioxidants status and glucose metabolism at 16–20 weeks
of age may indicate the beginning of cardiac dysfunction [37,76].

Low to non-lethal radiation exposure during late gestation did not elicit a robust
immune response, although some of the cytokines were affected in the 300 and 1000 mGy
groups. All cytokines were just above or below detection limits of the commercially
available kits used. Cytokine concentrations in healthy mice are normally very low or
undetectable by ELISA kits that are currently available, unless the immune system has
been stimulated [77,78]. Recent studies focused on studying low-dose radiation effects
found there was no change in lymphocyte populations and only slight changes in secreted
cytokines as well [79,80]. Therefore, our model of IR-induced fetal programming did not
increase cytokines present in adult offspring plasma to a level that would induce adverse
effects. In addition to assessing plasma cytokines, it would be valuable to determine if
there was immune cell infiltration in the heart tissue in future studies to determine the
exact source of the cytokines.

To our knowledge, this is the first-time cardiac glucose metabolism and oxidative
stress have been investigated in the offspring of dams exposed to low to non-lethal IR
during late gestation, and we have demonstrated that there are sex differences. This study
further adds to the evidence that low-dose radiation (50 mGy) does not have any harmful
effects on the offspring when receiving radiation in utero during late gestation, and that
1000 mGy may be a threshold dose for sex-specific alterations in cardiac glucose metabolism
and oxidative stress in fetal programming. Therefore, better characterization of the effects
of prenatal radiation exposure will aid in our understanding of the risks associated with
radiation exposure during pregnancy.
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