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Abstract

Fusarium head blight (FHB) is an economically important disease of wheat that results in

yield loss and grain contaminated with fungal mycotoxins that are harmful to human and ani-

mal health. Herein we characterised two wheat genes involved in the FHB response in

wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase

(TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies dem-

onstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to

FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in

FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silenc-

ing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB

disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM

significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT

genes also contribute to grain development in wheat and adds to the increasing body of evi-

dence linking FHB resistance genes to grain development. Hence, Fusarium responsive

genes TaSAM and TaMPT warrant further study to determine their potential to enhance

both disease resistance and grain development in wheat.

Introduction

Fusarium head blight (FHB) is an economically important disease of wheat caused by Fusarium
fungi. It reduces yield and contaminates grain with mycotoxins harmful to human and animal

health, most commonly deoxynivalenol (DON) [1]. DON is also a virulence factor, facilitating

the spread of Fusarium within wheat heads [2,3]. Many components of FHB resistance have

been described, the most common being resistance to initial infection (Type I resistance) and

resistance to disease spread (Type II resistance) and studies have shown that resistance to the
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deleterious effects of DON is a component of type II resistance in some wheat genotypes

(reviewed in Gunupuru et al. [3]). Several studies have shown that specific processes and path-

ways are activated in wheat in response to DON [4–7]. UDP-glycosyltransferases (UGTs) gene

involved in DON detoxification pathway have been shown to convert DON to less toxic DON-

3-O-glucoside and overexpression of wheat UGT (TaUGT3) and barley UGT (HvUGT13248)
increased DON tolerance in transgenic plants [4,8]. Genes involved in the classic detoxification

pathway (drug transporters and cytochrome P450) have been shown to contribute to DON

resistance in wheat, as well as the evolutionary divergent orphan gene TaFROG and the wheat

sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α) [9–

12]. The diversity of pathways activated in response to DON in wheat [13] and barley [14] reaf-

firm the important role of this toxin in facilitating disease development.

Wheat genes encoding a mitochondrial phosphate transporter (TaMPT) and S-adenosyl

methionine (SAM)-dependent methyltransferase (TaSAM) were identified as being responsive

to DON based on a microarray analysis and were differentially expressed in cv. CM82036 x cv.

Remus double haploid lines segregating for the FHB resistance QTL Fhb1 [13]. But the role of

these genes and their associated pathways in the wheat response to DON or to FHB is

unknown. MPTs belong to the phosphate transporter 3 (PHT3) gene family. They are located

in the inner membrane of mitochondria and are responsible for transporting inorganic phos-

phate (Pi) into the mitochondrial matrix, wherein the Pi is utilised for the oxidative phosphor-

ylation of ADP to ATP [15–17]. MPT genes have been identified and characterised in many

plant species, but studies on wheat MPT genes are very limited [18]. There is one report of the

down-regulation of a MPT in wheat heads (resistant to FHB) in response to F. graminearum
[19]. Other pathosystems also provide evidence for the involvement of MPTs in wheat disease

responses. Yu et al. [20] identified two wheat MPT genes responsive to wheat stripe rust (Pucci-
nia striiformis). Using microarray analysis, Xin et al. [21] showed that a MPT gene was differ-

entially expressed in wheat in response to the causal agent of powdery mildew disease,

Blumeria graminis f. sp. tritici, with higher expression in a resistant wheat line than in a suscep-

tible line. Recently, genome-wide association studies (GWAS) and fine-mapping studies iden-

tified a MPT gene that co-segregated with the Pch1 locus that confers resistance to eyespot

disease caused by Pseudocercosporella herpotrichoides [22].

SAM-dependent methyltransferases enzymes catalyse the transfer of methyl groups from

SAM to a large variety of acceptor substrates, ranging from small metabolites to bio-macro-

molecules [23]. These enzymes contain a cofactor (SAM) binding site and a substrate binding

site and share little sequence identity [24]. Several studies have reported the responsive of

wheat methyltransferase genes to F. graminearum. Gunnaiah et al. [25] demonstrated that the

phenylpropanoid pathway genes encoding caffeic acid-O-methyltransferase, caffeoyl-CoA-O-

methyltransferase, and flavonoid-O-methyltransferase were up-regulated in resistant wheat

near-isogenic lines containing the FHB resistance QTL Fhb1. Schweiger et al. [26] fine-

mapped and sequenced a 1Mb contig containing the Fhb1 region from the FHB resistant cv.

CM82036 and identified 28 candidate genes including a methyltransferase domain containing

protein. However, the methyltransferase gene is unlikely an exclusive determinant of Fhb1
resistance, since a deletion mutation in a histidine-rich calcium binding protein has been

shown to confer Fhb1 resistance [27]. Cho et al. [28] showed that a methyltransferase gene was

differentially expressed in both the FHB resistant cultivar (cv.) Dahongmil and the susceptible

cv. Urimil after inoculation with F. graminearum. Long et al. [29] found that a SAM-methyl-

transferase domain-encoding gene was one of eight candidates whose expression correlated

with the FHB resistance QTL on chromosome 2D. Recently, AlTaweel et al. [30] highlighted a

methyltransferase gene that was up-regulated in the presence of F. graminearum infection in

FHB resistance cv. Sumai 3 and susceptible cv. Caledonia.
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Herein, we characterised the mycotoxin-responsive TaSAM and the TaMPT genes first

identified by Brennan et al. [13]. Homoeologous genes were identified on all wheat subge-

nomes and gene expression studies were conducted to determine their responsiveness to DON

and DON-producing F. graminearum in the FHB resistant cv. CM82036 and susceptible

wheat cv. Remus. Using VIGS, we determined the contribution of both TaSAM and the

TaMPT genes to FHB disease resistance in wheat. Furthermore, the VIGS experiment assessed

the contribution of TaSAM and TaMPT genes to grain development in wheat.

Materials and methods

Plant material, growth condition and fungal treatments

Triticum aestivum (wheat) cultivars (cvs.) CM82036 and Remus (obtained from Hermann

Buerstmayr, BOKU), Chinese Spring and its’ derivative nullisomic-tetrasomic wheat lines

(obtained from Germplasm Resources unit, JIC) were used in this study. ‘CM82036’ (derived

from a ‘Sumai 3’/’Thornbird-S’ cross) is resistant to FHB and DON, and carries alleles for FHB

resistance at two QTL, Fhb1 (syn. Qfhs.ndsu-3BS) and syn Qfhs.ifa-5A. ‘Remus’ (derived from

Sappo/Mex//Famos) is a German spring wheat cultivar and is susceptible to FHB [31,32].

Wheat seeds were germinated in darkness for 72 h at 24˚C in 90 mm petri dishes containing

moist Whatman No. 1 filter paper (Whatman, UK) and germinated seedlings were transferred

to 3 litre pots containing John Innes compost No. 2 (Westland Horticulture, Dungannon,

UK). Wheat studies were carried under contained glasshouse conditions with a day/night tem-

perature of 25/18 ˚C and a light/dark regime of 16/8 h. The DON-producing Fusarium grami-
nearum wild type strain GZ3639 [33] was cultured on potato dextrose agar (PDA) (Difco, UK)

plates and incubated at 25˚C for 5 days. Fungal spores were produced in mung bean broth

[34], harvested, washed and adjusted to 106 conidia ml-1 in 0.02% Tween-20, as previously

described [35].

Adult plant DON and FHB time course experiment

An adult plant experiment was conducted to analyse the temporal response of TaMPT and

TaSAM genes homoeologs to both DON and FHB disease in the wheat cvs. CM82036 and

Remus. At mid-anthesis (growth stage (GS) 65) [36], two central spikelets of heads from sec-

ondary tillers (and of similar size/number of spikelets) were inoculated with 20μl (40μl per

head) of either deoxynivalenol (DON) (Santa Cruz, Texas, USA) (5mg ml-1 in 0.02% Tween-

20) or 106 conidia of F. graminearum strain GZ3639 [37] or 0.02% Tween-20 (mock treat-

ment). After treatment, the heads were covered with a plastic bag for 48 hours to maintain

high humidity. Treated spikelets were harvested at either 0, 12, 24, 48, 72, or 96 hours post-

inoculation (hpi), flash-frozen in liquid nitrogen (N2) and stored at -70˚C prior to RNA extrac-

tion. The experiment comprised three replicate trials (each conducted independently at differ-

ent times), each including eight heads from four individual plants (two heads per plant) per

treatment combination (therefore, across the independent trials, there was a total of 12 plants/

24 heads per treatment combination). See S1 Table for experimental design. For gene expres-

sion studies, RNA was extracted from one pooled sample per treatment per trial (representing

a pool of 8 heads from 4 individual plants per treatment per trial).

DNA, RNA extraction and cDNA synthesis

DNA was extracted from wheat leaves using the HP plant DNA mini kit (OMEGA) following

the manufacturer’s instructions. RNA was extracted from wheat heads as previously described

[38] and was DNase-treated using the TURBO DNA-freeTM kit (Ambion Inc., USA). The
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quality, yield and integrity of the RNA was analysed using both the ND-1000 spectrophotome-

ter (NanoDrop, Thermo Fisher Scientific, USA) and electrophoresis. Reverse transcription of

total RNA and the quality check of synthesized cDNA for DNA contamination was conducted

as previously described [13].

Cloning of TaSAM-D and TaMPT-A genes and promoters

Homoeolog-specific primers for the TaSAM from chromosome 2D (hereafter referred to as

TaSAM-D) and TaMPT from chromosome 5A (hereafter referred to as TaMPT-A) genes and

promoters were designed based on the cv. Chinese spring wheat reference sequence (IWGSC

RefSeq V1.1) using genome-specific primers (GSPs), a web-based platform for designing

genome-specific primers in polyploids [39]. For TaMPT-A promoter and gene cloning, prim-

ers were designed to amplify around 1500 bp upstream of the start codon and another set to

amplify the coding region of the gene homoeologs (S2 Table). TaSAM-D primers was designed

to amplify both the promoter and gene together as one product (S2 Table). Due to high

sequence similarities between the 2A and 2B homoeologs of TaSAM gene it was not possible

to design homoeolog-specific primers for these two genes. Homoeolog-specific primers for

TaSAM-D gene and promoter were used to amplify targets from DNA of wheat cvs. CM82036

and Remus. PCR reactions contained 100 ng genomic DNA, 1.25 U of Takara Ex Taq™, 1X Ex

Taq buffer (Mg2+ plus) and 2.5 mM of each dNTP in 50 μl reaction. Reaction conditions were

as follows: 94˚C for 5 min, 35 cycles of 94˚C for 30 s, 55˚C for 30 s, 68˚C for 2 minutes and a

final extension step at 72˚C for 10 min and conducted in a ProFlex PCR System (Applied Bio-

systems by Life Technologies, USA). The amplified PCR products were cloned into the pCR1-

XL-TOPO1 vector using the TOPO1 XL cloning kit (Invitrogen, UK) and sequenced using

M13 forward and reverse primers. Results were validated for at least two independent PCR

amplicons per target sequence. Sequences were aligned to IWGSC wheat genome database

(https://wheat-urgi.versailles.inra.fr/Seq-Repository/BLAST) via BLASTn analysis.

Sequence and phylogenetic analysis

TaMPT-A and TaSAM-D genes cloned from cvs. CM82036 and Remus were used to identify

their homoeologs in wheat cv. Chinese spring via BLASTn analysis against Ensembl Genomes

(http://plants.ensembl.org) and the wheat genome (IWGSC Refseq V1.1). Multiple sequence

alignments of TaMPT-A and TaSAM-D genes and their homoeologs was constructed using

MultAlin (http://multalin.toulouse.inra.fr/). TaMPT-A and TaSAM-D sequences from cvs.

CM82036 and Remus were used to extract homologous sequences from other Poaceae via

BLASTp against the EnsemblPlants database (http://plants.ensembl.org) [40]. Phylogenetic

relationships of TaMPT and TaSAM homologs were deduced using the Neighbour-joining

method with bootstrapping (1000 replicates) using the MEGA 7.0 program [41]. The sub-cel-

lular localisation of the TaSAM and TaMPT genes was predicted using Multiloc2 [42]. For

domain analysis, the amino acid sequence of TaMPT and TaSAM were used for BLASTp

against the EnsemblPlants database and were further scanned using the TMHMMv 2.0 and

the Interpro protein database [43].

Virus-induced gene silencing (VIGS) constructs

The barley stripe mosaic virus (BSMV)-derived VIGS vectors used in this study consisted of

the wild type BSMV ND18 α, β and γ tripartite genome [44,45]. For transient gene silencing,

two independent, non-overlapping fragments were amplified for each gene: 194 and 177 bp

for TaSAM and 171 and 145 bp for TaMPT (see S2 Table for PCR primers). The fragments

were amplified from cv. CM82036 cDNA. Gene silencing fragments were selected to target all
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the homoeologs of either TaMPT (chromosome 5A, 5B and 5D genes) or TaSAM (chromo-

some 2A, 2B and 2D genes) (S3 Fig). The homology and gene silencing specificity of fragments

for TaMPT homoeologs and TaSAM homoeologs was assessed via BLASTn analysis against

the wheat genome and qRT-PCR using homoeolog-specific primers (S8 Table). For cloning

the VIGS fragments, PCR reactions were performed with 30ng plasmid DNA, 1μM each of for-

ward and reverse fragment-specific primers (S2 Table) in a 10μl reaction containing 0.5U Taq

DNA polymerase and 1x PCR buffer (Invitrogen, UK), 1.5mM MgCl2, and 125μM of each

dNTP. PCR reactions were conducted in a ProFlex PCR System (Applied Biosystems by Life

Technologies, USA) and the PCR program consisted of an initial denaturation step at 94˚C for

2 min, 35 cycles of 94˚C for 30 s and 60˚C for 30 s and a final extension step at 72˚C for 5 min.

The amplified silencing fragments were cloned into the pGEM-T vector (pGEM-T Easy clon-

ing kit; Promega, UK). The pGEM-T vectors carrying the silencing fragments were digested

with NotI and PacI sites (New England Biolabs, MA, USA), thereby generating NotI and PacI
ends in DNA fragment. Inserts was purified by gel extraction and then the fragment was subse-

quently ligated to NotI- digested γ RNA vector pSL038-1 [45]. Plasmids containing the silenc-

ing fragments were sequenced by Macrogen (korea) using the vector-specific pGamma-F/R

primers (S2 Table). A BSMV γ RNA vector carrying 185 bp fragment of barley phytoene desa-

turase (PDS) gene served as positive control [45]. The plasmids BSMV α and γ genome as well

as γ RNA constructs with silencing fragments for PDS, TaSAM and TaMPT were linearized

with Mlu1 restriction enzyme whereas BSMV β was linearized using the Spe1 enzyme. Linear-

ized plasmids were converted into capped in vitro transcripts using mMessage Machine™ T7

in-vitro transcription kit (Ambion, Inc., Austin, TX, USA), following the manufacturer’s pro-

tocol. Once cloned into BSMV, these constructs were respectively named BSMV:SAM1 and

BSMV:SAM2 for TaSAM and BSMV:MPT1 and BSMV:MPT2 for TaMPT.

Virus-induced gene silencing of TaMPT and TaSAM genes

FHB resistant wheat cv. CM82036 plants were used for the VIGS experiment. The experiment

consisted of three randomly designed independent trials (conducted at different times); each

trial included 20 heads per treatment combination (10 plants, two heads per plant) (i.e. across

the three independent trials there was a total of 30 plants/60 heads per treatment combina-

tion). See S1 Table for experimental design. Plants were grown as described above. At growth

stage 47 [36] just before the emergence of the first wheat head, the flag leaves of secondary til-

lers (of similar size) were rub-inoculated with VIGS buffer FES or buffer containing a 1:1:1

mixture of the in vitro transcripts of BSMV α, β and γ RNA (BSMV:00) or derivatives γ RNA

that contained plant fragments (BSMV:PDS, BSMV:SAM1, BSMV:SAM2, BSMV:MPT1, or

BSMV:MPT2) [45]. At mid-anthesis (growth stage 65) [36], the two central spikelets of heads

on VIGS-treated tillers were treated with either 106 conidia of F. graminearum strain GZ3639

or 0.02% Tween-20 (mock treatment). Treated heads were covered with plastic bags for 2 days

to maintain high humidity. The third spikelet above the treated spikelet was harvested 24h

post-treatment, flash frozen in liquid N2 and stored at -70˚C prior to RNA extraction (for gene

expression studies). RNA was extracted from individual spikelets and equivalent amounts of

RNA for the four treated heads per pot were bulked to give a total of five bulk RNA samples

per treatment combination per trial (i.e. a total of 15 bulked RNA samples per treatment com-

bination across all three trials). For all treated heads, the number of diseased (discoloured and

necrotic) spikelets (including treated spikelets) was assessed at 14 and 21 days post-inoculation

(dpi). At growth stage (GS 90), the treated heads were harvested and the average dry grain

weight and number of seeds per head was determined.
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Quantitative Reverse Transcriptase PCR analysis

Quantitative real-time PCR (qRT-PCR) analyses were conducted using the Stratagene

Mx3000TM Real Time PCR (Stratagene, Germany). Homoeolog-specific PCR primers used in

this study (S2 Table) were designed using genome-specific primer (GSP) [46]. The specificity

of the primers targeting the TaMPT and TaSAM homoeologs was checked via PCR of DNA

extracts from nullisomic-tetrasomic lines of cv. Chinese Spring (obtained from Germplasm

Resources Unit, JIC, Norwich http://www.jic.ac.uk/germplasm/). An off-target TaMPT gene

variant located on chromosome 2 was also analysed to confirm VIGS specificity (see S2 Table

for primers; this gene was chosen because it was next closest homolog and matches 20bp

sequence identity with construct BSMV:MPT2). The efficiency of the qRT-PCR primers was

checked via qPCR of a dilution series of samples. Each reaction contained 1.25 μl of a 1:5 (v/v)

dilution of cDNA (1000–1.6 ng/μl), 0.2 μM of each primer and 1X SYBR1 Premix Ex Taq™
(Tli RNase H plus, RR420A, Takara) in a total reaction volume of 12.5 μl. PCR conditions

were: 1 cycle of 1 min at 95˚C; 40 cycles of 5 s at 95˚C and 20 s at 60˚C; and a final cycle of 1

min at 95˚C, 30 s at 55˚C and 30 s at 95˚C for the dissociation curve. The threshold cycle (CT)

values obtained were used to calculate the standard curve. The specificity of PCR amplification

was confirmed by the presence of a single peak in melting temperature curve analysis of ampli-

fied fragments. Housekeeping genes used for wheat gene expression studies were α-tubulin
(GenBank No. U76558.1) [47], Yellow-leaf specific gene 8 (YLS8, TraesCS1D02G332500) and

protein phosphatase 2A subunit A3 (TaPP2AA3, TraesCS5B02G165200). These genes were

verified not to be differentially expressed in the experiments or in publicly available RNA-seq

studies for FHB experiments (results not shown). CT values obtained by real-time RT-PCR

were used to calculate the relative gene expression using the formula 2^-(CT target gene − CT house-

keeping gene) as described previously [48]. For validation of virus-induced gene silencing, the

same qRT-PCR conditions and homoeolog-specific primers were used, (the primers did not

overlap with the VIGS construct sequences).

Statistical analysis

All data were analysed using MINITAB 16 (Inc, 2010) (Minitab Ltd., Coventry, UK). Non-nor-

mally distributed data sets were transformed to fit a normal distribution using the Johnson

transformation (Ryan & Joiner, 1976) and the statistical significance of difference was analysed

using one-way analysis of variance incorporating Tukey’s test (P = 0.05). The data which could

not be transformed using the Johnson transformation (Ryan & Joiner, 1976) was analysed

using the non-parametric Mann-Whitney test in MINITAB.

Results

Analysis of TaMPT and TaSAM sequences and phylogeny

Previous studies within our laboratory identified novel TaMPT and TaSAM genes that were

responsive to the toxigenic Fusarium mycotoxin DON (Walter et al., 2008). Based on homol-

ogy, we deduced that the genes of interest were on chromosomes 5A and 2D, respectively,

with homoeologs on the other wheat sub-genomes. The TaMPT gene on wheat chromosome

5A and TaSAM on 2D were cloned and sequenced from wheat cvs. CM82036 and Remus;

sequences were then compared with homoeologs from the sequenced genome of cv. Chinese

spring (IWGSC Ref seq v1.1). The TaMPT-A DNA sequence from cvs. CM82036 and Remus

showed 100% identity with a sequence from cv. Chinese spring (CS) (S3 and S4 Tables). Two

wheat homoeologs of TaMPT-A were identified by BLASTn analysis and are located on cv.

Chinese spring chromosomes 5B and 5D, and are hereafter respectively referred to as
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TaMPT-B and TaMPT-D. Both homoeologs shared a high homology (> 98% nucleotide and

amino acid identity) with the TaMPT-A (98.1 and 98.2% respectively; S3 and S4 Tables). In sil-
ico analysis of protein sequences predicted that all TaMPT homoeologs contain the mitochon-

drial carrier domain (IPR018108, S1 Fig and S5 Table). Multiloc2 predicted that TaMPT
homoeologs have a high probability of localising to the mitochondria (S5 Table). The DNA

sequence of TaSAM-D cloned from cvs. CM82036 and Remus showed 100% identity with a

sequence on chromosome 2D of wheat cv. Chinese spring (S6 Table). Two homoeologs of

TaSAM-D was located on cv. Chinese spring chromosomes 2A and 2B, and are hereafter

referred to as TaSAM-A and TaSAM-B. Both share> 96% nucleotide and amino acid homol-

ogy with TaSAM-D (S6 and S7 Tables). In silico sequence analysis predicted that all TaSAM
homoeologs contain S-adenosyl-L-methionine-dependent methyltransferase and methyltrans-

ferase type 11 domains (IPR013216, S2 Fig and S8 Table). Multiloc2 predicted that TaSAM
homoeologs have a high probability of localising to the cytoplasmic region (S8 Table). Phylo-

genetic analysis showed that wheat TaMPT-A and TaSAM-D proteins represent conserved

gene families and these variants cluster with proteins from Poaceae plants (Fig 1A and 1B).

TaMPT and TaSAM homoeologs are up-regulated in wheat heads in

response to both DON and FHB disease

Gene expression studies analysed the response of TaMPT and TaSAM gene homoeologs to

both DON and FHB in two wheat cultivars: one that is FHB and DON-resistant (cv

CM82036), and one that is susceptible to both the toxin and the pathogen (cv. Remus). Tran-

scripts of all homoeologous genes of TaMPT (5A, 5B, 5D) and TaSAM (2A, 2B, and 2D) were

detected in heads of both cultivars.

At the earlier time points, wheat TaMPT genes were generally activated by both DON and

FHB in both genotypes, but at later time points, they were activated to a greater extent in the

susceptible cv. Remus (Fig 2). Also of note is that all homoeologs were not responsive to FHB

Fig 1. Phylogenetic analysis of TaMPT and TaSAM homologs across the plant kingdom. The deduced amino acid sequences of wheat cv. Chinese spring A)

TaMPT genes, the 5A homoeologs from cvs. CM82036 and Remus, and the closest Poaceae MPT sequences and B) TaSAM genes, the 2D homoeologs from cvs.

CM82036 and Remus, and the closest Poaceae SAM sequences obtained from Ensembl Plants were used for phylogenetic analysis. Phylogenetic analysis was

constructed using Molecular Evolutionary Genetics Analysis Version 7 software (MEGA7) [41] as described previously [9]. Poisson correction method was used

for computing the evolutionary distances and are in the units of the number of amino acid substitutions per site [49]. The consensus tree was inferred from 1000

bootstrap replicates. The branch lengths are in the same units as evolutionary distances used to infer the phylogenetic tree. Wheat and other Pooideae proteins are

within the red box.

https://doi.org/10.1371/journal.pone.0258726.g001
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in cv. CM82036 until 24h, unlike cv. Remus where they were FHB responsive at 12 hpi. The

basal expression of 5A, 5B and 5D homoeologs of TaMPT in control (mock) treated tissue was

near the detectable limit in both cultivars. In cv. CM82036, DON induction of all the TaMPT
homoeologs (5A, 5B, and 5D) peaked at 12-24hpi and diminished thereafter, whereas the

DON induction of the three variants of the gene in cv. Remus was more constant and generally

increased over time, up to 96 hpi (Fig 2A–2C). Peak expression in DON-treated samples was

2-16-fold higher in cv. Remus (at 96hpi) than in cv. CM82036 (at 12 hpi). In terms of their

response to F. graminearum expression of all three variants peaked in cv. CM82036 by 48hpi,

with expression slightly, but not significantly (P> 0.05), declining thereafter (Fig 2D–2F). In

cv. Remus, the expression in response to the pathogen of the 5A variant peaked at 72 hpi

whereas that of the 5B and 5D variants peaked at 96 hpi. Peak expression in pathogen-treated

tissue was 3–7.5-fold higher in FHB-treated cv. Remus (at 96hpi) as compared to CM82036 (at

48hpi). While all TaMPT homoeologs (5A, 5B, and 5D) showed a similar expression pattern in

response to DON and wild type F. graminearum (Fig 2), in both wheat cultivars TaMPT-A was

more responsive than the other variants to both the pathogen and DON treatment. In the

DON-treated samples, at peak expression (12 hpi in cv. CM82036 and 96 hpi in cv. Remus),

TaMPT-A transcript levels were 1.5-6-fold higher than those of either 5B or 5D variants (Fig

2A–2C). Similarly, in F. graminearum-treated samples, peak expression of the 5A variant in

cvs. CM82036 (48 hpi) and Remus (96 hpi) was 2-9-fold higher than that of the other two vari-

ants (Fig 2D–2F).

TaSAM homoeologs were activated earlier in the resistant cv. CM82036 in response to

DON, as compared to the susceptible cv. Remus, but the opposite was true for Fusarium
induction of gene expression. All homoeologs of TaSAM (2A, 2B, and 2D) were induced as an

early response to DON in both genotypes, peaking at 12-24h in both cultivars, decreasing

Fig 2. Effect of DON and F. graminearum on the expression of TaMPT homoeologs in spikes of the FHB resistant cv. CM82036 and the susceptible cv. Remus.

(A) TaMPT-A expression in response to DON. (B) TaMPT-B expression in response to DON. (C) TaMPT-D expression in response to DON. (D) TaMPT-A
expression in response to F. graminearum. (E) TaMPT-B expression in response to F. graminearum. (F) TaMPT-D expression in response to F. graminearum. At mid-

anthesis (growth stage 65) [36] two central spikelets of the heads were treated with either DON, F. graminearum strain GZ3639 (WT) [50] or Tween-20 (mock

treatment). harvested at 0, 12, 24, 48, 72, and 96 hours post inoculation, all as previously described [9]. Gene expression was quantified relative to wheat α-tubulin,

YLS8 and TaPP2AA3 housekeeping genes (average of [2^-(CT target- CT α-tubulin)], [2^-(CT target- CT YLS8)] and [2^-(CT target- CT PP2AA3)] and is presented on a log10 scale on

y-axis. Results represent the mean from three biological replicates (n = 6; each sample representing an RNA sample pooled from 8 heads) and bars indicate SEM.

Columns with the same letter are, statistically, not significantly different (P< 0.05).

https://doi.org/10.1371/journal.pone.0258726.g002
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thereafter in cv. CM82036 but not in cv. Remus (Fig 3A–3C). Peak expression of all three vari-

ants in DON-treated samples was 1.5-2-fold higher in cv. Remus (at 96 hpi) than in cv.

CM82036 (at 12 hpi). Expression of all three variants was induced by the pathogen at 12 hpi in

cv. Remus but not until 24 hpi in cv. CM82036 (Fig 3D–3F). Peak expression in pathogen-

treated samples of cv. Remus (at 12 hpi) was 2-6-fold higher than in cv. CM82036 (at 48hpi).

TaSAM-D was the homoeolog most responsive to the pathogen and DON treatment in both

wheat cultivars. Peak expression of the 2D variant in DON-treated samples of cvs. CM82036

(12 hpi) and Remus (96 hpi) was 3–5.5-fold higher than that of either the 2A or 2B homoeologs

(Fig 3A–3C). Similarly, in the Fusarium-treated samples, peak expression of the 2D variant in

cvs CM82036 (48 hpi) and Remus (12 hpi) was 1.7-5-fold higher than that of either the 2A or

2B variants (Fig 3D–3F).

TaMPT and TaSAM genes contribute to Type II FHB resistance in wheat

A VIGS experiment was conducted to determine if TaMPT and TaSAM genes contribute to

Type II FHB resistance in wheat cv. CM82036 (resistance to disease spread from centrally

inoculated spikelets). Silencing was independently achieved using two constructs for TaMPT
(BSMV:MPT1 and BSMV:MPT2) and for TaSAM (BSMV:SAM1 and BSMV:SAM2). The con-

structs specifically targeted all wheat homoeologs located on chromosome 5A, 5B and 5D for

TaMPT (S3A Fig and S9 Table) and 2A, 2B, and 2D for TaSAM (S3B Fig and S9 Table). For

the chromosome 5D homoeolog (TaMPT-D) the expression was below detectable limits in

both control (BSMV:00) and VIGS treated samples (result not shown). In the absence of gene

silencing (FES buffer treatment or empty virus BSMV:00 treatment), TaMPT-A and TaMPT-B
were significantly upregulated in response to the fungal pathogen F. graminearum (P< 0.05;

Fig 3. Effect of DON and F. graminearum on the expression of TaSAM homoeologs in spikes of the FHB resistant cv. CM82036 and the susceptible cv. Remus.

(A) TaSAM-A expression in response to DON. (B) TaSAM-B expression in response to DON. (C) TaSAM-D expression in response to DON. (D) TaSAM-A
expression in response to F. graminearum. (E) TaSAM-B expression in response to F. graminearum. (F) TaSAM-D expression in response to F. graminearum. At mid-

anthesis (growth stage 65) [36] two central spikelets of the heads were treated with either DON, F. graminearum strain GZ3639 (WT) [50] or Tween-20 (mock

treatment). harvested at 0, 12, 24, 48, 72, and 96 hours post inoculation, all as previously described [9]. Gene expression was quantified relative to wheat α-tubulin,

YLS8, TaPP2AA3 housekeeping genes (average of [2^-(CT target- CT α-tubulin)], [2^-(CT target- CT YLS8)] and [2^-(CT target- CT PP2AA3)] and is presented on a log10 scale on y-

axis. Results represent the mean from three biological replicates (n = 6; each sample representing an RNA sample pooled from 8 heads) and bars indicate SEM.

Columns with the same letter are, statistically, not significantly different (P< 0.05).

https://doi.org/10.1371/journal.pone.0258726.g003
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Fig 4A and 4B). Silencing of TaMPT using either BSMV:MPT1 or BSMV:MPT2 reduced the

Fusarium-induced transcription of both these genes by 44–65%, as compared to the effect of

Fusarium on plants treated with the mock virus (BSMV:00) (P< 0.05; Fig 4). In the absence of

Fusarium, low TaMPT-A expression was observed, and expression was not significantly differ-

ent in gene-silenced plants as compared to non-silenced plants. In the absence of the pathogen,

TaMPT-B expression was significantly lower in gene-silenced plants as compared to non-

silenced plants. A potential off-target TaMPT gene variant located on chromosome 2 shared

20bp sequence identity with construct BSMV:MPT2, but gene-specific qRT-showed that it was

not silenced by either construct, as verified by qRT-PCR (S4 Fig). Plants were visually scored

for FHB disease symptoms on wheat heads at 14 and 21 days post-treatment of Fusarium for

the VIGS experiment. At 14 days post-treatment, plants treated with BSMV:MPT1 and BSMV:

MPT2 were 1.5-fold more diseased than BSMV:00 treated plants (P< 0.05; Fig 4C and 4D).

Fig 4. Virus-induced gene silencing of TaMPT gene in heads of wheat cv. CM82036. Flag leaves of wheat cv. CM82036 were rub-inoculated at growth stage 47 [36]

just before the emergence of the first wheat head with either FES (VIGS buffer), in vitro transcribed RNAs from BSMV:00 (empty vector), BSMV: MPT1 or BSMV:

MPT2 (constructs targeting TaMPT). At mid-anthesis (growth stage 65) [36] two central spikelets of heads were inoculated with either conidia of F. graminearum
strain GZ3639 or Tween-20 (mock treatment), as previously described [9]. After 24h, the third spikelet above the treated spikelets was harvested for gene expression

analysis. The specificity of gene silencing was examined using homoeolog-specific primers for (A) TaMPT-A or (B) TaMPT-B and expression of those genes were

quantified by real-time PCR analysis using wheat α-tubulin, YLS8 and TaPP2AA3 as housekeeping genes (average of [2^-(CT target- CT α-tubulin)], [2^-(CT target- CT YLS8)]

and [2^-(CT target- CT PP2AA3)] [48]. Gene expression data represents from the 60 heads per treatment combination (5 bulk RNA from four heads). Disease symptoms

were scored at 14 days post-treatment. (C) Images displaying typical disease symptoms at 14 days post-Fusarium treatment in gene-silenced as compared to mock

(virus) -treated samples. (D) Quantification of the number of diseased spikelets per head in cv. CM82036 at 14 days post-treatment. Disease results represents mean

data obtained from 60 heads (20 heads per treatment combination in each of three trials). Bars in graphs indicate standard error of the mean (SEM). Treatments with

the same letter are not significantly different (P> 0.05).

https://doi.org/10.1371/journal.pone.0258726.g004
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The average number of infected spikelets in BSMV:00-treated plants was 2.0, while for BSMV:

MPT1 and BSMV:MPT2 treatments it was 3.1 and 2.9, respectively. At 21 days post-treatment

(S5A and S5B Fig), pink and brown discolouration was observed on diseased spikelets of plants

wherein the TaMPT gene was silenced. And at this stage, the average number of infected spike-

lets was 3.0, 5.3 and 4.7 for BSMV:00, BSMV:MPT1 and BSMV:MPT2 treatments, respectively,

being >1.6-fold greater for the TaMPT-silenced plants (P< 0.05; S5A and S5B Fig).

For TaSAM, in the absence of gene silencing (FES buffer treatment or empty virus

BSMV:00 treatment), all three homoeologs were significantly upregulated in response to

Fusarium (P< 0.05; Fig 5A–5C). In the absence of Fusarium treatment, neither BSMV:SAM1

nor BSMV:SAM2 reduced basal TaSAM transcript levels, relative to BSMV:00. But, in the

presence of Fusarium, VIGS reduced the expression of all three homoeologs by 55–89%, as

Fig 5. Virus-induced gene silencing of TaSAM gene in heads of wheat cv. CM82036. Flag leaves of wheat cv. CM82036 were rub-inoculated at growth stage 47

[36] just before the emergence of the first wheat head with either FES (VIGS buffer), in vitro transcribed RNAs from BSMV:00 (empty vector) or BSMV:SAM1 or

BSMV:SAM2 (construct targeting TaSAM). At mid-anthesis (growth stage 65) [36] two central spikelets of heads were inoculated with either conidia of F.

graminearum strain GZ3639 or 0.02% Tween-20 (mock treatment), as previously described [9]. After 24h, the third spikelet above the treated spikelets was

harvested for gene expression analysis. The specificity of gene silencing was examined using homoeolog-specific primers for (A)TaSAM-A (B) TaSAM-B and (C)

TaSAM-D, and expression of those genes were quantified by real-time PCR analysis using wheat α-tubulin, YLS8 and TaPP2AA3 housekeeping genes (average of

[2^-(CT target- CT α-tubulin)], [2^-(CT target- CT YLS8)] and [2^-(CT target- CT PP2AA3)] [48]. Gene expression data represents from the 60 heads per treatment combination (5

bulk RNA from four heads). Disease symptoms were scored at 14 days post-treatment. (D) Images displaying typical disease symptoms at 14 days post-Fusarium
treatment at silenced plants compared to mock (virus) treated samples. (E) Quantification of the number of diseased spikelets per head in cv. CM82036 at 14 days post-

treatment. Disease results represents mean data obtained from 60 heads (20 heads per treatment combination in each of three trials). Bars in graphs indicate standard

error of the mean (SEM). Treatments with the same letter are not significantly different (P> 0.05).

https://doi.org/10.1371/journal.pone.0258726.g005
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compared to plants treated with the mock virus (BSMV:00) (P< 0.05; Fig 5). Fusarium-treated

heads developed FHB symptoms and, by 14 days post fungal treatment, BSMV:SAM1 and

BSMV:SAM2–treated plants showed 1.4-fold more symptoms than BSMV:00 treated plants

(P< 0.05; Fig 5D and 5E). The average number of infected spikelets per wheat heads at 14

days post-treatment was 2.0, 2.8 and 2.8 for BSMV:00, BSMV:SAM1 and BSMV:SAM2-treated

plants, respectively. At 21 days post-treatment, both BSMV:SAM1 and BSMV:SAM2-treated

plants showed 1.5-fold more diseased spikelets than BSMV:00-treated plants (P< 0.05; S6A

and S6B Fig). At this time point, the average number of infected spikelets in BSMV:00, BSMV:

SAM1 and BSMV:SAM2-treated plants were 3.0, 4.9 and 4.5, respectively.

TaMPT and TaSAM genes positively influence grain number

For plants treated with FES (the VIGS buffer), point inoculation of spikelets with F. grami-
nearum resulted in a small (8%, relative to Tween-20) but insignificant (P> 0.05) reduction in

grain number, and it did not affect average grain weight (Figs 6 and 7). The effects of Fusarium
on grain number were greater for plants in which the flag leaf was treated with empty virus

BSMV:00 (P< 0.05; 29% relative to Tween-20), suggesting that the virus exacerbated the

effects of FHB on grain development. For both TaMPT and TaSAM, the effect of VIGS on

grain development were independent of Fusarium treatment, as similar effects were observed

in both the mock and FHB-treated tissue (Figs 6 and 7). Silencing of TaMPT using BSMV:

MPT1 in mock and Fusarium-inoculated heads resulted in respective reductions of 28 and

24% in grain number. The second construct (BSMV:MPT2) had similar effects to BSMV:

MPT1 on grain number (28 and 27% reductions for mock and Fusarium-treated heads, rela-

tive to BSMV:00; P< 0.05) (Fig 6A). In terms of grain weight, BSMV:MPT1 treatment results

in a 27% reduction in grain weight in mock and Fusarium treated samples (P< 0.05), as

Fig 6. Effect on grain development of virus-induced gene silencing (VIGS) of TaMPT genes in wheat heads. Flag leaves of wheat cv. CM82036 were

rub-inoculated at growth stage 47 [36] just before the emergence of the first wheat head with either FES (VIGS buffer), or in vitro transcribed RNAs from

BSMV:00 (empty vector), BSMV:MPT1 or BSMV:MPT2 (construct targeting TaMPT). At mid-anthesis (growth stage 65) [36] two central spikelets of

heads were inoculated with either conidia of F. graminearum strain GZ3639 or Tween-20 (mock treatment), as previously described [9]. At harvest, the

(A) average seed number per head and (B) average seed weight per head (g) were calculated. Results represent mean data obtained from 60 heads (20

heads per treatment combination in each of three trials). Bars in graphs indicate standard error of the mean (SEM). Treatments with the same letter are

not significantly different (P> 0.05).

https://doi.org/10.1371/journal.pone.0258726.g006
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compared to BSMV:00 treatment (Fig 6B). But construct BSMV:MPT2 treatment did not sig-

nificantly reduce grain weight in mock and Fusarium-treated heads (P> 0.05).

VIGS of TaSAM using BSMV:SAM1 in mock and Fusarium-inoculated heads resulted in

respective reductions of 21 and 29% in seed number (P< 0.05), as compared to the BSMV:00

treatment (Fig 7A). The second construct (BSMV:SAM2) had similar effects to BSMV:SAM1

on grain number, resulting in a reduction in total grain number of 20 and 26% in mock and

Fusarium-inoculated heads, respectively (P< 0.05). For grain weight, in Fusarium-inoculated

heads construct BSMV:SAM1 treatment results in a 34% reduction, as compared to BSMV:00

treatment (P< 0.05; Fig 7B). In mock-treated samples, the 10% reduction in grain weight in

BSMV:SAM1 versus BSMV:00 treated samples was not statistically significant (P> 0.05). The

second construct (BSMV:SAM2) did not significantly reduce grain weight in mock inoculated

heads but resulted in a 29% reduction of grain weight in Fusarium-inoculated heads, relative

to BSMV:00 (P< 0.05) (Fig 7B).

Discussion

Resistance to FHB is complex and governed by several QTL on wheat chromosomes, indicat-

ing that multiple genes affect the resistance [51]. This study highlighted TaMPT and TaSAM
as positive contributors to the wheat defense response against DON mycotoxin and FHB,

inhibiting the spread of the disease. In comparing with previous studies and by searching the

physical position of QTL-associated markers [52,53] in the cv. Chinese Spring wheat genome

(IWGSC v.1.1), we deduced that the physical position of TaSAM-D gene is outside (150 kb dis-

tal to) the FHB QTL on chromosome 2DS, suggesting that TaSAM gene is not directly associ-

ated with 2DS QTL [54]. The TaMPT-A gene was located within the FHB 5A (Qfhs.ifa-5A)
QTL interval [32]. But in our study, we showed that TaMPT contributed to resistance to

Fig 7. Effect on grain development of virus-induced gene silencing (VIGS) of TaSAM genes in wheat heads. Flag leaves of wheat cv. CM82036 were

rub-inoculated at growth stage 47 [36] just before the emergence of the first wheat head with representing either FES (VIGS buffer), in vitro transcribed

RNAs BSMV:00 (empty vector) or BSMV:SAM1 or BSMV:SAM2 (construct targeting TaSAM). At mid-anthesis (growth stage 65) [36] two central

spikelets of heads were inoculated with either conidia of F. graminearum strain GZ3639 or 0.02% Tween-20 (mock treatment), as previously described

[9]. At harvest, the (A) average seed number per head and (B) average seed weight per head (g) were calculated. Results represent mean data obtained

from 60 heads (20 heads per treatment combination in each of three trials). Bars in graphs indicate standard error of the mean (SEM). Treatments with

the same letter are not significantly different (P> 0.05).

https://doi.org/10.1371/journal.pone.0258726.g007
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disease spread rather than the Type I resistance associated with the 5A QTL (resistance to

infection). Furthermore, QTL mapping using a DH population of CM82036x Remus [32,55]

deduced that TaMPT-A was not co-localised within the fine-mapped 5A QTL (Qfhs.ifa-5A)

region (results not shown), suggesting that TaMPT-A is not the causal gene within 5A QTL

region derived from cv. CM82036 [56].

Gene expression studies showed that DON induced expression of both genes earlier in cv.

CM82036, but to a greater extent in cv. Remus. But pathogen up-regulation of both TaMPT
and TaSAM variants was generally as quick, if not quicker, and greater in the susceptible as

compared to the resistant cultivar. This is likely reflective of faster DON accumulation in the

susceptible as compared to the resistant cultivar. DON production in wheat spikes typically

starts at around 36h after fungal inoculation, and high amounts of DON are accumulated

between 36–96 hpi [57,58]. Interestingly FHB response of TaSAM genes peaked as early as

12hpi; hence it is either responsive to very low toxin levels or to other plant/fungal metabolites

that form part of the initial response to FHB disease. There is precedence for the early response

of methyltransferases to FHB diseases: the accumulation of methyltransferase gene was earlier

and higher at 12 hpi in susceptible cv. Calendonia than FHB resistant cv. Sumai 3 [30].

We hypothesized that genomes would not contribute equally in response to FHB and

DON, and consistent with this, we found some variation in the relative expression of the

homoeologs with higher expression of TaMPT-A and TaSAM-D, as compared to their homo-

eologous counterparts, in both cultivars. In polyploid genomes, homoeologous genes may con-

tribute in an additive manner or may have different expression patterns, giving rise to

expression dominance from one or two sub-genomes [59]. Furthermore, homoeologous genes

may alternatively been subjected to sub-functionalization. Nussbaumer et al. [59] identified

that D subgenome was more abundant and responsive to F. graminearum than either the A or

B subgenome of wheat. RNA-seq studies conducted by Powell et al. [60] identified that B and

D homoeologs were more responsive than A homoeolog genes during infection by the fungal

pathogen Fusarium pseudograminearum, indicating a homoeolog expression bias in hexaploid

wheat.

The TaMPT genes belong to the phosphate transporter 3 (PHT3) gene family localised in

the inner mitochondrial membrane [61]. TaMPT is the first MPT3 gene implicated in FHB

resistance. This was validated via VIGS in the FHB resistant wheat cultivar CM82036 wherein

it reduced disease spread. It also affected grain development in that gene silencing reduced

grain number, while effects of grain weight were observed for one of the two silencing con-

structs. The closest Arabidopsis ortholog (MPT3, AT5G14040; 77.1% homology) was shown to

be responsive to both salt and drought stress. Overexpression of AtMPT3 increased plant sen-

sitivity to salt stress compared to wild-type plants, suggesting that ATP-dependent pathway

are more activated by high AtMPT3 expression levels under salt stress [62]. Knowledge regard-

ing the biological functions and molecular mechanisms of mitochondrial phosphate trans-

porter in plants is still limited [61]. MPTs, located in the mitochondrial inner membrane,

catalyse the transport of phosphate from the cytosol into the mitochondrial matrix where cel-

lular ATP is generated from ADP and phosphate through oxidative phosphorylation [15–17].

Stress alters central metabolic pathways, including protein turnover, reactive oxygen species

(ROS) production and changes in redox ratios. These metabolic changes enhances the demand

for the fast turnover of ADP to ATP cycle that is mediated by respiratory oxidative phosphory-

lation [63]. Although ROS is an important signalling molecule in diverse biological processes,

excessive amounts are toxic [64]. The Fusarium mycotoxin DON stimulates the overproduc-

tion of ROS [65]. High amount of H2O2 accumulation leads to programmed cell death (PCD)

[65], which could help the infection process of F. graminearum. ATP synthesis in mitochon-

dria and higher amounts of phosphate generation is important for the reduction of excessive
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amounts of ROS. ATP molecules are exported from the mitochondria to the cytoplasm and

help to minimise excessive amounts of ROS production [66,67]. Thus, MPT activity might fur-

ther delay the oxidative burst and reduce FHB disease symptoms and PCD during the fungal

infection process.

Silencing of TaMPT genes in wheat might result in enhanced damage to mitochondrial pro-

teins, which in turn might have facilitated the accumulation of DON and the overproduction

of ROS, thus enabling fungal spread in wheat heads. Many studies have shown that the modu-

lation of mitochondrion-associated proteins disturbed mitochondrial functions that affect

both plant growth and development [68]. Overexpressing the AtMPT3 gene in Arabidopsis dis-

turbed the cellular redox homeostasis; transgenic plants accumulated excess amount of H2O2

and O2
- levels which lead to PCD and hampered growth and development, suggesting that

finely tuned mitochondrion activities are necessary for plant normal growth and development

[68]. Tiwari et al. [69] demonstrated that reduced levels of ATP in the mitochondrial cells, due

to oxidative stress, resulted in damage to the mitochondrial respiratory chain. It is likely that

VIGS of the TaMPT gene leads to mitochondrial dysfunction during FHB treatment in the

silenced plants. In this study, the observed phenotypes in silencing plants could be explained

by the inability of mitochondria to meet the energy demands (ATP synthesis) in cells as a

result of reduced Pi transport into mitochondria, which in turn would reduce the electron flux

in the mitochondrial membrane and increase ROS formation, leading to more diseased symp-

toms in the spikelets of silenced plants. Jia et al. [68] reported the induced expression of genes

involved in mitochondrial respiratory chain such as ATP synthase and alternative oxidases

(AOX) in Arabidopsis MPT3 overexpressing lines using microarray studies. More research is

needed to understand if silencing TaMPT has effect on other genes involved in mitochondrial

respiration in wheat.

It has been suggested that phosphate homeostasis and energy production plays important

roles in grain development [18,70]. Wheat mitochondrial phosphate transporter genes (PHT3)

were involved in grain development with high expression of TaPHT3;1 in embryo and rachis,

and TaPHT3;2 in aleurone, suggesting its role in phosphate related homeostasis [18]. Recently,

Yu et al. [71] showed that overexpressing tomato mitochondrial phosphate transporter gene

(SIMPT3;1) in transgenic rice significantly promoted the uptake of phosphate and increased

grain yield. In this study, the reduction in the total number of seeds (due to both VIGS silenc-

ing constructs) and weight (due to one of the two VIGS silencing constructs) in TaMPT-

silenced plants suggests that these genes may have role to play in grain development. Biochem-

ical and genetic studies are needed to decipher the relationship between TaMPT and oxidative

phosphorylation, ATP synthesis and ROS accumulation and grain development. This will fur-

ther help us to understand the role of plant mitochondrial phosphate transporters in FHB dis-

ease and DON in wheat and other cereals.

TaSAM are the first methyltransferase genes functionally characterised for their role in

resistance to the spread of FHB disease. But, various microarray and gene expression studies

have shown the upregulation of methyltransferase genes in response to F. graminearum in

wheat [28,30]. Cho et al. [28] highlighted a SAM-dependent methyltransferase from a microar-

ray study and the gene was differentially expressed in the resistant cv. Dahongmil and the sus-

ceptible cv. Urimil after inoculation with F. graminearum. Using microarray expression

profiling, Long et al. [29] demonstrated that a SAM-methyltransferase gene was upregulated

in response to F. graminearum in a wheat Near isogenic line (NIL) that segregated for a FHB

resistance QTL on chromosome 2DL. Recently, AlTaweel et al. [30] found the upregulation of

a methyltransferase gene in the presence of F. graminearum infection in the FHB resistance cv.

Sumai 3 and the susceptible cv. Caledonia, and they suggested that the methyltransferase may

be involved in the response to oxidative stress. In this study, a DON and FHB-responsive
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TaSAM gene from the SAM-methyltransferase superfamily was shown to contribute to FHB

resistance in wheat. The Arabidopsis ortholog (AT2G41380), which shares 53% homology with

TaSAM-2D, is responsive to ROS and acts against oxidative stress [72–74]. Further experi-

ments are needed to determine the role, if any, of TaSAM gene against oxidative stress in

wheat. In rice, knockdown of OsSAMS1, 2 and 3 using RNA interference resulted in late flow-

ering, dwarfism, and reduced fertility in transgenic plants, suggesting a putative role of this

gene in histone H3K4me3 and DNA methylation. Moreover, they proposed that SAM defi-

ciency or transport reduces SAM-dependent methyltransferase activities, leading to hypo

methylation in plants [75]. Despite the role of methyltransferase in methylation and biosynthe-

sis, to our knowledge, SAM-methyltransferase are rarely reported to be involved in grain yield

and development in wheat. Previously, a study has shown that disruption of a methyltransfer-

ase gene was associated with reduced grain yield in rice. Hong et al. [76] demonstrated that

disruption of the rice methyltransferase gene OsMTS1 resulted in premature leaf senescence, a

low rate of photosynthesis, accumulation of ROS and grain yield reduction. The reduced grain

number and weight in TaSAM silenced plants in our study suggested that it may have role in

wheat yield components.

In conclusion, VIGS studies showed that TaMPT and TaSAM genes positively contributed

to FHB resistance in wheat, most likely indirectly rather than through direct effects on the

pathogen or DON. The results of VIGS study suggests that both TaMPT and TaSAM genes

have potential for enhancing FHB resistance and augmenting grain development in wheat.

Thus, TaMPT and TaSAM add to the relatively short list of FHB resistance genes that can be

used to engineer crops with improved FHB resistance and yield performance. More detailed

investigations of TaMPT and TaSAM genes and their pathways in wheat will extend our

understanding of FHB resistance, and the functional roles and mechanisms of TaMPT and

TaSAM.

Supporting information

S1 Fig. Protein alignment and conserved domain identification of TaMPT-A from wheat

cv. CM82036 with cv. Remus and variants from wheat cv. Chinese spring.

(TIF)

S2 Fig. Protein alignment and conserved domain identification of TaSAM-D from wheat

cv. CM82036 with cv. Remus and variants from wheat cv. Chinese spring (CS).

(TIF)

S3 Fig. The relative position of the non-overlapping fragments targeted for gene silencing

(two fragments: VIGS 1 and 2) and for qRT-PCR validation of VIGS efficacy. (A) TaMPT
(chromosomes 5A, 5B and 5D). (B) TaSAM (chromosomes 2A, 2B and 2D).

(TIF)

S4 Fig. Expression validation of virus-induced gene silencing (VIGS) of mitochondrial

phosphate transporter gene (TaMPT) in wheat on the transcription of chromosome 2 (off

target genes). Flag leaves of wheat cv. CM82036 were rub-inoculated at growth stage 47 [36]

just before the emergence of the first wheat head with representing either FES (VIGS buffer),

in vitro transcribed RNAs BSMV:00 (empty vector) or BSMV: MPT1 or BSMV: MPT2 (con-

struct targeting TaMPT). At mid-anthesis (growth stage 65) [36] two central spikelets of heads

were inoculated with either conidia of F. graminearum strain GZ3639 or Tween-20 (mock

treatment), as previously described [9]. After 24h, the third spikelet above the treated spikelets

was harvested for gene expression analysis. The expression of TaMPT on chromosome 2 was

quantified by real-time PCR analysis using wheat α-tubulin, YLS8 and TaPP2AA3
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[2^-(CT target- CT PP2AA3)] [48]. Gene expression data represents from the 60 heads per treatment

combination (5 bulk RNA from four heads). Bars in graphs indicate standard error of the

mean (SEM). Treatments with the same letter are not significantly different (P> 0.05).

(TIF)

S5 Fig. Virus-induced gene silencing of TaMPT gene in wheat. Flag leaves of wheat cv.

CM82036 were rub-inoculated at growth stage 47 [36] just before the emergence of the first

wheat head with representing either FES (VIGS buffer), in vitro transcribed RNAs BSMV:00

(empty vector) or BSMV: MPT1 or BSMV:MPT2 (construct targeting TaMPT). At mid-anthe-

sis (growth stage 65) [36] two central spikelets of heads were inoculated with either conidia of

F. graminearum strain GZ3639 or 0.02% Tween-20 (mock treatment), as previously described

[9]. Disease symptoms were scored at 21 days post-treatment. (A) Images displaying typical

disease symptoms at 21 days post-Fusarium treatment at silenced plants compared to mock

(virus) treated samples. B) Quantification of the number of diseased spikelets per head in cv.

CM82036 at 21 days post-treatment. Disease results represents mean data obtained from 60

heads (20 heads per treatment combination in each of three trials). Bars in graphs indicate

standard error of the mean (SEM). Treatments with the same letter are not significantly differ-

ent (P> 0.05).

(TIF)

S6 Fig. Virus-induced gene silencing (VIGS) of TaSAM gene in wheat. Flag leaves of wheat

cv. CM82036 were rub-inoculated at growth stage 47 [36] just before the emergence of the first

wheat head with representing either FES (VIGS buffer), in vitro transcribed RNAs BSMV:00

(empty vector) or BSMV: SAM1 or BSMV:SAM2 (construct targeting TaSAM). At mid-anthe-

sis (growth stage 65) [36] two central spikelets of heads were inoculated with either conidia of

F. graminearum strain GZ3639 or 0.02% Tween-20 (mock treatment), as previously described

[9]. Disease symptoms were scored at 21 days post-treatment. (A) Images displaying typical

disease symptoms at 21 days post-Fusarium treatment at silenced plants compared to mock

(virus) treated samples. (B) Quantification of the number of diseased spikelets per head in cv.

CM82036 at 21 days post-treatment. Disease results represents mean data obtained from 60

heads (20 heads per treatment combination in each of three trials). Bars in graphs indicate

standard error of the mean (SEM). Treatments with the same letter are not significantly differ-

ent (P> 0.05).

(TIF)
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