
sensors

Article

Data Spine: A Federated Interoperability Enabler for
Heterogeneous IoT Platform Ecosystems

Rohit A. Deshmukh 1,* , Dileepa Jayakody 2, Alexander Schneider 1 and Violeta Damjanovic-Behrendt 2

����������
�������

Citation: Deshmukh, R.A.; Jayakody,

D.; Schneider, A.; Damjanovic-

Behrendt, V. Data Spine: A Federated

Interoperability Enabler for

Heterogeneous IoT Platform

Ecosystems. Sensors 2021, 21, 4010.

https://doi.org/10.3390/s21124010

Academic Editor: Dieter Uckelmann

Received: 12 May 2021

Accepted: 7 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fraunhofer Institute for Applied Information Technology FIT, 53754 Sankt Augustin, Germany;
alexander.schneider@fit.fraunhofer.de

2 Salzburg Research Forschungsgesellschaft, 5020 Salzburg, Austria;
dileepa.jayakody@salzburgresearch.at (D.J.); violeta.damjanovic@salzburgresearch.at (V.D.-B.)

* Correspondence: rohit.deshmukh@fit.fraunhofer.de

Abstract: Today, the Internet of Things (IoT) is pervasive and characterized by the rapid growth
of IoT platforms across different application domains, enabling a variety of business models and
revenue streams. This opens new opportunities for companies to extend their collaborative networks
and develop innovative cross-platform and cross-domain applications. However, the heterogeneity
of today’s platforms is a major roadblock for mass creation of IoT platform ecosystems, pointing at
the current absence of technology enablers for an easy and innovative composition of tools/services
from the existing platforms. In this paper, we present the Data Spine, a federated platform enabler
that bridges IoT interoperability gaps and enables the creation of an ecosystem of heterogeneous IoT
platforms in the manufacturing domain. The Data Spine allows the ecosystem to be extensible to meet
the need for incorporating new tools/services and platforms. We present a reference implementation
of the Data Spine and a quantitative evaluation to demonstrate adequate performance of the system.
The evaluation suggests that the Data Spine provides a multitude of advantages (single sign-on,
provision of a low-code development environment to support interoperability and an easy and
intuitive creation of cross-platform applications, etc.) over the traditional approach of users joining
multiple platforms separately.

Keywords: IoT platform interoperability; Service-Oriented Architecture; Smart Manufacturing;
smart factory; industry 4.0; Cloud Manufacturing; IoT ecosystem; federated IoT platforms; digital
manufacturing platforms; lot-size-one manufacturing

1. Introduction

The rapid growth and pervasiveness of the Internet of Things (IoT) is giving rise to a
large number of IoT platforms across different application domains. In the manufacturing
sector, the industry trends are changing as a result of the increased digitalization and new
possibilities are arising for companies to collaborate, exchange data, share services, reuse
existing solutions and create innovative products. Many companies are already under
constant pressure to react more quickly to changing market demands to create highly
customized and interconnected products, facing the need to “federate” their products and
tools/services by offering them through existing digital platforms, or by joining platform
ecosystems.

The creation of an ecosystem of federated IoT platforms in the manufacturing domain
helps companies form agile, ad hoc collaborative networks, establish dynamic supply
chains, and optimize production processes to meet new market demands of both Industry
4.0 and lot-size-one manufacturing. The motivation of smart factory companies is to widen
their market potential, establish the necessary scale and make their businesses viable.

However, today’s IoT platforms are largely heterogeneous, vendor-specific, vertically
oriented, fragmented functionality-wise, and locked behind their own closed identity
and access management mechanisms [1,2]. Because of the interoperability gaps between

Sensors 2021, 21, 4010. https://doi.org/10.3390/s21124010 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2885-7076
https://orcid.org/0000-0002-5654-9129
https://orcid.org/0000-0002-9903-9081
https://doi.org/10.3390/s21124010
https://doi.org/10.3390/s21124010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124010
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124010?type=check_update&version=3

Sensors 2021, 21, 4010 2 of 28

services of different platforms at the levels of interfaces, communication protocols, data for-
mats, data models, identity providers, etc., it is not possible to form composite applications
with services from multiple platforms (Figure 1).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 29

However, today’s IoT platforms are largely heterogeneous, vendor-specific, verti-

cally oriented, fragmented functionality-wise, and locked behind their own closed iden-

tity and access management mechanisms [1,2]. Because of the interoperability gaps be-

tween services of different platforms at the levels of interfaces, communication protocols,

data formats, data models, identity providers, etc., it is not possible to form composite

applications with services from multiple platforms (Figure 1).

Figure 1. An illustration of interoperability gaps between services of heterogeneous Internet of

Things (IoT) platforms.

This vertically oriented, isolated, and closed nature of platforms leads to inefficient

use of resources such as data and services. These platforms are often either domain-centric

or vendor-specific and provide limited functionality focused on certain use cases. To take

advantage of a wider range of functionality, the consumers must join multiple IoT plat-

forms, resulting in increased costs for them and interoperability issues. As reusability is

limited, the cost of joining a platform increases, barring the entry of SMEs and start-ups.

This gives an unfair advantage to big companies. In addition, network effects can cause

concentration of tools, services, and users around a specific multi-sided IoT platform re-

sulting in monopoly power in IoT market [3]. The coopetition mechanisms such as ‘service

provider multihoming’ and ‘consumer switching’ that can prevent high market concen-

tration and monopoly by incentivising competition, become challenging and expensive to

practice because of the interoperability issues among IoT platforms [3]. Finally, the lack of

interoperability in today’s IoT platforms additionally hinders innovation. Therefore, es-

tablishing an ecosystem of such IoT platforms to enable cross-platform, cross-domain

communication and collaboration is a challenge that needs to be addressed to cater to

service providers’ and consumers’ expectations.

In this paper, we present the Data Spine, a federated platform enabler as a mecha-

nism that interconnects and establishes interoperability between digital manufacturing

platforms and enables the creation of a smart factory ecosystem called EFPF (European

Factory Platform). The EFPF ecosystem is being established as a part of a European re-

search project called ‘EFPF: European Connected Factory Platform for Agile Manufactur-

ing’ [4]. The main objective of the EFPF project is to create an ecosystem of heterogenous

smart factory platforms that enables companies to create and operate ad-hoc collaborative

networks in order to meet the market demands for mass-customization. Thus, the EFPF

ecosystem is aimed at enabling companies to make a transition from traditional mass pro-

duction to a lot-size-one manufacturing.

The EFPF ecosystem is initially aimed at interlinking four digital manufacturing plat-

forms from the European Factories-of-Future (FoF-11-2016) cluster focused on supply

chains and logistics [5]—namely NIMBLE [6], COMPOSITION [7], DIGICOR [8], and vf-

OS [9]. Apart from interlinking the four FoF-11-2016 platforms, which we refer to in this

paper as “base platforms”, the EFPF ecosystem is envisioned to be an extendable system

capable of interlinking more third-party platforms in the future. Therefore, in order to

meet the need for incorporating new tools, services and platforms in the digital platform

ecosystem, this paper presents the architecture of the EFPF Data Spine, which is designed

at its core to deliver an interoperable, modular and extensible platform solution.

Figure 1. An illustration of interoperability gaps between services of heterogeneous Internet of
Things (IoT) platforms.

This vertically oriented, isolated, and closed nature of platforms leads to inefficient
use of resources such as data and services. These platforms are often either domain-centric
or vendor-specific and provide limited functionality focused on certain use cases. To
take advantage of a wider range of functionality, the consumers must join multiple IoT
platforms, resulting in increased costs for them and interoperability issues. As reusability
is limited, the cost of joining a platform increases, barring the entry of SMEs and start-
ups. This gives an unfair advantage to big companies. In addition, network effects
can cause concentration of tools, services, and users around a specific multi-sided IoT
platform resulting in monopoly power in IoT market [3]. The coopetition mechanisms
such as ‘service provider multihoming’ and ‘consumer switching’ that can prevent high
market concentration and monopoly by incentivising competition, become challenging
and expensive to practice because of the interoperability issues among IoT platforms [3].
Finally, the lack of interoperability in today’s IoT platforms additionally hinders innovation.
Therefore, establishing an ecosystem of such IoT platforms to enable cross-platform, cross-
domain communication and collaboration is a challenge that needs to be addressed to cater
to service providers’ and consumers’ expectations.

In this paper, we present the Data Spine, a federated platform enabler as a mechanism
that interconnects and establishes interoperability between digital manufacturing platforms
and enables the creation of a smart factory ecosystem called EFPF (European Factory
Platform). The EFPF ecosystem is being established as a part of a European research project
called ‘EFPF: European Connected Factory Platform for Agile Manufacturing’ [4]. The
main objective of the EFPF project is to create an ecosystem of heterogenous smart factory
platforms that enables companies to create and operate ad-hoc collaborative networks in
order to meet the market demands for mass-customization. Thus, the EFPF ecosystem is
aimed at enabling companies to make a transition from traditional mass production to a
lot-size-one manufacturing.

The EFPF ecosystem is initially aimed at interlinking four digital manufacturing
platforms from the European Factories-of-Future (FoF-11-2016) cluster focused on supply
chains and logistics [5]—namely NIMBLE [6], COMPOSITION [7], DIGICOR [8], and
vf-OS [9]. Apart from interlinking the four FoF-11-2016 platforms, which we refer to in this
paper as “base platforms”, the EFPF ecosystem is envisioned to be an extendable system
capable of interlinking more third-party platforms in the future. Therefore, in order to
meet the need for incorporating new tools, services and platforms in the digital platform
ecosystem, this paper presents the architecture of the EFPF Data Spine, which is designed
at its core to deliver an interoperable, modular and extensible platform solution.

The main contributions of this paper are as follows:

• The paper highlights the need for and the benefits of creating an ecosystem of hetero-
geneous IoT platforms, identifies the gaps in the state of the art, and presents a new

Sensors 2021, 21, 4010 3 of 28

approach that makes use of a federated platform enabler, the Data Spine, to enable the
creation of the ecosystem.

• The paper identifies the interoperability and federation requirements for the Data
Spine.

• The paper presents the design and a reference implementation of the Data Spine that
enables the creation of an ecosystem where:

The users can seamlessly access tools and services from different platforms
using a single set of credentials.

The users can create innovative cross-platform applications easily and intu-
itively, with minimal coding effort.

New tools, services and platforms can be easily integrated with the ecosystem.
No local deployments are necessary for their integration or for the creation of
composite applications using the existing services.

The ecosystem administrator does not have to bear the burden of maintaining
a common, canonical data model or a common application programming
interface (API), but the burden of data transformation is distributed among the
service consumers.

The users from the same or different companies can not only collaborate for
developing new applications, but also limit access to their resources, where
required.

• Finally, the paper presents two commonly occurring use cases for synchronous request-
response and asynchronous Publish/Subscribe (Pub/Sub) communication paradigms
in the manufacturing domain and an evaluation of the Data Spine approach which
suggests that it provides all the above-listed advantages over the traditional approach
of users joining multiple platforms separately to avail the benefits, at the cost of a
reasonable performance overhead.

The rest of the paper is organized as follows: in Section 2, we explore other approaches
that address the issue of interoperability among heterogeneous IoT platforms and identify
the research gap in the state of the art that motivates the design and development of the
Data Spine. In Section 3, we identify the interoperability and federation requirements for
the Data Spine. In Sections 4 and 5, respectively, we present the architecture and a reference
implementation of the Data Spine. In Section 6, we describe the process of integration
of services through the Data Spine. Section 7 presents examples of dataflow through the
Data Spine. In Section 8, we provide a performance evaluation of the Data Spine approach.
Finally, we discuss the architectural considerations, implications, and the interoperability
approach followed by the Data Spine in Section 9 and conclude in Section 10.

2. Related Work

In the last few years, the lack of interoperability among IoT platforms has been
recognized as one of the major barriers that is preventing the rise of vibrant IoT ecosys-
tems [2,10,11]. In many ways, addressing the problem of IoT platform interoperability is
similar to addressing the problem of enterprise integration and interoperability, where
different IoT platforms can be seen as enterprises sharing their data, tools, and services. The
CEN/ISO 11354 Framework for Enterprise Interoperability [12,13] defines three approaches
that can be employed to enable interoperability among the services of heterogeneous plat-
forms, provided by different enterprises:

• Integrated approach: A single data model at the ecosystem level is defined and all
connected platforms need to align their tools and services to conform to this common
data model.

• Unified approach: A single, non-executable data model is defined at the metadata
level for the ecosystem and all connected platforms need to adhere to this meta-model
to allow mapping between their models for enabling cross-platform communication.

Sensors 2021, 21, 4010 4 of 28

• Federated approach: There is no common data model or metadata model imposed at
the ecosystem level and therefore, the platforms are free to choose any standard or
proprietary data model. Connections between tools and services of different platforms
are established when required by a use case. Therefore, the partners need to share
an ontology to map between their data models, improve interoperability and data
sharing.

Many solutions that have been proposed in recent years to address the problem of
IoT platform interoperability broadly follow one of these approaches, or a combination of
the above approaches. For example, meSchup platform [14] is an example of integrated
approach, as it establishes a common, shared API that all connected parties need to conform
to. If such an approach is followed to establish an ecosystem of heterogeneous platforms
owned by different companies, it would need significant adjustments to the platforms to
be connected.

The projects from the European ‘IoT European Platform Initiative (IoT-EPI)’ cluster [15]
such as symbIoTe, BIG IoT and INTER-IoT follow either the unified approach, or the
federated approach, or a combination of these approaches. The symbIoTe project [10,16]
uses a minimal common ontology to enable discovery, whereas the INTER-IoT project [17]
uses a central ontology which is maintained in a modularized fashion, and the connected
platforms are required to align their metadata models with it.

The symbIoTe project [10,16] provides an interoperability framework to allow cooper-
ation among IoT platforms to establish federations, aiming at the creation of innovative
cross-domain applications. It offers mediation services and makes use of systematic de-
velopment methodologies [18] to address the problem of interoperability across different
IoT platforms. However, only the components enabling the registration and discovery of
services are located in the cloud and each platform needs to deploy, configure and manage
an adapter to connect to other platforms and perform data mapping and transformation.

The BIG IoT project [2,19] is aimed at bridging the interoperability gaps between IoT
platforms to enable an ecosystem. It offers a BIG IoT Marketplace for service registration,
discovery, accounting, service composition, etc., and client libraries that enable platforms
to connect to the BIG IoT API. It uses a data format based on Web of Things (WoT) and WoT
Thing Description model [20] to capture the metadata of resources. Similar to the symbIoTe
approach, data transformation in BIG IoT is done on the service provider/consumer side.
By contrast, the Data Spine is envisioned to be a cloud-native solution that uses API
specification standards to capture the metadata of services. Furthermore, the Data Spine
aims to provide data transformation tools to facilitate the data transformation process in
the cloud.

Moreover, as per the two different authentication modes supported by BIG IoT, ei-
ther the BIG IoT Marketplace acts as the centralized identity provider granting access to
resources or the consumers need to obtain an access token directly from the provider’s
platform. In contrast, the Data Spine is envisioned to federate the identity providers of
connected platforms and enable single sign-on (SSO) functionality across the ecosystem,
offering a distributed security solution in the EFPF ecosystem.

The INTER-IoT project [11,17] aims to enable interoperability between IoT platforms
at different IoT system layers. It defines a common API and specifies a methodology for
IoT system integration. Like symbIoTe, it addresses the data mapping aspect. However,
data mapping needs to be undertaken between connected platforms and a common shared
ontology at the ecosystem level. In contrast, the Data Spine does not aim to define a single
shared data model. The platforms would be free to choose to map their data models either
to any standard data model, depending upon the domain and the use case, or directly to
another platform’s data model they want to communicate with. Moreover, INTER-IoT
does not explicitly address the issue of federation of existing identity providers of the
heterogeneous platforms to form an ecosystem.

Furthermore, there has been substantial research on IoT connectors and gateways in
the last few years [21,22]. The IoT gateways that support lower layer protocols and other

Sensors 2021, 21, 4010 5 of 28

IoT networking technologies (ZigBee, ZWave, Bluetooth Low Energy (BLE), Long Range
Wide Area Network (LoRaWAN), etc.) would be complimentary to the Data Spine as it
aims to provide support for standard application layer communication protocols.

In the manufacturing domain, Zeid, et al. [23] describe how the proliferation of tech-
nology is causing the evolution of traditionally hierarchical and closed manufacturing
architectures towards integrated networks of devices, services, cloud platforms and enter-
prises. The authors highlight the need for interoperability as one of the major challenges
resulting from this evolution. Similarly, Hyoung Seok Kang, et al. [24] conclude that
interoperability is one of the most important issues that needs to be addressed in smart
manufacturing. Many research projects in the area of smart manufacturing and cloud
manufacturing are focused on making data, systems, resources, and other manufactur-
ing infrastructure available as services, without considering aspects towards integration
and interoperability with systems from other factories or platforms. For example, Wang
et al. [25] propose a framework to provide infrastructure (e.g., robots) as a service, and
Chen et al. [26] propose a platform that offers enterprise resource planning (ERP) as a
service. However, they do not address how collaboration with other factories or platforms
can be enabled.

The solution proposed by Delaram et al. [27] addresses the issue of interoperability
among cloud manufacturing enterprises by using integrated data formats. The solution
involves decomposing existing services provided by the platforms of different enterprises
into generic services, which is followed by mapping these generic services to the basic
elements of Electronic Data Interchange (EDI) X12 standards, thereby achieving an abstract
common interface. However, the solution presented in [27] neither specifies how the service
decomposition and mapping can be achieved and the complexity involved, nor does it
address the issue of the mapping of services that are beyond the scope of the EDI X12
standards.

A. Kusiak in [28] considers ‘resource sharing and networking’ as one of the six pillars
of smart manufacturing. The author asserts that the decoupling of physical and cyber
spaces enables collaboration across business enterprises and predicts that the degree of
horizontal connectivity across manufacturing enterprises and inter- and intra-enterprise
interoperability will increase.

Tao et al. in [29] make a strong case for the use of services in manufacturing in order
to bridge gaps between physical and cyber worlds, enabling platform independence and
interoperability, large-scale collaboration among manufacturing enterprises, empowering
companies to quickly respond to complex market demands of mass personalization and
thus, increasing profit. The authors note that the emergence of new information technology
(IT) generation (big data, IoT, cloud computing, etc.) has enabled the manufacturing
enterprises to make a rapid shift towards services. These enterprises have now started
embracing the concept of manufacturing-as-a-service by offering manufacturing resources
as cloud-based services. The Data Spine aims to capitalise on the trend of “servitization”
by focusing on enabling interoperability on service-level across digital manufacturing
platforms.

3. Integration, Interoperability and Federation Requirements for the Data Spine

The EFPF ecosystem is built using a federation approach in mind—the distributed
heterogeneous digital platforms managed by different independent entities permit the
creation of added value within the ecosystem. To enable communication in the platform
ecosystem, a communication layer that acts as a translator/adapter between the heteroge-
neous tools and services of these platforms needs to be implemented. The communication
layer needs to provide API adaptation functionalities, data transformation and routing
capabilities, common access methods, and should enable communication without making
any modifications to the existing services.

Sensors 2021, 21, 4010 6 of 28

To enable communication and interoperation in the EFPF ecosystem, the initial inte-
gration, interoperability, and federation requirements for the Data Spine are compiled as
follows:

• Interoperability: The Data Spine should support interoperability at the levels of
protocols, data models and security.

Protocol Interoperability: The Data Spine should support standard applica-
tion layer communication protocols from the synchronous (request-response)
and asynchronous (Pub/Sub) communication paradigms.

Data Model Interoperability: The Data Spine should bridge the interoperabil-
ity gaps between services at the levels of data formats, data structures and data
models.

Security Interoperability: The Data Spine should facilitate federated security
and SSO capabilities in the EFPF ecosystem. It should be possible to call the
services of different platforms with a single set of credentials.

• Federation approach: The ecosystem should follow a federation approach, enabling
“on-demand” interoperability between different tools/services, i.e., when required
by a use case. No common data model or format should be imposed, so that there is
no overhead on the system administrators of maintaining such a complex canonical
model and on the services to understand it and adhere to it.

• Agility and flexibility: The ecosystem should allow tools/services to use neutral
APIs, which are not strongly tied to any specific implementation. This will allow
them to upgrade their APIs without any dependency concerns, thereby giving them
the flexibility to evolve independently. The Data Spine should provide an intelligent
and flexible infrastructure to align APIs “on-demand”, by creating workflows or
“integration flows”.

• Usability and multitenancy: The Data Spine should provide an intuitive, low-code
development environment to align the APIs of services and enable communication
among them. It should be possible for the system integrator users to collaborate, but
at the same time to limit access to their integration flows, when required.

• Built-in functionality and tool/service integration effort: The Data Spine should
take care of the boilerplate code for protocol translation, routing, and mediation, etc.,
and facilitate the system integrator users for integrating their services by configuring
only the service-specific parts of their integration flows with minimal coding effort.

• Platform integration effort: No local deployments of any Data Spine components
should be needed to integrate 3rd party platforms in the ecosystem.

• API management: The system integrator users need to refer to the technical specifi-
cations of service APIs to create integration flows. The Data Spine should provide a
component to store and retrieve service metadata including the API specifications.
That component should ensure uniformity across and completeness of the API specifi-
cations.

• Modularity and extensibility: The architecture of the Data Spine should be designed
with modularity and extensibility in mind to meet the need for incorporating new
tools, services, and platforms in the EFPF ecosystem, with minimum effort.

• Performance, scalability, and availability: As the Data Spine is a central entity of
the platform ecosystem, it should be highly performant and should support high
throughput. The performance critical components of the Data Spine should have the
capability to operate within a cluster to support high availability.

• Maintainability: In the view of maintainability, the Data Spine should facilitate the
creation of a loosely coupled, modular and an easily extensible ecosystem.

Along with the initial guiding requirements for establishing a federated platform
ecosystem listed above, the concrete interoperability requirements for the design and
realisation of the Data Spine are derived from the four base platforms in the EFPF project.

Sensors 2021, 21, 4010 7 of 28

These four platforms functionally complement each other, offering services with minimum
overlap (Figure 2).

Sensors 2021, 21, x FOR PEER REVIEW 7 of 29

• Maintainability: In the view of maintainability, the Data Spine should facilitate the
creation of a loosely coupled, modular and an easily extensible ecosystem.
Along with the initial guiding requirements for establishing a federated platform

ecosystem listed above, the concrete interoperability requirements for the design and re-
alisation of the Data Spine are derived from the four base platforms in the EFPF project.
These four platforms functionally complement each other, offering services with mini-
mum overlap (Figure 2).

Figure 2. Conceptual overview of the EFPF (European Factory Platform) ecosystem.

The technical profiles of the four base platforms are documented, which included the
specification of their tools, services and components, their maturity levels, exposed inter-
faces, protocols, data models, data formats, access control mechanisms, authentication
providers supported, dependencies, programming environment, technical documenta-
tion, etc. A summary of the technical profiles of these platforms is presented in Table 1.

Table 1. Summary of the technical profiles of the base platforms.

Technical Aspect Summary of Adoption by Services

Protocol

Hypertext Transfer Protocol (HTTP)/Representational state
transfer (REST), Advanced Message Queuing Protocol

(AMQP), Message Queuing Telemetry Transport (MQTT)
Minor adoption: WebSockets, Remote Procedure Call
(RPC), Common Object Request Broker Architecture

(CORBA), RAW

Data Format

JavaScript Object Notation (JSON)
Minor adoption: Extensible Markup Language (XML),
Open Platform Communications United Architecture

(OPC UA) Binary, Proprietary

Data Model

Universal Business Language (UBL), Business Process
Model and Notation (BPMN), Open Geospatial Consor-

tium (OGC) SensorThings, OPC UA, Proprietary/Custom
Minor adoption: oneM2M, Smart Applications REFerence

(SAREF) ontology
Security Method OAuth 2.0, OpenID Connect, Basic MQTT Authentication

Figure 2. Conceptual overview of the EFPF (European Factory Platform) ecosystem.

The technical profiles of the four base platforms are documented, which included
the specification of their tools, services and components, their maturity levels, exposed
interfaces, protocols, data models, data formats, access control mechanisms, authentication
providers supported, dependencies, programming environment, technical documentation,
etc. A summary of the technical profiles of these platforms is presented in Table 1.

Table 1. Summary of the technical profiles of the base platforms.

Technical Aspect Summary of Adoption by Services

Protocol

Hypertext Transfer Protocol (HTTP)/Representational state transfer
(REST), Advanced Message Queuing Protocol (AMQP), Message Queuing

Telemetry Transport (MQTT)
Minor adoption: WebSockets, Remote Procedure Call (RPC), Common

Object Request Broker Architecture (CORBA), RAW

Data Format
JavaScript Object Notation (JSON)

Minor adoption: Extensible Markup Language (XML), Open Platform
Communications United Architecture (OPC UA) Binary, Proprietary

Data Model

Universal Business Language (UBL), Business Process Model and Notation
(BPMN), Open Geospatial Consortium (OGC) SensorThings, OPC UA,

Proprietary/Custom
Minor adoption: oneM2M, Smart Applications REFerence (SAREF)

ontology

Security Method OAuth 2.0, OpenID Connect, Basic MQTT Authentication
Minor adoption: Basic Auth

Identity Provider Keycloak
Minor adoption: Proprietary

Based on the final collection of requirements for establishing a federated platform
ecosystem, the conceptual components of the Data Spine are defined. The subsequent
sections describe the design and architectural aspects of these individual conceptual com-
ponents and their interrelationships.

Sensors 2021, 21, 4010 8 of 28

4. Design of the Data Spine

Figure 3 illustrates the high-level architecture of the Data Spine enabling communi-
cation across different platforms in the EFPF ecosystem, following the service-oriented
architecture (SOA) pattern.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 29

Minor adoption: Basic Auth

Identity Provider
Keycloak

Minor adoption: Proprietary

Based on the final collection of requirements for establishing a federated platform

ecosystem, the conceptual components of the Data Spine are defined. The subsequent sec-

tions describe the design and architectural aspects of these individual conceptual compo-

nents and their interrelationships.

4. Design of the Data Spine

Error! Reference source not found. illustrates the high-level architecture of the Data

Spine enabling communication across different platforms in the EFPF ecosystem, follow-

ing the service-oriented architecture (SOA) pattern.

Figure 3. High-level architecture of the Data Spine.

The Data Spine represents a collection of the following conceptual components that

work together to form an integration, interoperability, and communications layer for the

EFPF ecosystem:

 Integration Flow Engine;

 API Security Gateway;

 Service Registry;

 Message Broker;

 EFPF Security Portal (EFS).

4.1. Components of the Data Spine

Figure 3. High-level architecture of the Data Spine.

The Data Spine represents a collection of the following conceptual components that
work together to form an integration, interoperability, and communications layer for the
EFPF ecosystem:

• Integration Flow Engine;
• API Security Gateway;
• Service Registry;
• Message Broker;
• EFPF Security Portal (EFS).

Sensors 2021, 21, 4010 9 of 28

4.1. Components of the Data Spine

This section describes the core conceptual components of the Data Spine, their function-
ality, and the role they play in establishing the EFPF ecosystem and enabling cross-platform
communication.

4.1.1. Integration Flow Engine

The integration flow engine (IFE) is the component of the Data Spine that provides
service integration and interoperability infrastructure with capabilities such as connectivity,
data routing, data transformation and system mediation. These capabilities can be used
to bridge the interoperability gaps at both protocol and data model levels between the
heterogeneous services that communicate through the Data Spine.

The IFE is a dataflow management system based on the concepts from flow-based
programming [30] that makes use of workflows/dataflows to interlink services and enable
interoperation. In the context of the EFPF ecosystem, such workflows/dataflows are
termed as ‘Integration Flows’. The IFE facilitates the lifecycle management, persistency,
and execution of the integration flows.

The integration flows are designed and implemented as directed graphs that have
‘processors’ at their vertices and the edges represent the direction of dataflow. The proces-
sors are of different types, depending upon the functionality they provide. For example,
the processors of type ‘Protocol Connector’ address the issue of interlinking the services
that use heterogeneous communication protocols, the processors of the type ‘Data Trans-
formation Processor’ provide means for transforming between data models and message
formats, etc. The edges that represent the flow of information support routing of data based on
certain parameters, e.g., path parameters and/or query parameters contained in the Uniform
Resource Locator (URL) path, Hypertext Transfer Protocol (HTTP) headers, etc.

An instance of the IFE should have in-built protocol connectors for standard commu-
nication protocols, which are widely used in the industry. Furthermore, it should have
in-built support for data transformation processors that make use of existing data trans-
formation languages such as extensible stylesheet language transformations (XSLT) [31].
The processors are the extension points of the IFE. For instance, to support a new protocol,
a new protocol connector needs to be written and added to the IFE.

In addition, the IFE offers an intuitive, drag-and-drop style Web-based graphical user
interface (GUI) which can be used to create the integration flows based on the concepts
from visual programming [32] paradigm. The IFE and its GUI support multitenancy. The
GUI can be configured based on the defined access control policies to allow or restrict
visibility of and/or access to certain GUI elements. In addition, access control policies,
such as a user or a user group being able to view and manipulate only the integration
flows created by him/her/them, can also be defined, and enforced. Thus, the GUI of
the IFE supports multitenancy and enables collaboration among system integrator users
who create the integration flows. Moreover, the IFE supports standard authentication
protocols such as OpenID Connect (OIDC) to secure access to its GUI using a pluggable
authentication provider such as Keycloak [33]. This ensures authentication of the same
users from the EFS, the identity provider for EFPF.

Finally, to ensure high availability, throughput and low latency, an instance of the IFE
should be scalable and capable of operating in a clustered fashion.

4.1.2. Application Programming Interface (API) Security Gateway

The API security gateway (ASG) acts as the policy enforcement point (PEP) for the
Data Spine, enabling secure communication among platforms. The ASG intercepts all the
traffic to the Data Spine and invokes the security service ’EFPF Security Portal (EFS)’ for
authentication and authorization decisions. The ASG automatically creates reverse-proxy
endpoints for the API endpoints of services, which are registered in the Service Registry of
the Data Spine. Fine-grained access control policies for these proxy endpoints can then be
configured in the EFS.

Sensors 2021, 21, 4010 10 of 28

4.1.3. Service Registry

In a federated platform ecosystem, service discovery, integration and orchestration
should be possible across different platforms, enabling those platforms to achieve common
objectives. The service registry component of the Data Spine enables the service providers
in the EFPF ecosystem to register and advertise their services. It also enables the service
consumers or system integrator users to discover these services and retrieve their functional
and technical metadata, such as the API specifications. Figure 4 illustrates an abstract class
diagram for the service registry. The description of an abstract service schema is presented
in Table 2.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 29

of the Data Spine. Fine-grained access control policies for these proxy endpoints can then

be configured in the EFS.

4.1.3. Service Registry

In a federated platform ecosystem, service discovery, integration and orchestration

should be possible across different platforms, enabling those platforms to achieve com-

mon objectives. The service registry component of the Data Spine enables the service pro-

viders in the EFPF ecosystem to register and advertise their services. It also enables the

service consumers or system integrator users to discover these services and retrieve their

functional and technical metadata, such as the API specifications. Error! Reference source

not found. illustrates an abstract class diagram for the service registry. The description of

an abstract service schema is presented in Error! Reference source not found..

Figure 4. Abstract class diagram for the service registry.

Table 2. Abstract service description schema of the service registry.

{

 “id”: “<unique Id – custom Id or UUID>“,

 “type”: “string”,

 “meta”: {},

 “apis”: [{

 “id”: “string”,

 “url”: “<base URL of the API>“,

 “spec”: {

 “mediaType”: “<mediaType type of the API Spec document>“,

 “url”: “<URL to API Spec document>“

 },

 “meta”: {}

 }],

 “doc”: “<URL to service documentation>“,

 “createdAt”: “2020-12-30T15:46:36.793Z”,

 “updatedAt”: “2020-12-31T15:46:36.793Z”

}

The abstract class diagram for the service registry (Figure 4) shows composition re-

lationship between its classes. The notation ‘0..*’ in the diagram denotes ‘zero or more

instances’ of the concerned entity. As illustrated in the diagram, the ‘Catalog’ of the ser-

vice registry can have zero or more services, each ‘Service’ has zero or more APIs, and

each ‘API’ has exactly one ‘Spec’ (specification). Error! Reference source not found. fur-

ther shows the abstract schema for the Service object. The API Spec is obtained from an

API Spec document, which needs to conform to one of the following standards in order

to ensure uniformity across and completeness of API specifications:

 For synchronous (request-response) services: OpenAPI Specification [34];

 For asynchronous (Pub/Sub) services: AsyncAPI Specification [35].

Such design makes the schema capable of managing metadata for synchronous (re-

quest-response) as well as asynchronous (Pub/Sub) type of services. All the technical

metadata for the APIs of services that is needed for creating the integration flows, can be

obtained from the API Spec documents.

The ‘type’ field can be used to categorise the services by introducing a service type,

based on the functionality they offer. Any additional functional metadata related to the

services or the individual APIs can be stored in the respective ‘meta’ objects as key-value

Figure 4. Abstract class diagram for the service registry.

Table 2. Abstract service description schema of the service registry.

{
“id”: “<unique Id – custom Id or UUID>“,
“type”: “string”,
“meta”: {},
“apis”: [{

“id”: “string”,
“url”: “<base URL of the API>“,
“spec”: {

“mediaType”: “<mediaType type of the API Spec document>“,
“url”: “<URL to API Spec document>“

},
“meta”: {}

}],
“doc”: “<URL to service documentation>“,
“createdAt”: “2020-12-30T15:46:36.793Z”,
“updatedAt”: “2020-12-31T15:46:36.793Z”

}

The abstract class diagram for the service registry (Figure 4) shows composition
relationship between its classes. The notation ‘0..*’ in the diagram denotes ‘zero or more
instances’ of the concerned entity. As illustrated in the diagram, the ‘Catalog’ of the service
registry can have zero or more services, each ‘Service’ has zero or more APIs, and each
‘API’ has exactly one ‘Spec’ (specification). Table 2 further shows the abstract schema for
the Service object. The API Spec is obtained from an API Spec document, which needs
to conform to one of the following standards in order to ensure uniformity across and
completeness of API specifications:

• For synchronous (request-response) services: OpenAPI Specification [34];
• For asynchronous (Pub/Sub) services: AsyncAPI Specification [35].

Such design makes the schema capable of managing metadata for synchronous
(request-response) as well as asynchronous (Pub/Sub) type of services. All the tech-
nical metadata for the APIs of services that is needed for creating the integration flows, can
be obtained from the API Spec documents.

The ‘type’ field can be used to categorise the services by introducing a service type,
based on the functionality they offer. Any additional functional metadata related to the
services or the individual APIs can be stored in the respective ‘meta’ objects as key-value
pairs. Thus, the basic schema can be extended to include additional metadata for the entire
service or for a specific API. Moreover, the ‘doc’ field can be used to provide a link to
further service metadata documentation.

Sensors 2021, 21, 4010 11 of 28

4.1.4. Message Broker

The message broker enables asynchronous (Pub/Sub) communication in the EFPF
ecosystem. The factory connectors/IoT gateways installed in different factories publish
shop floor data as messages to the message broker to make the data available to the service
consumers or subscribers. The message broker supports multitenancy and fine-grained
access control.

The message broker provides interfaces for user and topic administration, manage-
ment, and monitoring. An instance of the message broker should have an in-built support
for standard Pub/Sub-based messaging protocols such as Message Queuing Telemetry
Transport (MQTT), Advanced Message Queuing Protocol (AMQP), etc., that are widely
used in the industry. In addition, the Message Broker can be extended to support new
protocols using a plugin mechanism.

4.1.5. European Factory Platform (EFPF) Security Portal (EFS)

In the EFPF ecosystem, each platform has its own identity and access management
solution, with defined and stored users, roles, policies, etc., for that platform. To en-
able collaboration and data exchange among the platforms, it should be possible for a
user/tool/service of one platform to call a service of another platform. An SSO functional-
ity needs to be enabled across all platforms in the EFPF ecosystem.

EFS is defined in [36] as the federated identity and access management layer that
bridges the “security interoperability” gaps between platforms in the EFPF ecosystem. It
federates the identity providers of all platforms in the EFPF ecosystem in order to enable
SSO functionality and enables users to seamlessly access tools and services from different
platforms using a single set of credentials.

The EFPF ecosystem is envisioned to be an extensible platform ecosystem. As de-
scribed in [36], providing a completely distributed, federated solution with login options
for all platforms in the Web portal of a single platform is not a scalable solution. Therefore,
EFS takes on the role of a central identity and access management solution for the EFPF
ecosystem and, the Web portal of each platform provides an additional “Login with EFPF”
option to allow logging in with an EFPF user account. Furthermore, the EFS together with
the ASG can be used to secure the API endpoints exposed by the integration flows.

Finally, to federate the identity provider of a new platform with the EFS, the roles and
access policies defined in the new platform’s identity provider need to be aligned with
those of the EFS. The EFPF ecosystem can also be extended by adding new tools/services
that do not belong to any platform and, hence, do not have their own identity provider. In
such a case, these services are added to the ‘EFPF platform’ and EFS directly acts as their
identity and access management solution.

4.2. The Data Spine Architecture and Components’ Interaction

Figure 5 illustrates the core conceptual components of the Data Spine, including the
relationships and interactions between them. Firstly, the access to the GUI of the IFE
is protected by the EFS. The ASG relies on the ‘policy enforcement service’ of the EFS
to make access control decisions. The ASG is configured to check the service registry
for new service registrations and updates to existing services periodically, in order to
automatically create secure proxy endpoints for protecting access to their APIs. The access
to the Representational state transfer (REST) API of the service registry is secured through
the proxy endpoints in the ASG. The service registry publishes service status announcement
related messages to the message broker.

The GUI of the IFE loads the built-in processors on start up. The users interconnect
the instances of these processors as required to create integration flows. The integration
flows are persisted in the iFlow repository of the IFE. The runtime access to the endpoints
exposed by the integration flows in the IFE is protected through the corresponding proxy
endpoints in the ASG after they are registered in the service registry.

Sensors 2021, 21, 4010 12 of 28

Sensors 2021, 21, x FOR PEER REVIEW 12 of 29

The GUI of the IFE loads the built-in processors on start up. The users interconnect

the instances of these processors as required to create integration flows. The integration

flows are persisted in the iFlow repository of the IFE. The runtime access to the endpoints

exposed by the integration flows in the IFE is protected through the corresponding proxy

endpoints in the ASG after they are registered in the service registry.

Error! Reference source not found. illustrates an integration flow that bridges the

interoperability gaps at the data model level, enabling communication between two ser-

vices, S1 and S2. The service provider’s service ‘S1′ exposes the API endpoint ‘EP1-a’ and

the service consumer’s service ‘S2′ intends to consume it. However, this cannot be done

directly due to the different data models that need to be transformed and aligned before-

hand. To enable communication, a new integration flow is created and run as follows:

1. Reusable built-in processors: The GUI displays the built-in processors.

2. Creation of the integration flow: The instances of these processors are added to the

workspace using ‘drag-and-drop action’ and interconnected as required to create the

integration flow.

3. Runtime operation of the integration flow: The integration flow performs the re-

quired data model transformation and exposes an “interoperability proxy” endpoint

of EP1-a called ‘EP1-b’. A secure proxy of EP1-b called ‘EP1-c’ is automatically cre-

ated in the ASG, which is then consumed by the service S2.

Thus, the use of visual drag-and-drop style GUI makes the creation of integration

flows easy and intuitive. As the built-in processors are reused for protocol connection and

data transformation, no source code needs to be written for the creation of integration

flows. The ASG automatically creates secure proxy endpoints for the APIs exposed by the

integration flows. These functionalities provided by the Data Spine take care of most of

the boilerplate code and enable the creation of integration flows with minimal coding ef-

fort. In this way, the components of the Data Spine work together to enable the integration

of and communication between the services of different platforms.

Figure 5. Detailed architecture of the Data Spine. Figure 5. Detailed architecture of the Data Spine.

Figure 6 illustrates an integration flow that bridges the interoperability gaps at the
data model level, enabling communication between two services, S1 and S2. The service
provider’s service ‘S1′ exposes the API endpoint ‘EP1-a’ and the service consumer’s service
‘S2′ intends to consume it. However, this cannot be done directly due to the different data
models that need to be transformed and aligned beforehand. To enable communication, a
new integration flow is created and run as follows:

1. Reusable built-in processors: The GUI displays the built-in processors.
2. Creation of the integration flow: The instances of these processors are added to the

workspace using ‘drag-and-drop action’ and interconnected as required to create the
integration flow.

3. Runtime operation of the integration flow: The integration flow performs the required
data model transformation and exposes an “interoperability proxy” endpoint of EP1-a
called ‘EP1-b’. A secure proxy of EP1-b called ‘EP1-c’ is automatically created in the
ASG, which is then consumed by the service S2.

Thus, the use of visual drag-and-drop style GUI makes the creation of integration
flows easy and intuitive. As the built-in processors are reused for protocol connection and
data transformation, no source code needs to be written for the creation of integration
flows. The ASG automatically creates secure proxy endpoints for the APIs exposed by the
integration flows. These functionalities provided by the Data Spine take care of most of the
boilerplate code and enable the creation of integration flows with minimal coding effort. In
this way, the components of the Data Spine work together to enable the integration of and
communication between the services of different platforms.

In summary, the Data Spine provides the following functionalities:

• Authentication, authorization and SSO;
• Service/API metadata lifecycle management and discovery;
• Infrastructure and tooling for protocol connection, data transformation, routing, and

system mediation;

Sensors 2021, 21, 4010 13 of 28

• Multitenant, Web-based, drag-and-drop style GUI for an easy and intuitive creation of
applications with minimal coding effort;

• Message brokering.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 29

Figure 6. Illustration of the creation and runtime operation of an integration flow.

In summary, the Data Spine provides the following functionalities:

 Authentication, authorization and SSO;

 Service/API metadata lifecycle management and discovery;

 Infrastructure and tooling for protocol connection, data transformation, routing, and

system mediation;

 Multitenant, Web-based, drag-and-drop style GUI for an easy and intuitive creation

of applications with minimal coding effort;

 Message brokering.

5. Reference Implementation of the Data Spine

Error! Reference source not found. lists the technological tools and services used to

realise the conceptual components of the Data Spine, their versions used for the deploy-

ment and URLs to their source code repositories. Error! Reference source not found. fur-

ther illustrates the relationships and interactions among these components and shows

how different synchronous and asynchronous services (S1, S2 and S3) interface with the

components of the Data Spine. The subsequent sections 5.1–5.5 introduce these technolo-

gies and their role in the EFPF ecosystem.

Table 3. Technologies used to realise the conceptual components of the Data Spine.

Conceptual Component Technology/Software Version Source Code

Integration Flow Engine Apache NiFi [37] 1.11.4 [38]

Application Programming

Interface (API) Security

Gateway

Apache APISIX [39] 2.3.0 [40]

Service Registry LinkSmart Service Catalog [41] 3.0.0-beta.1 [42]

Message Broker RabbitMQ [43] 3.8.5 [44]

EFPF Security Portal (EFS) Keycloak [33] 3.4.0 [45]

Figure 6. Illustration of the creation and runtime operation of an integration flow.

5. Reference Implementation of the Data Spine

Table 3 lists the technological tools and services used to realise the conceptual compo-
nents of the Data Spine, their versions used for the deployment and URLs to their source
code repositories. Figure 7 further illustrates the relationships and interactions among
these components and shows how different synchronous and asynchronous services (S1,
S2 and S3) interface with the components of the Data Spine. The subsequent Section 5.1,
Section 5.2, Section 5.3, Section 5.4, Section 5.5 introduce these technologies and their role
in the EFPF ecosystem.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 29

Figure 7. Reference implementation of the Data Spine.

5.1. Integration Flow Engine: Apache NiFi

The IFE of the EFPF ecosystem is built on top of Apache NiFi [37], a dataflow man-

agement platform based on the concepts of flow-based programming [30]. Apache NiFi

automates the flow of information between systems through directed graphs called data-

flows. The dataflows support communication, data routing, data transformation and sys-

tem mediation logic with the help of so-called ‘processors’. The processors are responsible

for handling data ingress, egress, routing, mediation, and transformation. Apache NiFi

offers a Web-based, multi-tenant, highly configurable, drag-and-drop style GUI for creat-

ing such dataflows. Error! Reference source not found. highlights the components of

Apache NiFi’s GUI and shows a sample dataflow. The Data Spine integration flows are

realised through the dataflows in Apache NiFi.

Figure 7. Reference implementation of the Data Spine.

Sensors 2021, 21, 4010 14 of 28

Table 3. Technologies used to realise the conceptual components of the Data Spine.

Conceptual Component Technology/Software Version Source Code

Integration Flow Engine Apache NiFi [37] 1.11.4 [38]

Application Programming
Interface (API) Security Gateway Apache APISIX [39] 2.3.0 [40]

Service Registry LinkSmart Service
Catalog [41] 3.0.0-beta.1 [42]

Message Broker RabbitMQ [43] 3.8.5 [44]

EFPF Security Portal (EFS) Keycloak [33] 3.4.0 [45]

5.1. Integration Flow Engine: Apache NiFi

The IFE of the EFPF ecosystem is built on top of Apache NiFi [37], a dataflow manage-
ment platform based on the concepts of flow-based programming [30]. Apache NiFi auto-
mates the flow of information between systems through directed graphs called dataflows.
The dataflows support communication, data routing, data transformation and system
mediation logic with the help of so-called ‘processors’. The processors are responsible for
handling data ingress, egress, routing, mediation, and transformation. Apache NiFi offers
a Web-based, multi-tenant, highly configurable, drag-and-drop style GUI for creating such
dataflows. Figure 8 highlights the components of Apache NiFi’s GUI and shows a sample
dataflow. The Data Spine integration flows are realised through the dataflows in Apache
NiFi.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 29

Figure 8. Components of Apache NiFi’s graphical user interface (GUI) and a sample workflow.

Moreover, Apache NiFi provides connectors for standard communication protocols

such as HTTP, MQTT, AMQP, etc., which are widely used in the manufacturing sector. In

addition, it provides support for data transformation through tools/languages such as Jolt

[46], XSLT [31], Java virtual machine (JVM) scripting languages, etc. Its functionality can

be extended by developing new custom processors. Apache NiFi also supports scaling-

out though the use of clustering to ensure high performance and availability.

5.2. API Security Gateway: Apache APISIX

The ASG of the EFPF ecosystem is built on top of Apache APISIX [39], a cloud-native,

high performance, dynamic microservices API gateway that supports API traffic manage-

ment features, such as reverse proxying, load balancing, authentication, dynamic routing,

dynamic upstream, hot plugin loading, service governance, etc.

In the EFPF ecosystem, Apache APISIX is deployed with two plugins: (1) Open ID

Connect plugin that provides token introspection functionality and (2) Policy Enforce-

ment plugin that enables Apache APISIX to delegate the authorization decisions to the

EFS. Moreover, the ASG checks the service registry of EFPF for new service registra-

tions/updates to existing services periodically and creates proxy routes automatically for

the registered service APIs.

5.3. Service Registry: LinkSmart Service Catalog

The Service Registry is realised using the LinkSmart Service Catalog (SC) [41]. The

SC is the entry point for Web services. Its functionality mainly covers the lifecycle man-

agement of services i.e., the registration, viewing, updating and deregistration of services’

metadata. In addition, it supports browsing of the service entries in its index page (Cata-

log) and provides a service filtering functionality that can be used by service consumers

to search services by known capabilities. The SC also offers an MQTT API for announcing

the service registration/deregistration events over predefined MQTT topics.

The schema of the SC is based on the abstract service registry schema (Error! Refer-

ence source not found.) and is capable of managing technical and functional metadata for

synchronous (request-response) as well as asynchronous (Pub/Sub) type of services.

5.4. Message Broker: RabbitMQ

Figure 8. Components of Apache NiFi’s graphical user interface (GUI) and a sample workflow.

Moreover, Apache NiFi provides connectors for standard communication protocols
such as HTTP, MQTT, AMQP, etc., which are widely used in the manufacturing sector. In
addition, it provides support for data transformation through tools/languages such as
Jolt [46], XSLT [31], Java virtual machine (JVM) scripting languages, etc. Its functionality can
be extended by developing new custom processors. Apache NiFi also supports scaling-out
though the use of clustering to ensure high performance and availability.

Sensors 2021, 21, 4010 15 of 28

5.2. API Security Gateway: Apache APISIX

The ASG of the EFPF ecosystem is built on top of Apache APISIX [39], a cloud-
native, high performance, dynamic microservices API gateway that supports API traffic
management features, such as reverse proxying, load balancing, authentication, dynamic
routing, dynamic upstream, hot plugin loading, service governance, etc.

In the EFPF ecosystem, Apache APISIX is deployed with two plugins: (1) Open ID
Connect plugin that provides token introspection functionality and (2) Policy Enforcement
plugin that enables Apache APISIX to delegate the authorization decisions to the EFS. More-
over, the ASG checks the service registry of EFPF for new service registrations/updates
to existing services periodically and creates proxy routes automatically for the registered
service APIs.

5.3. Service Registry: LinkSmart Service Catalog

The Service Registry is realised using the LinkSmart Service Catalog (SC) [41]. The SC
is the entry point for Web services. Its functionality mainly covers the lifecycle management
of services i.e., the registration, viewing, updating and deregistration of services’ metadata.
In addition, it supports browsing of the service entries in its index page (Catalog) and
provides a service filtering functionality that can be used by service consumers to search
services by known capabilities. The SC also offers an MQTT API for announcing the service
registration/deregistration events over predefined MQTT topics.

The schema of the SC is based on the abstract service registry schema (Table 2) and is
capable of managing technical and functional metadata for synchronous (request-response)
as well as asynchronous (Pub/Sub) type of services.

5.4. Message Broker: RabbitMQ

RabbitMQ [43], a message-oriented middleware that implements AMQP 0-9-1, is
used to realise the Message Broker of the Data Spine. RabbitMQ supports AMQP 0-9-1
inherently and MQTT/MQTTS via a plugin. It also supports STOMP (simple (or stream-
ing) text-orientated messaging protocol), AMQP 1.0, HTTP and WebSockets. RabbitMQ
provides a management GUI and an HTTP-based API for administration, management
and monitoring of channels/topics, users, dataflow stats, etc., via a plugin. RabbitMQ
also supports multi-tenant authorization with the help of ‘virtual hosts’ which enable
logical grouping and separation of resources such as connections, exchanges, queues,
bindings, user permissions, policies, etc. RabbitMQ supports clustered deployment for
high availability and throughput. It supports extension of functionality through the use of
plugins.

5.5. EFS: Keycloak and Other Microservices

The role of EFS in the EFPF ecosystem is to manage users, roles, policies, etc., using
Keycloak [33], which is an open-source Identity and Access Management solution. Key-
cloak makes use of the OpenID Connect protocol [47], which is an authentication layer on
the top of OAuth 2.0 authorization protocol [48]. Keycloak of the EFS is added as a trusted
identity provider in the identity providers of all the platforms with the aim to enable SSO
across the EFPF ecosystem. This further enables creation of linked EFS users in the identity
providers of the platforms in the EFS ecosystem [36].

EFS makes use of a microservice called the ‘policy enforcement service’ to enforce the
policies defined in Keycloak. The ASG invokes the API of the Policy Enforcement Service
for authentication and authorization related decisions.

6. Service Integration through the Data Spine

The EFPF ecosystem can be extended in two different ways: (1) by adding new
platforms that have their own identity providers and, (2) by adding new tools/services
to the EFPF platform which uses the EFS as its identity provider. Integration of a new
platform with the EFPF ecosystem needs integration of its identity and access management

Sensors 2021, 21, 4010 16 of 28

solution with the EFS as explained in Section 4.1.5. In the latter case of adding a new
service to the EFPF platform, a secure proxy API for the service needs to be created and the
access control policies for this secure proxy API need to be defined in the EFS. This section
focuses on this latter case. It lists the activities that the service providers are required to
do in order to provide their services through the Data Spine and the activities the service
consumers are required to do in order to consume the services provided through the Data
Spine. These design-time aspects become the prerequisites to enabling communication
through the Data Spine.

While the Data Spine supports synchronous as well as asynchronous communication
paradigms, it is agnostic to the communication patterns employed by the composite appli-
cations developed or integrated through it. The decision of which communication pattern
to use is made by the providers of tools/services or the developers of composite applica-
tions. The design-time service integration activities depend upon the communication mode
used. Therefore, the following subsections discuss both ‘synchronous communication’ and
‘asynchronous communication’ in more details.

6.1. Synchronous Communication

Figure 9 shows how provider1′s service ‘PS1′ and consumer1′s service ‘CS1′ interact
with the components of the Data Spine to provide and consume services, respectively. The
actions to be performed for service provision and consumption through the Data Spine are
described below.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 29

Figure 9. Synchronous services’ integration through the Data Spine.

Prerequisites:

 The service provider ‘provider1′ and service consumer ‘consumer1′ are both EFS us-

ers.

 provider1 and consumer1 have the necessary permissions required to access the ser-

vice registry.

Design-time service integration activities:

1. Service Registration: provider1 registers his/her service ‘PS1′ to the service registry

with an appropriate service ‘type’ (e.g., ‘platform1.marketplace-service’). Let us as-

sume that PS1′s REST API endpoint is ‘EP1′.

2. Creation of a Secure Proxy API: The ASG checks for new service registrations/up-

dates to existing services in the service registry periodically, and automatically cre-

ates a secure proxy API endpoint/route ‘EP1P’ for EP1 in ASG.

3. Access Configuration: An EFPF administrator user defines/configures the access per-

missions for accessing EP1P in the EFS.

4. Service Lookup and Metadata Retrieval: consumer1 uses service registry’s filtering

API to find PS1, decides to consume it, and retrieves its technical metadata including

its API spec from the service registry.

5. Access Configuration: consumer1 requests for and acquires the necessary access per-

missions to invoke EP1P.

6. Access Configuration: consumer1 requests for and acquires the necessary access per-

missions to create integration flows in the IFE.

7. Integration Flow Creation: consumer1 creates an integration flow using the GUI of

the IFE that invokes EP1′s secure proxy endpoint EP1P, performs data transformation

to align request/response payload to its own data model/format, and finally creates

and exposes an “interoperability-proxy” endpoint EP1P-C for EP1P.

8. Service/API Registration: consumer1 registers this new EP1P-C API endpoint to the

Service Registry.

9. Creation of a Secure Proxy API: ASG automatically creates a secure proxy API end-

point EP1P-CP for EP1P-C.

Figure 9. Synchronous services’ integration through the Data Spine.

Prerequisites:

• The service provider ‘provider1′ and service consumer ‘consumer1′ are both EFS
users.

• provider1 and consumer1 have the necessary permissions required to access the
service registry.

Design-time service integration activities:

1. Service Registration: provider1 registers his/her service ‘PS1′ to the service registry
with an appropriate service ‘type’ (e.g., ‘platform1.marketplace-service’). Let us
assume that PS1′s REST API endpoint is ‘EP1′.

Sensors 2021, 21, 4010 17 of 28

2. Creation of a Secure Proxy API: The ASG checks for new service registrations/updates
to existing services in the service registry periodically, and automatically creates a
secure proxy API endpoint/route ‘EP1P’ for EP1 in ASG.

3. Access Configuration: An EFPF administrator user defines/configures the access
permissions for accessing EP1P in the EFS.

4. Service Lookup and Metadata Retrieval: consumer1 uses service registry’s filtering
API to find PS1, decides to consume it, and retrieves its technical metadata including
its API spec from the service registry.

5. Access Configuration: consumer1 requests for and acquires the necessary access
permissions to invoke EP1P.

6. Access Configuration: consumer1 requests for and acquires the necessary access
permissions to create integration flows in the IFE.

7. Integration Flow Creation: consumer1 creates an integration flow using the GUI of
the IFE that invokes EP1′s secure proxy endpoint EP1P, performs data transformation
to align request/response payload to its own data model/format, and finally creates
and exposes an “interoperability-proxy” endpoint EP1P-C for EP1P.

8. Service/API Registration: consumer1 registers this new EP1P-C API endpoint to the
Service Registry.

9. Creation of a Secure Proxy API: ASG automatically creates a secure proxy API end-
point EP1P-CP for EP1P-C.

10. Access Configuration: consumer1 requests for and acquires the necessary access
permissions to invoke EP1P-CP.

11. Integration Complete: provider1′s service PS1 and consumer1′s service CS1 are now
integrated through the Data Spine and CS1 can start invoking PS1 and obtain a
response in the format required by it as illustrated in Figure 10.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 29

10. Access Configuration: consumer1 requests for and acquires the necessary access per-

missions to invoke EP1P-CP.

11. Integration Complete: provider1′s service PS1 and consumer1′s service CS1 are now in-

tegrated through the Data Spine and CS1 can start invoking PS1 and obtain a response
in the format required by it as illustrated in Error! Reference source not found..

Figure 10. Example of synchronous communication workflow through the Data Spine.

6.2. Asynchronous Communication

Error! Reference source not found. shows how publisher1′s service ‘pub1′ and sub-

scriber1′s service ‘sub1′ interact with the components of the Data Spine to provide and

consume services, respectively. The actions to be performed for service provision and con-

sumption through the Data Spine are described below.

Figure 10. Example of synchronous communication workflow through the Data Spine.

Sensors 2021, 21, 4010 18 of 28

6.2. Asynchronous Communication

Figure 11 shows how publisher1′s service ‘pub1′ and subscriber1′s service ‘sub1′ inter-
act with the components of the Data Spine to provide and consume services, respectively.
The actions to be performed for service provision and consumption through the Data Spine
are described below.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 29

Figure 11. Asynchronous services’ integration through Data Spine.

Prerequisites:

 The service provider ‘provider1′ and service consumer ‘consumer1′ are both EFS us-

ers.

 provider1 and consumer1 have the necessary permissions required to access the ser-

vice registry.

Design-time service integration activities:

1. Access Configuration: publisher1 requests for and acquires the necessary access per-

missions to publish to the message broker over topic ‘p1/topic1′.

2. Publisher Configuration: publisher1 configures his/her service ‘pub1′ to publish to

the message broker over the topic ‘p1/topic1′.

3. Service Registration: publisher1 registers pub1 that consists of this Pub/Sub API con-

taining its publication information to the service registry.

4. Service Lookup and Metadata Retrieval: subscriber1 uses service registry’s filtering

API to find pub1, decides to subscribe to pub1′s topic ‘p1/topic1′ and retrieves the

technical metadata for pub1 including its API spec from the service registry.

5. Access Configuration: subscriber1 requests for and acquires the necessary access per-

missions to subscribe to p1/topic1 and to publish back to the message broker over a

new topic ‘s1/topic1′.

6. Access Configuration: subscriber1 requests for and acquires the necessary access per-

missions to create integration flows in the IFE.

7. Integration Flow Creation: subscriber1 creates an integration flow using the GUI of

the IFE to subscribe to p1/topic1, perform data model transformation to align the

message payload to its own data model/format, and finally to publish the resulting

data to the message broker over the topic s1/topic1.

8. Service Registration: subscriber1 registers his/her service with the APIs containing its

subscription and publication information to the service registry.

9. Integration Complete: publisher1′s service pub1 and consumer1′s service sub1 are

now integrated through the Data Spine and, sub1 can subscribe to the topic s1/topic1

and obtain data in the format required by it as illustrated in Error! Reference source

Figure 11. Asynchronous services’ integration through Data Spine.

Prerequisites:

• The service provider ‘provider1′ and service consumer ‘consumer1′ are both EFS
users.

• provider1 and consumer1 have the necessary permissions required to access the
service registry.

Design-time service integration activities:

1. Access Configuration: publisher1 requests for and acquires the necessary access
permissions to publish to the message broker over topic ‘p1/topic1′.

2. Publisher Configuration: publisher1 configures his/her service ‘pub1′ to publish to
the message broker over the topic ‘p1/topic1′.

3. Service Registration: publisher1 registers pub1 that consists of this Pub/Sub API
containing its publication information to the service registry.

4. Service Lookup and Metadata Retrieval: subscriber1 uses service registry’s filtering
API to find pub1, decides to subscribe to pub1′s topic ‘p1/topic1′ and retrieves the
technical metadata for pub1 including its API spec from the service registry.

5. Access Configuration: subscriber1 requests for and acquires the necessary access
permissions to subscribe to p1/topic1 and to publish back to the message broker over
a new topic ‘s1/topic1′.

6. Access Configuration: subscriber1 requests for and acquires the necessary access
permissions to create integration flows in the IFE.

7. Integration Flow Creation: subscriber1 creates an integration flow using the GUI of
the IFE to subscribe to p1/topic1, perform data model transformation to align the
message payload to its own data model/format, and finally to publish the resulting
data to the message broker over the topic s1/topic1.

8. Service Registration: subscriber1 registers his/her service with the APIs containing
its subscription and publication information to the service registry.

Sensors 2021, 21, 4010 19 of 28

9. Integration Complete: publisher1′s service pub1 and consumer1′s service sub1 are
now integrated through the Data Spine and, sub1 can subscribe to the topic s1/topic1
and obtain data in the format required by it as illustrated in Figure 12.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 29

Figure 12. Example of asynchronous communication workflow through the Data Spine.

7. Examples of Dataflow through the Data Spine
This section describes both synchronous and asynchronous dataflow through the

Data Spine using two use case examples related to the EFPF ecosystem: integrated mar-
ketplace, and anomaly detection and alerting.

7.1. Synchronous Dataflow Use Case in the EFPF Ecosystem: Integrated Marketplace
Figure 13 illustrates the realisation of an integrated marketplace for the EFPF ecosys-

tem that displays an aggregated list of products and services from all the connected plat-
forms. The integrated marketplace obtains this list of products and services from the mar-
ketplace services of the connected platforms through the Data Spine and displays them
onto the integrated marketplace GUI. In this use case, the data model and security interop-
erability functionalities of the Data Spine are utilised. For the sake of simplicity, Figure 13
displays only two connected platforms: COMPOSITION and NIMBLE.

To obtain the list of products and services, the integrated marketplace’s GUI initiates
a call to its backend. The backend queries the service registry for services of type ‘market-
place’ and retrieves the API endpoints for the marketplace services of COMPOSITION
and NIMBLE platforms. It then invokes these services through the integration flows cre-
ated in the IFE and obtains a response. The data models of responses from these market-
place services are transformed to conform to the integrated marketplace’s data model
through the integration flows. Finally, the integrated marketplace’s backend aggregates
the responses, and hands over the aggregated list of products and services to the GUI
which then displays it.

Figure 12. Example of asynchronous communication workflow through the Data Spine.

7. Examples of Dataflow through the Data Spine

This section describes both synchronous and asynchronous dataflow through the Data
Spine using two use case examples related to the EFPF ecosystem: integrated marketplace,
and anomaly detection and alerting.

7.1. Synchronous Dataflow Use Case in the EFPF Ecosystem: Integrated Marketplace

Figure 13 illustrates the realisation of an integrated marketplace for the EFPF ecosys-
tem that displays an aggregated list of products and services from all the connected
platforms. The integrated marketplace obtains this list of products and services from the
marketplace services of the connected platforms through the Data Spine and displays
them onto the integrated marketplace GUI. In this use case, the data model and security
interoperability functionalities of the Data Spine are utilised. For the sake of simplicity,
Figure 13 displays only two connected platforms: COMPOSITION and NIMBLE.

To obtain the list of products and services, the integrated marketplace’s GUI initiates
a call to its backend. The backend queries the service registry for services of type ‘market-
place’ and retrieves the API endpoints for the marketplace services of COMPOSITION and
NIMBLE platforms. It then invokes these services through the integration flows created
in the IFE and obtains a response. The data models of responses from these marketplace
services are transformed to conform to the integrated marketplace’s data model through
the integration flows. Finally, the integrated marketplace’s backend aggregates the re-
sponses, and hands over the aggregated list of products and services to the GUI which
then displays it.

Sensors 2021, 21, 4010 20 of 28Sensors 2021, 21, x FOR PEER REVIEW 21 of 29

Figure 13. Realisation of an integrated marketplace solution in the EFPF ecosystem.

7.2. Asynchronous Dataflow Use Case in the EFPF Ecosystem: Anomaly Detection and Alerting

Error! Reference source not found. illustrates the realisation of a composite applica-

tion that performs data analysis to detect anomalies and triggers an alert on detection of

an anomaly.

In this example, an IoT Gateway installed at a factory collects shop floor data with

the help of sensors and publishes it to the message broker of the Data Spine. Through the

pre-configured integration flows, this data is transformed to align with the analytics ser-

vice’s data model, and it is published again to the message broker over a new topic. The

analytics service subscribes to this new topic and obtains the data. It then analyses the

data to identify possible anomalies, that can further be used for predictive maintenance,

fault detection, optimization of a production process, or detection of a safety related risk,

etc. Once the analytics service identifies an anomaly, it publishes the data for an alert to

be triggered to the message broker. Again, through another pre-configured integration

flow, this data is transformed to align with the alerting service’s data model and is pub-

lished to the message broker over a new topic. The alerting service subscribes to this new

topic, gets the data, and triggers an alert. Thus, such a set of tools and services from dif-

ferent platforms can be used to realise a composite application in the EFPF ecosystem

through the Data Spine.

Figure 13. Realisation of an integrated marketplace solution in the EFPF ecosystem.

7.2. Asynchronous Dataflow Use Case in the EFPF Ecosystem: Anomaly Detection and Alerting

Figure 14 illustrates the realisation of a composite application that performs data
analysis to detect anomalies and triggers an alert on detection of an anomaly.

In this example, an IoT Gateway installed at a factory collects shop floor data with
the help of sensors and publishes it to the message broker of the Data Spine. Through
the pre-configured integration flows, this data is transformed to align with the analytics
service’s data model, and it is published again to the message broker over a new topic. The
analytics service subscribes to this new topic and obtains the data. It then analyses the data
to identify possible anomalies, that can further be used for predictive maintenance, fault
detection, optimization of a production process, or detection of a safety related risk, etc.
Once the analytics service identifies an anomaly, it publishes the data for an alert to be
triggered to the message broker. Again, through another pre-configured integration flow,
this data is transformed to align with the alerting service’s data model and is published
to the message broker over a new topic. The alerting service subscribes to this new topic,
gets the data, and triggers an alert. Thus, such a set of tools and services from different
platforms can be used to realise a composite application in the EFPF ecosystem through
the Data Spine.

Sensors 2021, 21, 4010 21 of 28Sensors 2021, 21, x FOR PEER REVIEW 22 of 29

Figure 14. Realisation of a composite anomaly detection and alerting application in the EFPF ecosystem.

8. Validation and Results

In this section, we evaluate the performance of the Data Spine approach by using the

integrated marketplace use case example described in Section 7.1. In the realisation of the

integrated marketplace solution, the Data Spine enables invoking the endpoints of the

base platforms’ marketplace services with a single set of EFPF credentials and facilitates

the data model transformation process. Without the Data Spine, in the traditional ap-

proach, the developer of the integrated marketplace needs to obtain user accounts for each

of the base platforms, use those separate sets of credentials for invoking the individual

marketplace services of the base platforms and write additional source code to perform

the data model transformation locally. If specialised data model transformation tools are

used locally, their deployment also needs to be managed separately. The high-level work-

flows and API calls required for getting a response from the base platforms’ marketplace

services in the format expected by the integrated marketplace for (a) the traditional ap-

proach, and (b) the Data Spine approach are shown in Error! Reference source not found..

We performed a quantitative evaluation of both approaches where the response

times were measured as a sum of the time taken for calling NIMBLE platform’s market-

place service and for transforming the response to adhere to the Integrated Marketplace’s

data model. The integrated marketplace applications were realised as Java programs that

recorded the response times. The Data Spine components were realised using the technol-

ogies elaborated in Section 5. Apache NiFi, LinkSmart Service Catalog and RabbitMQ

were deployed on a machine with 2 vCPUs and 8 GiB RAM alongside 5 other Docker

containers. Apache APISIX and Keycloak were deployed on another machine at a differ-

ent physical location with 4 vCPUs and 16 GiB RAM alongside 14 other Docker containers.

To minimise the impact of public network traffic variations, the experiment was repeated

500 times for each of the two approaches and the average response times were calculated.

For approach (a), the average response time was 192.36 ms, whereas for (b), it was 228.03

ms. This overhead of 35.67 ms relates to the two additional proxy endpoints introduced

in the Data Spine approach as highlighted inError! Reference source not found.. We plan

Figure 14. Realisation of a composite anomaly detection and alerting application in the EFPF ecosystem.

8. Validation and Results

In this section, we evaluate the performance of the Data Spine approach by using the
integrated marketplace use case example described in Section 7.1. In the realisation of the
integrated marketplace solution, the Data Spine enables invoking the endpoints of the base
platforms’ marketplace services with a single set of EFPF credentials and facilitates the data
model transformation process. Without the Data Spine, in the traditional approach, the
developer of the integrated marketplace needs to obtain user accounts for each of the base
platforms, use those separate sets of credentials for invoking the individual marketplace
services of the base platforms and write additional source code to perform the data model
transformation locally. If specialised data model transformation tools are used locally, their
deployment also needs to be managed separately. The high-level workflows and API calls
required for getting a response from the base platforms’ marketplace services in the format
expected by the integrated marketplace for (a) the traditional approach, and (b) the Data
Spine approach are shown in Figure 15.

We performed a quantitative evaluation of both approaches where the response times
were measured as a sum of the time taken for calling NIMBLE platform’s marketplace
service and for transforming the response to adhere to the Integrated Marketplace’s data
model. The integrated marketplace applications were realised as Java programs that
recorded the response times. The Data Spine components were realised using the tech-
nologies elaborated in Section 5. Apache NiFi, LinkSmart Service Catalog and RabbitMQ
were deployed on a machine with 2 vCPUs and 8 GiB RAM alongside 5 other Docker
containers. Apache APISIX and Keycloak were deployed on another machine at a different
physical location with 4 vCPUs and 16 GiB RAM alongside 14 other Docker containers.
To minimise the impact of public network traffic variations, the experiment was repeated
500 times for each of the two approaches and the average response times were calculated.
For approach (a), the average response time was 192.36 ms, whereas for (b), it was 228.03

Sensors 2021, 21, 4010 22 of 28

ms. This overhead of 35.67 ms relates to the two additional proxy endpoints introduced in
the Data Spine approach as highlighted in Figure 15. We plan to reduce this overhead by
deploying all the components of Data Spine at the same local network and by optimising
the resource allocation further. Moreover, approach (a) requires getting an access token
from every connected platform separately and managing those. Thus, the total response
time (time taken for getting the required access tokens plus time taken for calling the
services and performing the data model transformation) increases with increase in the
number of platforms involved in the composite application. By contrast, in approach (b),
only one API call to the EFS is needed to obtain an EFPF access token, reducing the total
response time significantly.

Sensors 2021, 21, x FOR PEER REVIEW 23 of 29

to reduce this overhead by deploying all the components of Data Spine at the same local

network and by optimising the resource allocation further. Moreover, approach (a) re-

quires getting an access token from every connected platform separately and managing

those. Thus, the total response time (time taken for getting the required access tokens plus

time taken for calling the services and performing the data model transformation) in-

creases with increase in the number of platforms involved in the composite application.

By contrast, in approach (b), only one API call to the EFS is needed to obtain an EFPF

access token, reducing the total response time significantly.

Figure 15. High-level workflows and API calls for realising the integrated marketplace solution: (a) the traditional ap-

proach, and (b) the Data Spine approach.

9. Discussion

The Data Spine is designed and implemented as a federated platform enabler for es-

tablishing the EFPF ecosystem, based on the integration, interoperability, and federation

requirements, as summarised in Section 3. In this section, we present a summary of archi-

tectural considerations, implications and evaluation based on the requirements and from

the perspectives of the providers and consumers of smart factory platforms, tools, ser-

vices, and system integrator users (i.e., usability and multitenancy, platform integration

efforts, etc.). This is followed by the discussion on the federated interoperability approach

in the Data Spine implementation.

9.1. Summary of Architectural Considerations, Implications, and Evaluation

 Interoperability: The Data Spine bridges the interoperability gaps between services

mainly at three different levels:

o Protocol Interoperability: The Data Spine supports two communication pat-

terns:

1. Synchronous (request-response) pattern

2. Asynchronous (Pub/Sub) pattern

While the Data Spine supports standard application layer protocols that are

widely used in the industry, it employs an easily extensible mechanism for the

Figure 15. High-level workflows and API calls for realising the integrated marketplace solution: (a) the traditional approach,
and (b) the Data Spine approach.

9. Discussion

The Data Spine is designed and implemented as a federated platform enabler for
establishing the EFPF ecosystem, based on the integration, interoperability, and federation
requirements, as summarised in Section 3. In this section, we present a summary of
architectural considerations, implications and evaluation based on the requirements and
from the perspectives of the providers and consumers of smart factory platforms, tools,
services, and system integrator users (i.e., usability and multitenancy, platform integration
efforts, etc.). This is followed by the discussion on the federated interoperability approach
in the Data Spine implementation.

9.1. Summary of Architectural Considerations, Implications, and Evaluation

• Interoperability: The Data Spine bridges the interoperability gaps between services
mainly at three different levels:

Protocol Interoperability: The Data Spine supports two communication pat-
terns:

1. Synchronous (request-response) pattern
2. Asynchronous (Pub/Sub) pattern

While the Data Spine supports standard application layer protocols that are
widely used in the industry, it employs an easily extensible mechanism for the

Sensors 2021, 21, 4010 23 of 28

inclusion of new protocols. To support lower layer protocols and other IoT
networking technologies (e.g., ZigBee, ZWave, BLE, etc.), the Data Spine relies
on IoT gateways.

Data Model Interoperability: The Data Spine provides the necessary digital
infrastructure and tooling support to transform between the message formats,
data structures and data models of different services thereby bridging the
interoperability gaps for data transfer.

Security Interoperability: The EFS component of the Data Spine facilitates the
federated security and SSO capability in the EFPF ecosystem.
Furthermore, the mismatch in the interaction approaches followed by different
IoT platforms can result in interoperability gaps between them. For example,
the services of one platform might expect separate steps for discovery and
accessing data, while the services of another platform might provide a querying
functionality to retrieve data such that no separate discovery step is needed.
Such interoperability gaps between platforms at the levels of “interaction
approaches” can be bridged using integration flows for aligning the interactions
and the service registry for an additional discovery step, if it is needed.

• Federation approach: The EFPF ecosystem architecture follows a federation approach,
where the interoperability between different tools/services is established “on-demand”
i.e., when required by a use case through an integration flow. As there is no common
data model or format imposed, there is no overhead for the system administrators
of maintaining such a complex canonical model and on the services to understand
it and adhere to it. On the downside, the services are required to create integration
flows to interoperate and communicate with each other, in contrast to the interoper-
ability approaches where the services adhere to a common data model defined by the
ecosystem and thus, there is no additional overhead of data transformation.

• Agility and flexibility: The use of the Data Spine, and the integration flows in par-
ticular, to establish interoperability allows the tools/services to be loosely coupled.
This allows the tools/services to have neutral APIs not strongly tied to any specific
implementation and provides the flexibility to different tools/services to evolve inde-
pendently. The reliance on APIs as contracts between service providers and service
consumers is a standard practice; however, successful collaboration depends upon the
former adhering to the semantic versioning [49] standard recommended by the EFPF
ecosystem to version their APIs and conveying plans to deprecate/upgrade their APIs
to the latter in advance.

• Usability and multitenancy: The Data Spine provides an intuitive, drag-and-drop
style GUI to the system integrator users to create integration flows with minimal effort.
The collaboration of work concerning a particular integration flow among different
users is easy to manage as the Data Spine provides a Web-based GUI for creating
integration flows. In addition, it provides a multi-tenant authorization capability that
enables different groups of users to command, control, and observe different parts of
the integration flows, with different levels of authorization.

• Built-in functionality and tool/service integration effort: The Data Spine provides
connectors for standard communication protocols such as HTTP, MQTT, AMQP, etc.,
that are widely used in the manufacturing sector. In order to enable transformations
among different data models, it provides data transformation processors. For instance,
the technology ‘Apache NiFi’ used to realise the IFE provides processors such as
JoltTransformJSON, TransformXml, ExecuteScript, ReplaceText, ConvertRecord, etc.,
for performing data transformation [50]. Thus, the Data Spine takes care of the
boilerplate code and facilitates the system integrator users for integrating their services
by configuring only the service-specific parts of the integration flows with minimal
coding effort.

• Platform integration effort: The Data Spine is a cloud-based solution, and therefore,
no local deployments are needed to integrate platforms through it. Integration of a

Sensors 2021, 21, 4010 24 of 28

platform with the EFPF ecosystem needs alignment of the security roles and access
control policies of the platform with those of the ecosystem, registration of its services
and creation of integration flows for providing/consuming services.

• API management: The system integrator users need to refer to the API specifications
of services to create integration flows. The Data Spine provides a service registry
component to store and retrieve service metadata including the API specifications. To
ensure uniformity across and completeness of the API specifications, the EFPF ecosys-
tem recommends the use of OpenAPI Specification [34] standard for specifying the
APIs of services that follow synchronous (request-response) communication pattern
and AsyncAPI specification [35] standard for specifying APIs of services that follow
asynchronous (Pub/Sub) communication pattern. Thus, this implies that the service
providers need to register their services to the service registry and follow the proposed
standards to specify the APIs of their services.

• Modularity and extensibility: The architecture of the Data Spine has been designed
with modularity and extensibility in mind to meet the need for incorporating new tools,
services, and platforms in the EFPF ecosystem with minimal effort. The components
of the Data Spine are modular in nature and communicate with each other through
standard interfaces and protocols. Support for new functionality such as protocols can
be added by developing new processors/plugins. In this way, the Data Spine adheres
to common industry standards and follows a modular approach to enable the creation
of a modular, flexible, and extensible ecosystem.

• Performance, scalability, and availability: The EFPF ecosystem makes it easy to
integrate new tools/services through the use of Data Spine and promotes reusability.
To ensure high performance, high throughput and high availability, the performance
critical components of the Data Spine have the capability to operate within a cluster.

• Maintainability: The loosely coupled and modular nature of the EFPF ecosystem
helps significantly towards its maintainability. A high-quality user documentation
of the Data Spine and the smart factory services and tools in the EFPF ecosystem has
been published on the ‘EFPF Documentation Portal’ [51].

9.2. EFPF Federated Interoperability Approach

From the discussion in the previous section, it is evident that the Data Spine approach
aligns closely with the ‘federated approach’ defined by the CEN/ISO 11354 Framework
for Enterprise Interoperability [12,13] that is introduced in Section 2. The ‘integrated
interoperability approach’ is suitable for a small platform, typically owned and maintained
by a single company, in cases where a tight control over the API and the data model
is possible. The integrated interoperability approach for small platforms offers better
performance, as there is no additional overhead of data transformation. However, this
approach does not scale well with the increasing number of tools or services and, therefore,
it would not be suitable for an IoT ecosystem consisting of numerous IoT platforms, tools
and services provided by different companies.

The ‘unified interoperability approach’ makes use of a common, shared, non-executable
metadata model at the ecosystem level and the connected platforms, tools, and services
need to adhere to it. The use of a common metadata model makes the process of data
transformation easier and less error prone. However, the creation and maintenance of a
common metadata model is a very complex task, and its complexity increases with the
increasing number of platforms, tools, and services joining the platform ecosystem. In
addition, the process of connecting a new platform with the ecosystem becomes more
tedious, as it involves mapping of the metadata model of the platform with that of the
platform ecosystem. If there are conflicting concepts, the platform’s metadata model might
have to be adjusted before it can be integrated with the ecosystem. To tackle the complexity
of creating and maintaining such a canonical meta-model, some approaches such as the
BIG IoT project [19] make use of community maintained vocabularies such as schema.org
as a basis of their metadata models.

Sensors 2021, 21, 4010 25 of 28

The ‘federated interoperability approach’ does not impose the use of a common
data model or format and thus, the interoperability needs to be established “on the fly”.
To overcome the interoperability gaps at the data level, the parties need to share their
ontologies. However, as noted by Schneider, et al. in [18], very few IoT platforms provide
formally defined ontologies and due to the lack of familiarity with the Semantic Web
technologies, many of the IoT platform owners or providers seem to find it challenging to
create such models for their platforms.

The Data Spine approach captures the service/API metadata using standard API
specifications. While the Data Spine does not restrict the platform providers to provide
documentation of their data models in any specific format, it is agnostic to these formats.
The Data Spine can, therefore, be extended to treat the metadata provided in the form of
formally defined ontologies differently, so that ontology matching/mapping tools can be
used to make the process of data transformation easier. In addition, the EFPF ecosystem
can recognize and recommend the use of standard data models specific to the type of data
(e.g., OGC (Open Geospatial Consortium) SensorThings [52] for sensor data) or the domain.
Moreover, for extending the connectivity options and for making the process of data model
transformation easier, new protocol connectors and intuitive data transformation tools
can be added to the Data Spine. Finally, the process of creation of composite applications
using the tools and services that make use of standards and provide formally defined
specifications of APIs and data models can be automated to a higher degree.

10. Conclusions and Future Work

Today’s IoT platforms are largely designed as closed, vertically oriented silos with
high entry barriers for joining, which hinders overall innovation, market, and economic po-
tentials of digital platforms. Online platforms are seen as stronger drivers in digital society
and economy [53] and the creation of innovative, cross-platform solutions and platform
ecosystems that offer more added value and transparency is, therefore, necessary. This
also requires bridging the interoperability gaps and enabling cross-platform collaboration
among existing heterogeneous IoT platforms.

In this paper, we identified the integration, interoperability, and federation require-
ments for establishing an IoT platform ecosystem and discussed the design and imple-
mentation of a federated platform enabler called Data Spine. The Data Spine provides
the functionality to federate the identity providers of different platforms, enables SSO
functionality at the ecosystem-level and supports interoperability among the services of
different platforms, thereby enabling the creation of an extendable ecosystem called EFPF.
The Data Spine provides the technological infrastructure for an easy and intuitive creation
of cross-platform applications with minimal coding effort. We described the methodology
for the integration of synchronous (request-response) as well as asynchronous (Pub/Sub)
type of services through the Data Spine from the perspectives of both the service providers
and the service consumers. We explained dataflow through the Data Spine using two
common use cases from the manufacturing domain. We presented a quantitative evalu-
ation of the Data Spine approach which demonstrated that it offers all the above-listed
advantages over the traditional approach where the users must join multiple platforms
separately to avail the benefits, at the cost of a reasonable performance overhead, which
can be minimized further by fine tuning the deployments and resource allocation. The
performance of the Data Spine approach can even be better than the traditional approach
in the cases of composite applications involving multiple platforms, as the former requires
obtaining only a single access token, whereas the latter requires obtaining as many access
tokens as the number of platforms involved in the creation of the composite application.

The current implementation of the EFPF ecosystem is based on four business to
business (B2B) platforms focused on supply chains and logistics [5]. The EFPF ecosystem
is designed as an extendable solution, ready to integrate new external platforms and
their tools/services with the aim to achieve the full implementation stability and market
readiness in the future. In the future, we plan to extend the Data Spine to make use of

Sensors 2021, 21, 4010 26 of 28

semantic web technologies in order to further automate the process of platform service
composition and support automated semantic platform integration.

In parallel to the further implementation of the EFPF ecosystem, the recent European
Union (EU) regulations on fairness and transparency in online platform-to-business rela-
tionships and proposals for a new Digital Service Act (DSA) [54] and a Data Governance
Act (DGA) [55] even further strengthen the data-sharing mechanisms across the EU and
shape the business models behind the EFPF ecosystem. Technologically speaking, the
anticipated challenges for the EFPF ecosystem refer to the adoption of complementary
principles for data sovereignty and trust for data sharing by the International Data Spaces
(IDS) initiative. Similar to the EFPF ecosystem, the IDS Reference Architecture Model
(IDS-RAM) incorporates the federated identity principles and contributes to the GAIA-X
concepts on the future data storage and cloud-related elements [56]. Depending upon the
availability and maturity of the GAIA-X Infrastructure Ecosystem, the EFPF ecosystem
considers joining forces with both GAIA-X and IDS.

Author Contributions: Conceptualization, R.A.D., D.J., A.S. and V.D.-B.; Data curation, R.A.D. and
D.J.; Formal analysis, R.A.D. and D.J.; Investigation, R.A.D., D.J., A.S. and V.D.-B.; Methodology,
R.A.D. and A.S.; Project administration, A.S. and V.D.-B.; Resources, R.A.D., D.J., A.S. and V.D.-B.;
Software, R.A.D. and D.J.; Supervision, V.D.-B.; Validation, R.A.D., D.J. and A.S.; Visualization,
R.A.D.; Writing—original draft, R.A.D.; Writing—review and editing, A.S. and V.D.-B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Commission (European Union) within the
H2020 DT-ICT-07-2018-2019 project “European Connected Factory Platform for Agile Manufacturing”
(EFPF), grant number 825075.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lucero, S. Others IoT Platforms: Enabling the Internet of Things. Available online: https://cdn.ihs.com/www/pdf/enabling-

IOT.pdf (accessed on 8 June 2021).
2. Bröring, A.; Schmid, S.; Schindhelm, C.-K.; Khelil, A.; Käbisch, S.; Kramer, D.; Le Phuoc, D.; Mitic, J.; Anicic, D.; Teniente, E.

Enabling IoT ecosystems through platform interoperability. IEEE Softw. 2017, 34, 54–61. [CrossRef]
3. Basaure, A.; Vesselkov, A.; Töyli, J. Internet of things (IoT) platform competition: Consumer switching versus provider multihom-

ing. Technovation 2020, 90, 102101. [CrossRef]
4. EFPF (European Connected Factory Platform for Agile Manufacturing) Project. Available online: https://www.efpf.org (accessed

on 6 January 2021).
5. European Collaborative Manufacturing and Logistics Cluster. Available online: https://ec.europa.eu/info/funding-tenders/

opportunities/portal/screen/opportunities/topic-details/fof-11-2016 (accessed on 6 January 2021).
6. Nimble (Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe) Project. Available online:

https://www.nimble-project.org/ (accessed on 22 January 2021).
7. COMPOSITION (Ecosystem for Collaborative Manufacturing Processes) Project. Available online: https://www.composition-

project.eu/ (accessed on 22 January 2021).
8. DIGICOR (Decentralised Agile Coordination Across Supply Chains) Project. Available online: https://www.digicor-project.eu

(accessed on 22 January 2021).
9. vf-OS (Virtual Factory Operating System) Project. Available online: https://www.vf-os.eu (accessed on 22 January 2021).
10. Soursos, S.; Žarko, I.P.; Zwickl, P.; Gojmerac, I.; Bianchi, G.; Carrozzo, G. Towards the cross-domain interoperability of IoT

platforms. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece,
27–30 June 2016; pp. 398–402.

11. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards
Multi-Layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and
Interoperability of IoT Systems; Springer: Cham, Switzerland, 2018; pp. 199–232.

12. Chen, D.; Doumeingts, G.; Vernadat, F. Architectures for enterprise integration and interoperability: Past, present and future.
Comput. Ind. 2008, 59, 647–659. [CrossRef]

13. 14:00-17:00 ISO 11354-1:2011 Advanced Automation Technologies and Their Applications—Requirements for Establishing
Manufacturing Enterprise Process Interoperability—Part 1: Framework for Enterprise Interoperability. Available online: https:
//www.iso.org/standard/50417.html (accessed on 6 January 2021).

14. Kubitza, T.; Schmidt, A. meSchup: A Platform for Programming Interconnected Smart Things. Computer 2017, 50, 38–49.
[CrossRef]

https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
http://doi.org/10.1109/MS.2017.2
http://doi.org/10.1016/j.technovation.2019.102101
https://www.efpf.org
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/fof-11-2016
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/fof-11-2016
https://www.nimble-project.org/
https://www.composition-project.eu/
https://www.composition-project.eu/
https://www.digicor-project.eu
https://www.vf-os.eu
http://doi.org/10.1016/j.compind.2007.12.016
https://www.iso.org/standard/50417.html
https://www.iso.org/standard/50417.html
http://doi.org/10.1109/MC.2017.4041350

Sensors 2021, 21, 4010 27 of 28

15. European IoT European Platform Initiative (IoT-EPI) Cluster. Available online: https://iot-epi.eu/projects/ (accessed on
6 January 2021).

16. Žarko, I.P.; Mueller, S.; Płociennik, M.; Rajtar, T.; Jacoby, M.; Pardi, M.; Insolvibile, G.; Glykantzis, V.; Antonić, A.; Kušek, M.; et al.
The symbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-based IoT Platforms. In Proceedings of the 2019
Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6.

17. Ganzha, M.; Paprzycki, M.; Pawlowski, W.; Szmeja, P.; Wasielewska, K. Towards Semantic Interoperability between Internet of
Things Platforms. In Internet of Things; Springer: Cham, Switzerland, 2018; pp. 103–127. ISBN 978-3-319-61299-7.

18. Schneider, M.; Hippchen, B.; Abeck, S.; Jacoby, M.; Herzog, R. Enabling IoT platform interoperability using a systematic
development approach by example. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain,
4–7 June 2018; pp. 1–6.

19. Bröring, A.; Ziller, A.; Charpenay, V.; Thuluva, A.S.; Anicic, D.; Schmid, S.; Zappa, A.; Linares, M.P.; Mikkelsen, L.; Seidel, C. The
big iot api-semantically enabling iot interoperability. IEEE Pervasive Comput. 2018, 17, 41–51. [CrossRef]

20. Web of Things (WoT) Thing Description 1.1. Available online: https://w3c.github.io/wot-thing-description/ (accessed on
6 January 2021).

21. Vargas, D.C.Y.; Salvador, C.E.P. Smart IoT gateway for heterogeneous devices interoperability. IEEE Lat. Am. Trans. 2016, 14,
3900–3906. [CrossRef]

22. Desai, P.; Sheth, A.; Anantharam, P. Semantic gateway as a service architecture for iot interoperability. In Proceedings of the 2015
IEEE International Conference on Mobile Services, New York, NY, USA, 27 June–2 July 2015; pp. 313–319.

23. Zeid, A.; Sundaram, S.; Moghaddam, M.; Kamarthi, S.; Marion, T. Interoperability in smart manufacturing: Research challenges.
Machines 2019, 7, 21. [CrossRef]

24. Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Kim, B.H.; Do Noh, S. Smart manufacturing: Past research, present
findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 111–128. [CrossRef]

25. Wang, X.V.; Wang, L.; Mohammed, A.; Givehchi, M. Ubiquitous manufacturing system based on Cloud: A robotics application.
Robot. Comput. Integr. Manuf. 2017, 45, 116–125. [CrossRef]

26. Chen, C.-S.; Liang, W.-Y.; Hsu, H.-Y. A cloud computing platform for ERP applications. Appl. Soft Comput. 2015, 27, 127–136.
[CrossRef]

27. Delaram, J.; Valilai, O.F. Development of a novel solution to enable integration and interoperability for cloud manufacturing.
Procedia CIRP 2016, 52, 6–11. [CrossRef]

28. Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [CrossRef]
29. Tao, F.; Qi, Q. New IT driven service-oriented smart manufacturing: Framework and characteristics. IEEE Trans. Syst. Man Cybern.

Syst. 2017, 49, 81–91. [CrossRef]
30. Morrison, J.P. Flow-Based Programming: A New Approach to Application Development; Van Nostrand Reinhold: New York, NY, USA,

1994; ISBN 0-442-01771-5.
31. XSLT: Extensible Stylesheet Language Transformations—W3C. Available online: https://www.w3.org/TR/xslt/ (accessed on

6 January 2021).
32. Shu, N.C. Visual Programming Languages: A Perspective and a Dimensional Analysis. In Visual Languages; Springer: Boston,

MA, USA, 1986; pp. 11–34.
33. Keycloak—Open Source Identity and Access Management. Available online: https://www.keycloak.org/ (accessed on

6 January 2021).
34. OpenAPI Specification (Formerly Swagger Specification). Available online: https://swagger.io/docs/specification/about/

(accessed on 22 January 2021).
35. AsyncAPI Specification 2.0.0. Available online: https://www.asyncapi.com/docs/specifications/2.0.0 (accessed on

22 January 2021).
36. Selvanathan, N.; Jayakody, D.; Damjanovic-Behrendt, V. Federated Identity Management and Interoperability for Heterogeneous

Cloud Platform Ecosystems. In Proceedings of the 14th International Conference on Availability, Reliability and Security,
Canterbury, UK, 26–29 August 2019; ACM: Canterbury, UK, 2019; pp. 1–7.

37. Apache NiFi. Available online: https://nifi.apache.org/ (accessed on 6 January 2021).
38. Apache NiFi Source Code Repository. Available online: https://github.com/apache/nifi (accessed on 26 February 2021).
39. Apache APISIXTM Cloud-Native API Gateway. Available online: https://apisix.apache.org/ (accessed on 6 January 2021).
40. Apache APISIX Source Code Repository. Available online: https://github.com/apache/apisix (accessed on 26 February 2021).
41. LinkSmart Service Catalog Documentation. Available online: https://github.com/linksmart/service-catalog/wiki (accessed on

26 February 2021).
42. LinkSmart Service Catalog Source Code Repository. Available online: https://github.com/linksmart/service-catalog (accessed

on 6 January 2021).
43. RabbitMQ Message Broker. Available online: https://www.rabbitmq.com/ (accessed on 6 January 2021).
44. RabbitMQ Server Source Code Repository. Available online: https://github.com/rabbitmq/rabbitmq-server (accessed on

26 February 2021).
45. Keycloak Source Code Repository. Available online: https://github.com/keycloak/keycloak (accessed on 26 February 2021).
46. Jolt: JSON to JSON Transformation Library. Available online: https://github.com/bazaarvoice/jolt (accessed on 6 January 2021).

https://iot-epi.eu/projects/
http://doi.org/10.1109/MPRV.2018.2873566
https://w3c.github.io/wot-thing-description/
http://doi.org/10.1109/TLA.2016.7786378
http://doi.org/10.3390/machines7020021
http://doi.org/10.1007/s40684-016-0015-5
http://doi.org/10.1016/j.rcim.2016.01.007
http://doi.org/10.1016/j.asoc.2014.11.009
http://doi.org/10.1016/j.procir.2016.07.056
http://doi.org/10.1080/00207543.2017.1351644
http://doi.org/10.1109/TSMC.2017.2723764
https://www.w3.org/TR/xslt/
https://www.keycloak.org/
https://swagger.io/docs/specification/about/
https://www.asyncapi.com/docs/specifications/2.0.0
https://nifi.apache.org/
https://github.com/apache/nifi
https://apisix.apache.org/
https://github.com/apache/apisix
https://github.com/linksmart/service-catalog/wiki
https://github.com/linksmart/service-catalog
https://www.rabbitmq.com/
https://github.com/rabbitmq/rabbitmq-server
https://github.com/keycloak/keycloak
https://github.com/bazaarvoice/jolt

Sensors 2021, 21, 4010 28 of 28

47. Sakimura, N.; Bradley, J.; Jones, M.; De Medeiros, B.; Mortimore, C. Openid Connect Core 1.0. Available online: https:
//openid.net/specs/openid-connect-core-1_0-final.html (accessed on 8 June 2021).

48. Hardt, D. The OAuth 2.0 Authorization Framework. Available online: https://datatracker.ietf.org/doc/html/rfc6749 (accessed
on 8 June 2021).

49. Preston-Werner, T. Semantic Versioning 2.0.0. Available online: https://semver.org/spec/v2.0.0.html (accessed on
22 January 2021).

50. Apache NiFi Documentation. Available online: http://nifi.apache.org/docs.html (accessed on 21 February 2021).
51. EFPF Documentation Portal. Available online: https://docs.efpf.linksmart.eu/ (accessed on 22 January 2021).
52. Liang, S.; Huang, C.-Y.; Khalafbeigi, T. OGC SensorThings API Part 1: Sensing. Available online: http://docs.opengeospatial.

org/is/15-078r6/15-078r6.html (accessed on 16 February 2021).
53. Online Platforms. Available online: https://ec.europa.eu/digital-single-market/en/online-platforms (accessed on

23 February 2021).
54. The Digital Services Act Package. Available online: https://ec.europa.eu/digital-single-market/en/digital-services-act-package

(accessed on 23 February 2021).
55. The European Data Governnace Act (DGA). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%

3A52020PC0767 (accessed on 10 May 2021).
56. Otto, B.; Pettenpohl, H.; Rubina, A.; Langkau, J.; Eitel, A.; Gelhaar, J.; Teuscher, A.; Mitani, K.; Schleimer, A.M.; Hupperz, M.; et al.

GAIA-X and IDS.; Version 1.0, Position Paper; International Data Space Association: Berlin, Germany, 2021.

https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html
https://datatracker.ietf.org/doc/html/rfc6749
https://semver.org/spec/v2.0.0.html
http://nifi.apache.org/docs.html
https://docs.efpf.linksmart.eu/
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://ec.europa.eu/digital-single-market/en/online-platforms
https://ec.europa.eu/digital-single-market/en/digital-services-act-package
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767

	Introduction
	Related Work
	Integration, Interoperability and Federation Requirements for the Data Spine
	Design of the Data Spine
	Components of the Data Spine
	Integration Flow Engine
	Application Programming Interface (API) Security Gateway
	Service Registry
	Message Broker
	European Factory Platform (EFPF) Security Portal (EFS)

	The Data Spine Architecture and Components’ Interaction

	Reference Implementation of the Data Spine
	Integration Flow Engine: Apache NiFi
	API Security Gateway: Apache APISIX
	Service Registry: LinkSmart Service Catalog
	Message Broker: RabbitMQ
	EFS: Keycloak and Other Microservices

	Service Integration through the Data Spine
	Synchronous Communication
	Asynchronous Communication

	Examples of Dataflow through the Data Spine
	Synchronous Dataflow Use Case in the EFPF Ecosystem: Integrated Marketplace
	Asynchronous Dataflow Use Case in the EFPF Ecosystem: Anomaly Detection and Alerting

	Validation and Results
	Discussion
	Summary of Architectural Considerations, Implications, and Evaluation
	EFPF Federated Interoperability Approach

	Conclusions and Future Work
	References

