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Systems biology is an interdisciplinary research field in life sciences, which involves a comprehensive and quan-
titative analysis of the interactions between all of the components of biological systems over time. For the past
50 years the discipline of virology has overly focused on the pathogen itself. However, we now know that the
host response is equally or more important in defining the eventual pathological outcome of infection. Systems
biology has in recent years been increasingly recognised for its importance to infectious disease research. Host-
virus interactions can be better understood by taking into account the dynamical molecular networks that con-
stitute a biological system. To decipher the pathobiological mechanisms of any disease requires a deep knowl-
edge of how multiple and concurrent signal-transduction pathways operate and are deregulated. Hence the
intricacies of signalling pathways can be dissected only by system level approaches.
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1. Introduction

“The whole is more than the sum of its parts.”
[Aristotle.]

Systems biology is a newly advancingfield that uses an interdisciplin-
ary approach aimed at understanding and predicting the properties of a
living system through systematic quantification of all its components
with intensive mathematical and computational modelling. In systems
biology each component of the system is measured using high-
throughput ‘omic’ techniques and in theory examined from the cellular
level to thewhole organism and is thus a holistic rather than reductionist
approach. This approach requires the capture and integration of mea-
surements from as many hierarchical levels of information as possible.
These can include DNA sequences, RNA and protein measurements,
protein–protein and protein–DNA interactions, bio modules, signaling,
gene regulatory networks, cells, organs, individuals, populations, and
ecologies (Tan et al., 2007).Organisms function in an integrated manner,
but biologists have historically studied organisms part by part and cele-
brated the modern ability to study them molecule by molecule, gene
by gene. Biological systems have “emergent properties”: that is, their
sum is greater than their individual parts, and the biological outcomes
of a system cannot be predicted by traditional reductionist methods
that study only the individual components (Zak and Aderem, 2009). Re-
grettably, ‘systems biology’ is often used as a blanket term, mistakenly
referenced in studies utilizing only high-throughput technologies or
incorporated into titles to give extra weight or novelty. Integration of
multiple high-throughput data types represents just a single dimension
of the field necessary to elucidate host responses to infection (Xue and
Miller-Jensen, 2012). In the case of systems virology, biological systems
may range from virus-infected cells to tissues to whole organisms.
Systems biology necessitates a global perspective when investigating in-
fection and this approach to infectious disease research will furnish a
greater understanding of the interplay between host and pathogen.
Besides, mathematical modelling of interaction networks is essential
for researchers to better relate changes at the molecular level to the
global properties observed within a biological system during infection.
Molecular studies of individual pathways have uncovered many viral
host-protein targets; however, it is difficult to predict how viral pertur-
bations will affect the signalling network as a whole (Xue and Miller-
Jensen, 2012). Systems biology has the potential to discover novel pro-
host therapeutic targets. By providing a more robust overview of the
host cellular machinery and its response and interaction with a virus,
these kinds of analyses offer inroads toward the development of
innovative therapeutics that can act in concert with the host defence
mechanism. Mathematical modelling together with documented virus-
host interaction data can be used to predict key network components
and/or connections (e.g. ‘bottlenecks’) that can then be assessed by in-
troducing targeted perturbations and monitoring the effects of these
changes on the network as a whole. Subsequent analysis of model-
based predictions using siRNA knockdown studies or knock-out animal
models relate model findings to infection phenotypes and disease out-
come in these experimental systems, refining models and driving
further predictions (Tisoncik and Katze, 2010). More recently,
systems biology is being applied to vaccinology, with the goal of un-
derstanding the mechanisms by which vaccines stimulate protective
immunity, and predicting the immunogenicity or efficacy of vaccines
(Morrison and Katze, 2015; Law et al., 2013; Josset et al., 2013;
Chakrabarti et al., 2010; De Backer et al., 2010). Several recent stud-
ies have attempted to model the dynamic host immune responses to
different viruses (Hancioglu et al., 2007; Tchitchek et al., 2013;
Morrison and Katze, 2015; Storey et al., 2005; Liquet et al., 2012;
Wang et al., 2009; Law et al., 2013; Josset et al., 2013; Bonneau,
2008). Systems biology in a nutshell can be useful in understanding
differences in resistance/susceptibility to a particular disease in dif-
ferent species, identifying diseasemarkers, identifying early markers
of infection, prediction of the vaccine efficacy, identifying potential
antiviral targets and understanding molecular mechanisms of the
host-virus interactions (Chakrabarti et al., 2010; Josset et al., 2013).

1.1. Cybernetics and systems biology modeling

Systems biology finds its genesis in the quantitative modeling of en-
zyme kinetics, the mathematical modeling of population dynamics, the
simulations developed to study neurophysiology, control theory and
cybernetics. Norbert Wiener in his book “Cybernetics: or Control and
Communication in the Animal and the Machine” defined cybernetics
in 1948 as the scientific study of control and communication in the
animal and the machine. Cybernetics is the study of human/machine
interaction guided by the principle that numerous different types of sys-
tems can be studied according to principles of feedback, control, and
communications. Mechanical analogies and cybernetic systems domi-
nated the principles guiding systems biology modeling and simulation.
Gene regulatory networks, metabolic networks, and signal transduction
networks are also part of systems biology discourse and work withme-
chanical systems analogies. This mechanistic analogy is further com-
bined with control theory in this form of systems biology. Control
theory is the mathematical study of how to manipulate the parameters
affecting thebehavior of a system to produce the desired or optimal out-
come. Heinz von Foerster, the founder of Biological Computer laborato-
ry in 1958, is attributed as the originator of second order cybernetics. He
is involved in studying similarities in cybernetic systems in biology and
electronics and is widely known for his doomsday equitation, which
predicted future population growth.

1.2. Reductionism and Holism

Organisms function in an integratedmanner. But biologists have histor-
ically studied organisms part by part and celebrated the modern ability
to study themmolecule bymolecule, gene by gene. Systems biology is “a
new science, a critical science of the future that seeks to understand the
integration of the pieces to form biological systems”.

[David Baltimore, Nobel Laureate.]

A fundamental tenet of systems biology is that cellular and organis-
mal constituents are interconnected, so that their structure and dynam-
ics must be examined in intact cells and organisms rather than as
isolated parts. The last decade has witnessed a backlash against the re-
ductionism of molecular biology. The philosophical antecedents of ho-
lism can be traced back to Aristotle, who is said to have pithily
observed, “the whole is more than the sum of its parts.” The holistic
host-directed approach stands in contrast to the more traditional
reductionist approaches that focus on a pre-determined small set of
molecules (genes, proteins or metabolites). Although often criticized
for not being hypothesis-driven, systems-level (or discovery-based)
analyses are instead increasingly being acknowledged as potent hy-
pothesis generators. Moreover, for dynamical systems such as those in-
volved in the host response to viral infection, systems-level analyses are
considered the only way to understand emergent properties; that is,
properties or biological outcomes that cannot be predicted by an under-
standing of the individual parts of a system alone, but rather only be-
come apparent with knowledge of the specific organization and
interactions between components. Because of this, systems virology is
an essential and synergistic complement to traditional virology ap-
proaches (Law et al., 2013). Methodological reductionism and holism
are not truly opposed to each other (De Backer et al., 2010). Each ap-
proach has its limitations. Reductionism may prevent scientists from
recognizing important relationships between components or organisms
in their natural settings, appreciating the evolutionary origins of pro-
cesses and organisms, grasping probabilistic relationships underlying
complicated and seemingly chaotic events, or perceiving heterogeneity
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and emergentmultilevel properties of complex systems. Holism, on the
other hand, is inherently more challenging due to the complexity of liv-
ing organisms in their environment. Fundamental principlesmay be dif-
ficult to discernwithin complex systems due to confounding factors like
redundancy and pleiotropy. Signal may be swamped by noise. The tech-
nology is seductive, but more data do not necessarily translate into
more understanding. It is not yet certain whether current approaches
to holism, such as systems biology, are adequate to cope with the chal-
lenges posed by emergent properties of complex biological systems
(Fang and Casadevall, 2011).

1.3. Static studies and dynamic studies

It is possible to divide systems biology studies into two categories:
static studies, which take a “snapshot” of a biological network under a
single condition, or limited set of conditions; and dynamic studies,
which measure time-dependent changes in the network following
treatmentwith environmental stimuli or other biological cues. Both ap-
proaches have the potential to significantly increase our understanding
of the complexmechanisms involved in viral infection (Xue andMiller-
Jensen, 2012). However application of dynamic systems biology ap-
proaches to virus-host signaling interactions, in which multiple signals
in the network are measured simultaneously over time, may provide a
better understanding of how a virus hijacks the host protein signaling
network and wires signaling in favor of virus survival and replication.
Magnitude and velocity represent emergent properties of the system
that are best captured using an expanded time-course. The Magnitude
Coefficient (MC) quantifies the magnitude effect as the transcriptomic
distance fromonebiological condition to the condition. The Velocity Co-
efficient (VC) quantifies the velocity effect as the speed of the
transcriptomic host response moving from one time point to the next
in the succession of infection. Dynamic studies revealed that it is magni-
tude and velocity of the host response kinetics, rather than specific sets
of up- and down- regulated genes inmutant andwild typeH5N1 infect-
ed mice (Tchitchek et al., 2013). The analysis of the temporal change of
gene expression should help in understanding the complex mecha-
nisms of gene regulation. Gene set analysis methods, which consider
predefined groups of genes in the analysis of genomic data, have been
successfully applied for analyzing gene expression data in cross-
sectional studies. The time-course gene set analysis (TcGSA) is an exten-
sion of gene set analysis to longitudinal data (Hejblum et al., 2015).
TcGSA is a hypothesis driven method that identifies a priori defined
gene sets with significant expression variations over time, taking into
account the potential heterogeneity of expression within gene sets. In
order to analyze such longitudinal high-dimensional data, several ap-
proaches have been suggested including a gene-by-gene statistical anal-
ysis (Storey et al., 2005) dimension reduction methods (Liquet et al.,
2012) or gene set analysis (Wang et al., 2009).

1.4. Omics data as the basis for systems biology

Systems approaches can be “top-down,” starting from “-omics”
data and seeking to derive underlying explanatory principles, or
“bottom-up,” starting with molecular properties and deriving models
that can subsequently be tested and validated (Bruggeman and
Westerhoff, 2007). The first approach begins with data collection and a
description of phenomena, while the latter is more mechanism based,
but both produce models of system behaviour in response to perturba-
tion that can be tested experimentally. The first necessary step for a sys-
tems biology approach is the gathering of large amounts of data that
should be as comprehensive as possible (Fig. 1). Systems biology utilizes
and integrates the large amount of data generated by high throughput
techniques in order to describe the complex interactions between all
parts of a biological system, with the ultimate goal of predicting the be-
haviour of the system. The genomic information from the host and the
pathogen represents the basis for all further molecular analyses and
bioinformatic investigations of host pathogen interaction (HPI) systems.
Thus, genome sequencing is fundamental. It helps to improve diagnosis,
typing of pathogen, virulence and antibiotic resistance detection, and
development of new vaccines and culture media. Single nucleotide poly-
morphism (SNP) typing is important for both identification and charac-
terisation of variants of pathogens (strains, clinical isolates) as well as
to study the susceptibility of individuals for certain infections. In contrast
to the static information from the genome, the transcriptome reflects the
dynamics of HPI systems that results in temporal profiles of gene expres-
sion with changes in the scale of minutes and hours.

In the context of systems biology, transcriptomics generates critical-
ly analytical data, due to the high precision and relative ease of data gen-
eration. Analysis of the transcriptome is presently one of the few
“omics” technologies that can be easily performed, and that records all
changes, for all annotated, transcribed regions (Oberhardt et al.,
2009). This technology allows investigators to conduct studies on
virus-host interactions whichwere previously not possible or afford-
able, such as the identification of important alternate splice isoforms,
miRNA discovery and profiling, and expression profiling in organ-
isms for which a complete genomic sequence has not been deter-
mined. RNAseq, a new method for whole transcriptome analysis
based on next-generation sequencing technology, offers a much
greater dynamic range than microarrays, and therefore a better plat-
form to quantify low-abundance transcripts. In the post-genomic
era, genes and the corresponding proteins are studied thoroughly,
allowing the identification of intra- and interspecies protein interac-
tion networks. In the last few years, several advanced proteomic tech-
niques have been established providing individual proteome charts of
both pathogens and hosts; Epstein- Barr virus (Schellenberger et al.,
2010; Thiele and Palsson, 2010), Hepatitis C virus (Lewis et al., 2009;
Tripathi et al., 2010; Sonnenschein et al., 2012;Durmus et al., 2015), Influ-
enza A virus (Guirimand et al., 2015), Human Immunodeficiency Virus
(Calderone et al., 2015; Qiu et al., 2011), Dengue virus (Murphy, 1985),
Measles virus (Lo et al., 2008), Human Respiratory Syncytial Virus
(Boedigheimer and Ferbas, 2008).

1.5. Inference based and knowledge based network approaches

Two major network approaches have emerged to extract biological
insight from this omics ocean: one is inference based and the other,
knowledge based. Both approaches use an interconnected network of
biological molecules to interpret omics data; however, there are crucial
differences in how the networks are constructed and in the biological
questions that can be studied.

1.6. Inference based

Inference-based approaches are based on statistical correlations or
information theory, employing statistical methodologies to construct
network models from correlation or recurring patterns in omics data
(Bonneau, 2008; De Smet and Marchal, 2010). Statistical inference
methods benefit from incorporation of all data in an omics set to
guide hypothesis development related to unknown interactions. How-
ever, these methods are complicated by the fact that the component
measurements are not independent and that they do not account for
biochemical and genetic causality. A major shortcoming of inference-
based methods is that they typically solve underdetermined problems,
thus they are not guaranteed to provide a unique solution (De Smet
and Marchal, 2010).

1.7. Knowledge based

Knowledge-based approach, which is also referred to as reconstruc-
tionbased approach is essentially a two-dimensional genomeannotation
effort (Palsson, 2004) that constructs networks frombiochemical and ge-
netic data (Feist et al., 2009; Hyduke and Palsson, 2010). Network
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reconstruction employs established biochemical, genetic, and genomic
data (Oberhardt et al., 2009; Schellenberger et al., 2010) to assemble a
knowledge base of an organism's molecular components and interac-
tions (Thiele and Palsson, 2010). As knowledge bases are constructed
from biological information, they provide a biological context for omics
analysis (Lewis et al., 2009). The major shortcoming of the knowledge
base approach is that they do not, currently, account for the activities
of all genes in a genome, thereby limiting the ability to discover novel re-
lationships important to pathogenesis.

1.8. Modelling virus-host networks

Biological networkmodels have beenwidely used to improve our un-
derstanding of infectious diseases (Mulder et al., 2014). To better under-
stand diseases, systems biology involving iterative cycles, in which
model organisms with different levels of complexity are perturbed and
then measured using combinations of high-throughput technologies.
After mining the multidimensional data, predictive computational
models are developed, evaluated and then refined based on the model
predictions with new iterations of manipulation of the systems. Virus-
host interactions are being catalogued at an increasing rate using protein
interaction assays and small interfering RNA screens for host factors nec-
essary for infection. These interactions can be viewed as a network,
where genes or proteins are nodes, and edges correspond to associations
between them. In order to better understand the molecular network
structure and dynamics leading to immune responses, redundancy in
these networks, and the relative importance of highly connected
(“hubs”) as well as sparse regions of the networks (“bottlenecks”), is
required to quantify robustness at the level of individual network com-
ponents (Korth et al., 2013). In addition, computational research will
have to focus on developing better approaches for the inference of net-
work dynamics from network topology similar to what has recently
been achieved formetabolic networks (Sonnenschein et al., 2012). In ad-
dition, it will be critical to develop computationalmethods and visualisa-
tion techniques capable of integrating diverse types of data, in a
quantitative manner, and displaying them in a meaningful and under-
standable fashion. Computational biology has become quite adept at
generating giant “hairball” networks, but such visualisations provide
too little in the way of helping us understand the biology of the system
or in providing targets for future experimentation. Moreover, it is diffi-
cult to know whether targeting an individual component of a
system—and knowing which one to pick—will impact disease outcome,
as there are many examples of compensatory pathways and responses.
Nevertheless, progress is being made in this regard, including the devel-
opment ofmethods for identifying important genes or proteins (network
hubs or bottlenecks) on the basis of topological analysis of protein-
protein interaction or inferred networks (McDermott et al., 2009;
Diamond et al., 2010) and targets identified by this approach have
been successfully validated through gene dysregulation or knockdown
(Rasmussen et al., 2011).

At the computational side, systems biology of host pathogen interac-
tion comprises (Durmus et al., 2015) of modelling of molecular mecha-
nisms of infections, viz.

□ Modelling of non-protective and protective immune defences
against pathogens to generate information for possible immune
therapy approaches,

□ Modelling of HPI dynamics and identification of biomarkers for diag-
nosis and for individualised therapy of infections,

□ Identifying essential virulence determinants and host factors, and
thereby predicting potential drug targets

□ Understanding of HPI, in particular the immune system and the
immune evasion of the pathogens, as the result of evolutionary
long-term adaptation and selection.
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1.9. Web-based databases for virus host interactions
Database
V
V
V
H

Pathogen
 Host
 Reference
iRBase
 Only viruses
 All hosts
 Li et al. (2015)

irHostNet
 Only viruses
 Animal, human, plant
 Guirimand et al. (2015)

irusMentha
 Only viruses
 All hosts
 Calderone et al. (2015)

CVPro
 Only HCV
 Only human
 Kwofie et al. (2011)

IV-1 Human
 Only viruses
 All hosts
 Li et al. (2015)
H
1.10. Systems approach: dissecting of vaccine-induced immune response

Systems vaccinology has recently emerged from systems biology as
an interdisciplinary field that combines systems-wide measurements,
networks and predictive modelling in the context of dynamics of
vaccine induced immune response. It aggregates the key properties of
systems biology which are: perturbation of the system (vaccine admin-
istration), monitoring responses at the systems level (transcriptomics,
proteomics, and metabolomics), data integration, network modelling
and development of predictive rules that describe the system's response
to individual perturbations (prediction of vaccine responses). Therefore,
its application does not rely simply on data collection from high-
throughput techniques, but also on the integration of different types
of data in order to generate hypotheses and new insights that may ex-
plain the mechanism of vaccines. Systems vaccinology can be divided
into 4 essential steps:

1. Measurements of the innate and adaptive responses to vaccination,

2. Determination of vaccine efficacy
3. Systems-level data integration leading to the identification of bio-

markers and mechanistic insights
4. Perturbation of the vaccine response in an appropriate experimental

system.

Molecular patterns or signatures of genes in the blood after vaccina-
tionmight predict, latter, development of protective immune responses,
representing a strategy to prospectively determine vaccine efficacy.
Blood cells provide a snapshot of many lineages and differentiation
states within the immune system including the sites of vaccination. Pre-
dictive correlates that can be identified prior to vaccination are emerg-
ing in systems vaccinology studies. The first systems biological studies
to dissect human vaccine-induced responses utilised the yellow fever
vaccine, YF-17D (Morrison and Katze, 2015) (Xue and Miller-Jensen,
2012). Both CD8+ T cell and B cell signatures identified in microarray
profiles were correlated with protective cell-mediated and antibody re-
sponses, thus providing predictive signatures. A gene that is most
frequently found in the predictive signatures of the CD8+ T cell re-
sponse against YF-17D is EIF2AK4. In the case of antibody responses,
TNFRSF17, a key gene in the signatures that predict the magnitude of
the neutralising antibody response, encodes for a protein, (also known
as BCMA), which is a member of the BAFF/BLyS family of receptors,
known to promote B cell survival and enhance responses to BCR and
TLR signalling. Systems biology studies with influenza vaccines identi-
fied modules of genes that were positively correlated with protective
immune responses. Interferon responsive genes that were up-
regulated at early time points after TIV vaccination positively correlated
with robust haemagglutinin inhibition (HAI) titres (Law et al., 2013)
(Josset et al., 2013) (Chakrabarti et al., 2010). Transcription factor
XBP-1, found to be up regulated, which is necessary for the terminal dif-
ferentiation of antibody-forming plasma cells, in RNA from sorted B
cells, but not from PBMC, after TIV vaccination (Josset et al., 2013;
Reimold et al., 2001). Several recent studies have attempted to model
the dynamic host immune responses to different viruses (Hancioglu
et al., 2007; Tchitchek et al., 2013; Morrison and Katze, 2015; Storey
et al., 2005; Liquet et al., 2012; Wang et al., 2009; Law et al., 2013;
Josset et al., 2013; Bonneau, 2008). Hyperspectral cytometry is an
emerging technology for single-cell analysis that combines ultrafast op-
tical spectroscopy and flow cytometry. Analysis of data generation from
next generation cell cytometry experiments is a challenging task given
large throughput data generated from analyzing up to 30 ormore single
cell parameters limiting the technical approaches that rely on manual
data gating. To categorise cells into individual types the concept of gat-
ing is used (Qiu et al., 2011). A gate is a region, defined in a biaxial plot of
two measurements, which is used to select cells with a desired pheno-
type for downstream analysis. Gates are either manually drawn using
software such as FlowJo and FlowCore or automatically defined by clus-
tering algorithms (Murphy, 1985; Lo et al., 2008; Boedigheimer and
Ferbas, 2008; Chan et al., 2008). Manual gating being highly subjective
relies on the person's knowledge of experiment, the experimental inter-
pretation and heavily relies on expert's knowledge. On the other hand,
automatic gating is based on simple logical presumption that cells be-
longing to one cluster are supposed to be more like than those of
other cluster. To apply the concept of automatic gating tools have
been developed for analysis of data generation from cytometry of cells
and to analyze data for identification of cell phenotypes from cell
populations. ACCENSE otherwise known as Automatic Classification of
Cellular Expression by Nonlinear Stochastic Embedding is used in
exploratory analysis of high dimensional single cell data generated
from mass cytometry experiments like CyTOF™ and Fluidgm Corp.
ACCENSE classifies cells automatically while retaining single cell resolu-
tion and thus circumvents any need for manual gating. ACCEDES has
been used in analysis of data of CD8+ T cells derived from SPF mice
and categories cells into individual phenotypic subpopulations
(Shekhar et al., 2014). Similarly, the SPADE (spanning-tree progression
analysis of density-normalized events) algorithm analyse multidimen-
sional flow cytometric data generated from mouse and human bone
marrow cells (Qiu et al., 2011). SPADE organizes data into hierarchy of
similar phenotypes, hence facilitating analysis of cellular heterogeneity,
identification of cell types and comparison of functional markers in re-
sponse to perturbations. SPADE is essentially quite complementary to
the existing approaches in analysis of cytometric data by enabling
multiple cell types to be visualized in a tree like format whereby behav-
ior of protein markers across cell types is seen allowing researchers to
find their known cell types and discover the unknowns. viSINE is a
visualization tool based on t-Distributed Stochastic Neighbor Embed-
ding (t-SINE) has been used to map high dimensional cytometry data
onto 2D while also conserving the high dimension structure (Amir el
et al., 2013).

1.11. Systems approach-elucidating host-virus interactions

Trying to understand the countless and complex pathogen–host in-
teractions and intra- and inter-cellular signalling events that occur dur-
ing the course of infectious disease is indeed a formidable task. Systems
biology approach revealed that the tissue tropism of West Nile Virus is
regulated by antiviral genes and innate immune systems cellular pro-
cesses. The actions of the RIG-I like receptor (RLR) and type I interferon
(IFN) signalling pathways are essential for a protective innate immune
response against the emerging flavivirus West Nile virus (WNV). In
mice lacking RLR or IFN signalling pathways, WNV exhibits enhanced
tissue tropism, indicating that specific host factors of innate immunede-
fence restrict WNV infection and dissemination in peripheral tissues
(Bonneau, 2008). A similar approach identified different regulatory
networks targeted by Kaposi's sarcoma associated herpes virus (KSHV
miR-K12-11) in B cells and endothelial cells. Using a systemsbiology ap-
proach, it was inferred that miR-K12-11 (an ortholog of the human tu-
mour gene hsa-miR-155.) establishes its (gene regulatory networks)
GRNby both repressingmaster TFs and influencing signalling pathways,
to counter the host anti-viral response and to promote proliferation and
survival of infected cells. The targeted GRNs were more reproducible
and informative than target gene identification, and this approach
could be applied to other regulatory factors of interest. This systems
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approach revealed thatmiR-K12-11 opposes host defences and contrib-
utes to the proliferation and survival of KSHV infected cells by influenc-
ing key elements in cellular GRNs like TFs and signalling proteins (Yang
et al., 2014). Aevermann et al., 2014 analysed 47 transcriptomic and
proteomic datasets from 30 studies generated by SysBio centers and
made them available in public domain. These studies characterised the
host response to infection by members of the Orthomyxoviridae and
Coronaviridae virus families, including pandemic influenza A H1N1
virus, highly pathogenic H5N1 avian influenza (HPAI) virus, severe
acute respiratory syndrome coronavirus (SARS-CoV), and Middle East
respiratory syndrome coronavirus (MERS-CoV) (Storey et al., 2005).
This collection represented the first coordinated effort to create a sys-
tems level description of host-pathogen interactions using multiple
viral strains, host models, and ‘-omics’ technologies. Systems biology
approaches has been used by Katze laboratory in depth, and their re-
search is focused to define andmodel virus-host interactions, innate im-
mune signaling, and the varied strategies used by viruses; (Wang et al.,
2009; Law et al., 2013; Josset et al., 2013; Cheung et al., 2012; Diamond
et al., 2012; Navare et al., 2012; Aderem et al., 2011; Li et al., 2015;
Murali et al., 2011; Rasmussen et al., 2011).

1.12. Challenges and barriers

Critics of systems biology call it of being too slow, too expensive and
a fishing expedition (Cassman, 2005). Major challenges faced by system
biologists' are, computation, data, money, engagement and dedication.
The results of systems analysis need to be validated by experiments
generating functional data such as protein techniques, gene perturba-
tion, or deficient animal models. Furthermore, it is necessary to have a
knowledge base that describes all known interactions at the molecular
and cellular level, and that is constantly updated and validated by the
scientific community. Finally, systems biology requires multidisciplin-
ary and close collaborative experts including biologists, vaccinologists,
immunologists, systems bioinformatics, computational specialists,
and clinicians. Nevertheless, the approach is expensive, and with ever-
tightening budgets, more money for systems biology means less
money elsewhere.Moreover, because the approach has been extensive-
ly hyped as being revolutionary, expectations have been set high, and
many are understandably disappointed with the pace of progress.
Although there is still a long way to go, exciting times in this emerging
field are lying ahead.

2. Conclusion

Perturbation analysis is a cornerstone of systems biology. All pertur-
bations result in systems responses, which can be recorded at the
level of transcriptome, proteome and metabolome. Viral infection is a
systems-level perturbation, and therefore systems biology approaches
are naturally suited for studying the complexity of viral host
interactions. Systems biology approaches rely on multivariate,
context-dependentmeasurements and computational analysis to eluci-
date how viral infection alters host cell signalling at a network level. It is
necessary to identify the host factors that are required to successfully
fight an infection or that cause adverse responses. For this, a highly inte-
grated research strategy is needed to understand all aspects of the com-
plex interplay between the host and invading pathogen. This systematic
approach has to go way beyond in vitro cell culture systems and needs
to address all aspects of host–virus interactions at the molecular,
cellular, organ, and organism level. The challenge now is the need to in-
tegrate not only multiple levels of biological data from an individual ex-
periment but also data from different groups for the same assay, and to
translate high-throughput data into digested results that can be easily
interpreted by a broader audience, including clinicians, governmental
regulators and other scientists. This will require close collaborations
among virologists, pathologists, clinicians, biologists, statisticians
and bioinformaticians, and collaborative consortia and large-scale
networked science with partnerships between industry and academia
to ensure high quality of the samples, data generation, processing and
analysis, as well as ease of data accessibility and interpretation.

“Models of the cellular networks—imperfect as they may be— offer a
route forward. The union of biology andmathematics may be a shotgun
wedding, but may be once its offspring walk and talk, initial misgivings
will fade”

[Colin Macilwain.]
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