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Abstract

Even in V1, where neurons have well characterized classical receptive fields (CRFs), it has been difficult to deduce which
features of natural scenes stimuli they actually respond to. Forward models based upon CRF stimuli have had limited
success in predicting the response of V1 neurons to natural scenes. As natural scenes exhibit complex spatial and temporal
correlations, this could be due to surround effects that modulate the sensitivity of the CRF. Here, instead of attempting a
forward model, we quantify the importance of the natural scenes surround for awake macaque monkeys by modeling it
non-parametrically. We also quantify the influence of two forms of trial to trial variability. The first is related to the neuron’s
own spike history. The second is related to ongoing mean field population activity reflected by the local field potential (LFP).
We find that the surround produces strong temporal modulations in the firing rate that can be both suppressive and
facilitative. Further, the LFP is found to induce a precise timing in spikes, which tend to be temporally localized on sharp LFP
transients in the gamma frequency range. Using the pseudo R2 as a measure of model fit, we find that during natural scene
viewing the CRF dominates, accounting for 60% of the fit, but that taken collectively the surround, spike history and LFP are
almost as important, accounting for 40%. However, overall only a small proportion of V1 spiking statistics could be
explained (R2,5%), even when the full stimulus, spike history and LFP were taken into account. This suggests that under
natural scene conditions, the dominant influence on V1 neurons is not the stimulus, nor the mean field dynamics of the LFP,
but the complex, incoherent dynamics of the network in which neurons are embedded.
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Introduction

Cortical processing of visual stimuli takes place in neuronal

networks that are both complex and dynamic. Activity of a given

V1 neuron may be influenced by thousands of synapses, only a

fraction of which are directly driven by external stimuli. Most of

the synaptic activity represents network interactions, both locally

recurrent and long range [1–6]. Despite this fact, the canonical

approach for understanding vision has been to ignore the network

and to assume that neurons signal by increasing their discharge

rate in the presence of features to which their ‘‘classical receptive

fields’’ (CRF) are tuned. For simplified stimuli such as moving bars

or gratings the receptive field model has indeed been extremely

successful at explaining the spiking of V1 neurons [7–9]. However

extending this approach towards more complex stimuli, such as

natural scenes, has proven difficult [10–17].

Natural scenes exhibit complex spatial and temporal correla-

tions [18–22], and it may be that already in V1 these correlations,

mediated by long range lateral connections, and possibly also

reentrant loops from higher order cortical areas, impact neuronal

firing [23–28]. Such contextual influences would still be stimulus

related, but likely not predictable by a model based on CRFs. In

addition, ongoing activity generated within the network itself may

influence the cells’ responses. Indeed, the spiking response of V1

neurons exhibits substantial inter-trial variability, even when

identical stimuli are used [29–34] (but see [35,36]). Here we

quantify the relative contributions of the CRF and the surround

towards the spiking of individual V1 neurons under stimulation by

natural scenes movies. In addition, we analyzed the role played by

both the neuron’s own spiking history and also by the global

population activity reflected in the local field potential (LFP). The

LFP expresses synchronous activity of local populations [37–39]

and it has been suggested that synchronous activity plays a pivotal

role in neuronal interactions [40,41].

To disentangle the influence of CRF and surround, we

presented natural scenes movies (sequences of bushes, grass and

trees, and views of our laboratory) to awake macaque monkeys

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e39699



performing a fixation task. The movie sequences included both

local motion components and also a single global motion

component obtained by means of a long camera panning. We

then modified the surround to generate additional movies in which

the stimulus within the CRF (of the recorded neurons) was

identical, but the surround differed. While the monkeys were

viewing the movies, spikes and LFPs were recorded using arrays of

individually controlled electrodes in V1. We fit logistic regression

type Generalized Linear Models (GLMs) to the spikes, and used

the maximum likelihood framework of these models to rigorously

quantify the extent to which the recorded spikes were predicted by

the CRF, the surround, the neuron’s own previous spiking history

and the LFP.

We found that for many recorded neurons, changes in the

surround resulted in different, sometimes dramatically so, stimulus

locked firing. Upon inclusion of the LFP in the GLM, we further

found that spikes tended to be localized on fast transients in

gamma band LFPs. We used the pseudo R2 [42,43] to quantify

how much of V1 neurons’ spike statistics are accounted for by

different influences. We found that taken collectively, the

surround, previous spiking history, and ongoing LFP contributed

almost as much (40%) to the total pseudo R2 as the CRF (60%).

However, the overall values for pseudo R2 were small. The full

(CRF plus surround) stimulus only produced an R2 of approxi-

mately 3% at ms precise temporal resolution, and only 5% at the

temporal resolution of our stimulus (20 ms). Even when all effects,

including spike history and LFP, were taken into account the 1 ms

R2 was less than 5%. These results cast doubt upon the notion that

under natural scenes conditions, V1 spiking can be understood as

individual neurons driven by CRF stimuli. It is likely that visual

processing in V1 is already a collective phenomenon of the

population with a strong role for both laterally mediated and

recurrent network effects beyond that which can be described by

the LFP.

Results

As detailed in the Methods, two macaque monkeys were trained

to view natural scenes movies while fixated on a dot at the center

of the screen. Each trial (shown schematically in Figure 1) started

with a blank screen. At 200 ms a square red fixation point

appeared in the center of the screen. The monkeys were required

to press a lever within the following 700 ms and maintain their

gaze. The natural scenes movie began at 1000 ms. At 3800 ms the

color of the fixation point changed from red to green. To obtain a

reward, the monkey had to release the lever within a window of

200 to 500 ms after the fixation point color change.

To disentangle the influence of CRF and surround, each natural

scenes movie was manipulated so that the portion within the

recorded neurons’ CRFs remained constant, but the surround was

modified. In total, three types of movies were used (Figure 2 A).

The ‘‘full film’’ (FF) movies were unmodified. The ‘‘aperture

masked’’ (AM) movies showed only the portion in the neuron’s

CRF and obscured the remainder (surround) with an opaque

Gaussian mask. Finally, the ‘‘time reversed surround’’ (TR) movies

ran the portion of the movie outside of the CRF backwards in

time. This retained the same overall illumination and contrast

levels, but broke spatial and temporal correlations between the

CRF and surround, with the global stimulus motion being in

opposing directions. In a given experiment, all three types of

movie (derived from the same unmodified movie) were presented

in random interleaved fashion over multiple trials.

A standard approach towards studying natural scenes is to

postulate a forward model, an explicit mapping from stimulus to

spikes. However the majority of forward models have, under-

standably, had difficulty reproducing the trial averaged response

[17]. Our goal was to quantify all of the stimulus related spike

statistics, and a forward model would never be perfect. Therefore,

we did not postulate a forward model, but took a non-parametric

approach, similar to fitting a PSTH. Specifically we used a

generalized linear model (GLM) in which the stimulus was

included via non-parametric basis spline expansion of how the

spikes depended upon the time since movie onset. The maximum

likelihood framework of the GLM allows us to rigorously quantify

how much spiking has changed as a result of surround modification.

Further, it does this without postulating a detailed functional

mapping, which could be suspect, of how natural scenes stimuli are

translated into spikes.

In total we analyzed 305 neurons recorded with both FF and

AM movies, 153 of these were also recorded during TR movies. In

Figure 2B, C and D we show raster plots from a representative

neuron, over repeated trials, for FF, AM and TR movies along

with the GLM fitted stimulus locked firing (with 95% confidence

bounds). The temporal resolution of the GLM fits is 20 ms to

match the movie frame rate. Additional example neurons are

shown in Figure S5. The stimulus driven spiking differs strongly (as

much as 50 spikes per second) between the movies in a manner

that is neither completely suppressive nor enhancing, but complex

and dynamic. To more clearly show this, we plot the GLM fits for

FF and AM movies on the same axes in Figure 2 E along with the

difference between the two stimulus driven firing rates. Figure 2 F

similarly compares the FF and TR movies. The stimulus driven

Figure 1. Natural scene movies with modified surrounds. Timeline for presentation of natural scenes movies. 200 ms after the start of the trial
a red fixation point appeared in the middle of a black background. The monkey was required to press and hold a lever between 200 and 900 ms. The
natural scenes movie (FF, AM or TR) began at 1000 ms. At 3800 ms the fixation point changed color from red to green. The monkey was then
required to release the lever between 4000 and 4300 ms.
doi:10.1371/journal.pone.0039699.g001
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firing rates are clearly statistically different over a large portion of

the movie play time.

Such differences are also evident at the population level. The

first panel of Figure 2 G (H) shows, for all neurons, the percentage

of movie play time during which the FF and AM (TR) time

varying firing rates are statistically different at the 95% confidence

level (population medians of 23 and 19% respectively). In the

second panel we quantify the size of the difference between PSTHs

by calculating the normalized difference between the firing probabilities of

FF and AM (TR) movies (population medians 0.49 and 0.40). This

measure averages the absolute value of the difference between

firing probabilities over time and normalizes by the mean firing

probability. In the third panel(s) we quantify the degree to which

changing from FF to AM (or TR) movies either enhanced or

Figure 2. Surround context modulates response to natural scenes stimulus. A) Frames from one of the Full Film (FF), Aperture Masked (AM)
and Time Reversed (TR) movies (see text) used to probe the influence of the stimulus surround. The movie within the CRF (yellow circle) remains
unchanged across conditions, while the surrounds are all different. B) Raster plot and GLM fitted PSTH of a representative neuron during FF movie.
The band is the 95% confidence region on the fit and the lighter line is the fit itself. C) Similar raster and GLM fits for the same neuron, but during the
AM movie. D) Raster and fit for the TR movie. E) Top panel: Comparing GLM fitted PSTHs during FF (blue) and AM (green) movies. Bottom panel:
PSTH difference (in yellow) between the FF and AM movies. F) Similar comparison of FF (blue) and TR (red) movies. G) Histograms (red lines denote
medians) across the entire population of 1) the percentage of the PSTH which is statistically different between FF and AM movies 2) average of the
time varying firing rate difference between FF and AM movies normalized by the mean firing rate across both conditions and 3) The difference
between FF and AM mean firing rates, normalized by their collective mean. H) Similar histograms comparing the FF and TR movies.
doi:10.1371/journal.pone.0039699.g002
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suppressed the mean firing rate by calculating the normalized

difference between mean firing rates (population medians 0.02 and 0.04).

This is different from the second panel because the firing

probabilities are averaged to get mean rates before taking the

difference. See Methods for precise definitions of these metrics.

These results are stable to the eccentricity of the CRF, see

Figure S7. Moreover, these population statistics show that

breaking the correlations between CRF and surround, either by

surround removal (AM) or surround reversal (TR), tends not to

change the mean (time averaged) firing rate from that of the

original (FF) movie. However the time varying firing rate for the

majority (but by no means all) of the neurons is strongly

modulated, suggesting that the surround can play a critical role

in determining the response dynamics of V1 neurons.

Influence of Local Field Potential
Despite the strong influence of the CRF and surround, the

stimulus is only one variable controlling the firing of V1 neuron.

Refractoriness and bursting, generated by the neuron’s own

biophysics, can be modeled as a renewal process [44]. We discuss

this in the Methods. Another factor is trial to trial variability

generated by the ongoing activity of the network within which the

neuron is embedded. In principle, the spike statistics of each

neuron in the network are relevant, but such information is

difficult to obtain. We therefore used the ongoing LFP as a

network activity surrogate. The LFP is generally assumed to reflect

the synchronous activity of a local neuronal population [39,45–47].

Since different neural processes take place at different time scales

we decomposed the ongoing LFP into different frequency

components (scales), which collectively sum to the original LFP,

using a stationary multi-resolution analysis (sMRA) see Figure 3A

and [48]. This formalism is advantageous as the dynamics in a

restricted frequency range can be easily reconstructed through

summing individual scales as is demonstrated in Figure 3B which

shows an example reconstruction of the high frequency dynamics.

Note that the high frequency LFP can be strongly non-sinusoidal

with variable fundamental frequency.

We then included the ongoing LFP in the GLM as a function of

both the amplitude and phase of the sMRA frequency scales (see

Methods). This introduced trial to trial variability into the GLM.

In Figure 3 C we show three instances (single trials) of an example

neuron’s GLM fitted firing rate during a FF movie both with (red)

and without (blue) the LFP scales included in the model. The

ongoing LFP modulates the firing rate by the same order of

magnitude as the stimulus but at a faster time scale. In other

words, the LFP imposes a fine timing upon the spikes, which,

although stochastic, tend to coincide with the GLM predicted

elevations in firing rate.

Since the GLM constitutes a parametric model of how the spike

probability depends on different frequencies and their phases, it

can be used to determine which frequencies are most predictive of

spiking. The functional form used to include the LFP is the GLM

equivalent to the convolution of a linear filter with the LFP (see

Methods). Although the frequency response of this filter can be

calculated, a strong filter response at a particular frequency might

merely indicate that the frequency has low power in the LFP. To

determine how the spike probability is modulated by different

frequencies the convolution of the LFP with the filter must be

analyzed. The result is summarized in Figure 3 D. We performed

an sMRA upon the LFP dependent term and calculated the mean

instantaneous power of each resulting scale. This is different from

performing an sMRA upon the LFP because the filter amplifies the

effect of some scales and diminishes the effect of others. Although

all LFP scales were included in the GLM, it is the three highest

frequency scales (center frequencies of 44.5, 89 and 178 Hz) that

are most predictive of the spiking. The importance of the 44.5 and

89 Hz scales agrees qualitatively with studies showing phase

locking to gamma band LFP [40,41].

The importance of the 178 Hz scale indicates a precise timing

of the spikes at specific phases of sharp gamma oscillations [49]

rather than a fundamental mode at that specific frequency. Fourier

like decompositions of sharp oscillations involve high frequency

harmonics. These harmonics represent different aspects of the

same underlying oscillation and should not be considered

independently. This is supported by the fact that the phases for

which the GLM predicted high spike probabilities tended to be

highly correlated across the high frequency scales (Figure S9). To

reconstruct the underlying LFP waveform that corresponds to the

strongest spiking we calculated a phase triggered average (PTA) of the

LFP for each neuron. This is similar to a spike triggered average,

but instead of triggering upon the spikes, we trigger upon the scale

phases that the GLM indicates correspond to maximum spike

probability. (See Methods for details.) These PTAs are shown in

Figure 3 E for the entire population. The PTAs exhibit fast

transients, and spiking is maximized about these transients (lower

panel). The frequency response of the PTAs is centered around

70 Hz (Figure 3F). Thus although the LFP oscillation is in the

gamma range, the spike probability varies at higher frequencies.

The GLM uses the information in the 178 Hz scale to localize the

spikes with finer temporal precision than could be accomplished

without it, but the underlying LFP dynamics have a much lower

fundamental frequency.

How Predictive of Spiking is the Stimulus?
Our central goal was to quantify the proportion of spike

statistics accounted for by the CRF, the surround, the spike history

and the ongoing LFP. In the case of normally distributed random

variables one might achieve this goal using the R2. This measures

reduction in mean squared error. However spikes are binary

variables and the standard R2 is highly inappropriate for

describing them. We therefore used the pseudo R2 (see Methods)

which is defined using the log likelihood and can be applied to

binary data (see Methods and also [42,43]). The pseudo R2

reduces exactly to the standard R2 if normally distributed

variables, whose log likelihood is proportional to the mean

squared error, are used.

In Figure 4 A, we show the relative improvement of pseudo R of

all recorded neurons for each successive addition of model

complexity. That is, we normalized the successive improvements

in R2 by the R2 of the full model (100*DR2=R2
full ), setting a scale

between 0 and 100. AM results are in the left panel, TR in the

right. The bar plots in the top panels give the means across all

neurons. The CRF accounts for 46%, 45% (population mean, AM

and TR respectively) of the fit. The surround accounts for a

smaller proportion (9%, 6%), while the spike history (mean 15%,

16%) and ongoing LFP (mean 30%, 33%) account for a somewhat

larger fraction.

Although the influence of the surround is much smaller than the

CRF when considered across the population, there are numerous

individual neurons for which it is substantial and the surround,

spike history or ongoing LFP predominate either individually or

collectively. The box plots in the bottom panels of Figure 4A show

the distributions of relative R2 across all neurons. The medians of

these distributions are: CRF median 51%, 49% (AM and TR

respectively), surround 1%, 0%, spike history: 7%, 8% and

ongoing LFP: 21%, 22%. The surround medians are near zero

because not all of the neurons were responsive to the stimulus, and

of those that were, somewhat fewer responded to the surround.

The Illusive Simplicity of Receptive Fields
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Neurons were identified as ‘‘responsive’’ to an influence (CRF,

surround, spike history, LFP) if inclusion of the corresponding

term in the GLM improved the model’s fit to a validation data set.

The percentages of responsive neurons are shown as pie charts

below the box plots. 70% of the neurons responded to the

stimulus. 54% responded to the surround being changed from FF

to AM while 38% responded when the stimulus was changed from

FF to TR. Those neurons that did respond to the surround often

did so strongly. The fact that many neurons did alter their

responses when the surround was changed indicates that stimulus

driven spiking can not be fully explained by the properties of the

CRF alone and that forward models of responses to natural scene

stimuli will always be incomplete if solely based upon CRF

properties.

Exactly how much of the total (not relative) spike statistics are

accounted for by the stimulus? In Figure 4B we give the total

pseudo R2 accounted for by the CRF (mean 2.8%, 2.9%; AM, TR

respectively), surround (mean 0.4%, 0.3%), spike history (mean

0.5%, 0.6%) and LFP (0.9%, 0.8%). The distributions across all

neurons are given in the lower panels. Thus under natural scenes

conditions, the model including both the CRF and surround has a

mean total pseudo R2 of 3.2% (for both AM and TR) even though

the stimulus is modeled non-parametrically. It could be argued

that since our stimulus has a temporal resolution of 20 ms, it is

misleading to consider the statistics at the ms scale. To address

this, we binned the spikes of each neuron into spike counts within

20 ms bins, and used the fitted GLM model to determine the

mean firing rate within each of these bins. Then we calculated the

Poisson log likelihood of each bin’s spike count, and summed over

bins to determined a 20 ms resolution pseudo R2. This results in

only a slight increase to a population mean of 5%. Note that this is

the fit to the single trial spiking statistics. As discussed in the text S1

and Figure S6, the trial averaged PSTH is fit very well by the

GLM, 92% of the explainable variance of test data can be

accounted for.

It could also be argued that one should only consider neurons

‘‘responsive’’ to the stimulus. In Figure 5 we show the pseudo R

squared accounted for by the full stimulus only (CRF and

surround, but no spike history or LFP) for all neurons (80%)

responding to natural scenes movies. The population mean of this

distribution R2 = 4% (median 3%) is still low even though the

stimulus is modeled non-parametrically and all neurons shown are

responsive. We then wondered if the low percentage of spike

statistics accounted for by the stimulus was specific to natural

scenes, and if the spikes might be better explained by more

‘‘artificial’’ stimuli such as gratings. As shown in Figure 5, a similar

calculation using grating and moving bar stimuli give mean

pseudo R squareds (over the population) of 11 and 8% respectively

(10% and 7% median).

For all these stimuli, the remainder of the ‘‘variance’’ can

presumably be attributed to the detailed dynamics of the

embedding network, beyond that accessible via the LFP.

However the more than threefold difference in pseudo R

squared between natural scenes and gratings suggests that

artificial stimuli induce a much more coherent, and likely

predictable, dynamics than is usually the case under natural

scenes conditions. Indeed, LFP power spectra displayed a

prominent gamma peak during grating stimuli that was absent

during natural scenes. (See Figure S8, and also [47]). Practically

modeling how neuronal spiking depends upon these dynamics

requires reducing their dimensionality somehow. The LFP is a

coarsely averaged mean field measure of this dynamics, and

apparently an insufficient description. Exactly which reduced

representation would be sufficient is currently unclear, although

an obvious place to start would be to include the spiking of

simultaneously recorded cells.

Figure 3. High frequency LFP oscillations impose fine timing upon spikes. A) Schematic of sMRA showing individually band limited scales
summing to the LFP. B) Representative, non-sinusoidal, ongoing LFP under natural scenes stimulus and high frequency component reconstructed by
summing the three highest sMRA scales. C) Three individual trials (identical stimulus presentations). Blue: GLM fitted spike probability without LFP
included, red: with LFP included. Spikes (black dots) are preferentially located at times predicted by the GLM. D) The normalized instantaneous power
across scales of an sMRA of the LFP dependent GLM term hlfp (see text) reveals the importance of each LFP scale for predicting spiking (see text). Box
plots show results across the entire neural population (black lines: 50% quantiles, box edges: 25 and 75% quantiles, whiskers: 2.5 and 97.5% quantiles.
Crosses denote outliers.) The scales with center frequencies of 44, 89 and 189 Hz) are most important for predicting spikes. E) Phase triggered
averages (PTAs) of high frequency LFP. PTAs of individual neurons (thin curves) are aligned at their peaks. Thick curve is population average. Lower
panel: distribution (across neurons) of preferred spiking times (relative to peak) is predominately located upon the sharp edge of the non-sinusoidal
oscillation. F) Population averaged frequency response (black line) of PTAs is centered about 70 Hz. 50 and 95% confidence bands given by dark blue
band and light blue lines.
doi:10.1371/journal.pone.0039699.g003
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Discussion

Investigations of the neural code have historically focused upon

how single neurons respond to stimuli [29]. In many systems, this

approach has led to an observation that many neurons have

‘‘preferred’’ stimuli, corresponding to an increased discharge rate.

Indeed the concept of the classical (and other types of) receptive

field has guided investigations of V1 since Hubel and Wiesel

introduced it [7]. However most V1 neurons are strongly variable

trial to trial, even when identical stimuli are presented [30–34]. In

addition, the majority of V1 studies have employed simplified

‘‘laboratory’’ type stimuli such as gratings or moving bars (see [50]

for a review). These issues raise the question of how dominant

CRFs are when more ‘‘naturalistic’’ stimuli are used, or if the

surround and other factors have increased importance. In this

paper we undertook to determine exactly how much of V1

neurons’ spiking (quantified by the pseudo R2) is due to the CRF

versus the surround when naturalistic stimuli are used. We also

quantified the roles played by the neuron’s own spike history

dependent biophysics, and by the average population activity

(LFP).

We found that not only did all of these factors modulate the

spiking probability of V1 neurons, but that taken collectively the

surround, spike history and LFP were of nearly equal importance

to the CRF (60 versus 40%). We note that for each natural scene

movie, we only employed two surround modulations, aperture

masked and time reversed. Had more modulations been used, the

influence of the surround might have been stronger compared to

the CRF, although this would depend upon the modulations’ exact

nature (naturalistic versus white noise for example). Regardless,

the entire stimulus (CRF and surround together) explained a

relatively small percentage of the spike statistics, R2 = 3%

(population mean) at 1 ms resolution, and R2 = 5% at 20 ms

resolution. For natural scenes, the CRF, and indeed the stimulus

as a whole, is only the tip of the iceberg.

Our study showed strong surround modulation of the V1

neuronal response to natural stimuli. This modulation was both

facilitative and suppressive, often in the same neuron. Indeed, the

mean firing rates of many neurons varied little. Of particular

interest is that modulation was observed not only between FF and

AM movies but also between FF and TR movies. Thus the

dynamic modulation we observe is evidence of a complex non-

linear interaction between CRF and surround, not merely a

function of the surround’s presence or absence. Several prior

studies have varied the size of a natural scenes stimulus

[10,11,51,52]. However to our knowledge ours is the first that

has changed the correlational (between center and surround)

structure of naturalistic stimuli and demonstrated a similar

dynamic modulation. We note that this has been done for artificial

stimuli, see for example [53].

It should be noted that determining the exact boundary of the

receptive field is difficult, and can depend the exact method used

Figure 4. Receptive Field, surround, spike history and LFP are all important for neural spiking. A) Upper panels: population mean
relative pseudo R2 (100*DR2=R2

full ) of CRF stimuli (first bar), surround (second bar), spike history (third bar) and ongoing LFP (fourth bar) for validation
data. Results comparing FF and AM movies are on the left, FF and TR movies on the right. Lower panel: boxplots of distributions across all neurons.
Red line = median, boxes = 25 and 75% quantiles, whiskers = 2.5 and 97.5% quantiles. Pie charts show (in black) the percentage of neurons for which

inclusion of the corresponding influence improved goodness of fit (DR2
w0). B) Total pseudo R2 accounted for by each step in the nested model, and

also the full model. Although the CRF dominates, the surround, spike history and the ongoing LFP collectively account for roughly 40% of the fit. The
total fit is however extremely low, R2

full&4:5%(population mean).

doi:10.1371/journal.pone.0039699.g004
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to map it. Barlow used small moving bars and edges to determine

the spatial extent of the excitatory region, or ‘‘minimum response

field’’ (MRF) [54]. Reverse correlation methods using either bars

[55] white noise [56], randomly flashed squares [10] or other

artificial stimuli are also commonly used. A third technique is to

increase the size of a grating patch and denote the RF as the patch

size for which the response no longer increases [57,58]. This third

technique tends to give larger estimates than the MRF or reverse

correlation techniques, and has been noted to depend upon

grating contrast [25]. Other researchers have modeled both the

excitatory center and inhibitory surround using Gaussian based

models [59]. Good discussions of these issues can be found in

[25,59,60]. In our case, we used a reverse correlation type

procedure that employed a long moving bar stimulus and the

computation of an average multi-unit activity response. Since we

used MUA it is possible that for some neurons our apertures

contained some of the proximal inhibitory surround. However it

should also be noted that some studies have suggested the size of

the distal surround to be up to five times that of the CRF [26].

Surround suppression of the V1 neuronal response has long

been noted by studies using grating type stimuli in anesthetized

cats and monkeys [28,59–62] and also during the free viewing of

natural scenes by awake monkeys [51]. Others have found

surround driven changes in grating orientation tuning [63,64].

Occasionally surround facilitation has been noted, but deemed

weak [65]. A recent grating based study in anesthetized cats has

placed the number of V1 neurons exhibiting surround facilitation

at 6% [66]. This result is at odds with our study in which many

neurons displayed both facilitation and suppression. The differ-

ence may lie in the use of natural scenes versus gratings. Indeed, it

has been noted by others that contrast levels can dictate whether

the surround is suppressive or facilitative [67].

Another possibility is that surround suppression versus facilita-

tion is a function of distinct neuron types. Haider et. al. [52]

performed intracellular recordings in anesthetized cats while

varying the size of a natural scenes stimulus. They found that

excitatory, regular spiking pyramids tended to exhibit surround

suppression, while fast spiking interneurons exhibited enhance-

ment. This study also found that regular spiking neurons tended to

spike more reliably when the surround was included, and

hypothesized that increased activity of inhibitory cells enforced a

sparser code in the pyramids. Several earlier studies have

speculated on the role of a natural scenes surround in enforcing

sparsity, demonstrating not only sparser coding [11], but also

improved information transmission by neurons [10]. These

studies, and our own strongly indicate that interactions between

CRF and surround are fundamental for sensory processing in V1.

In spite of this, forward modeling studies of how visual stimuli

are transformed into spiking have tended to focus on estimations of

neuron’s spatio-temporal receptive fields (STRFs). Sometimes

these are coupled with a non-linearity (LN Model) [56,68] and/or

a Poisson spike generator (LNP model) [69]. This approach has

achieved some success in predicting responses to grating orienta-

tion and tuning, although contrast induced non-linearities have

often been noted, (see [50] for a review). STRF type models have

also been used to capture the response of V1 simple cells to natural

scenes [12,17,68,70] More complex models, such as spike

triggered covariance (STC) [15,71] have also been used to

describe the response to natural images, particularly the response

of complex cells. Forward model quality has generally been

evaluated by comparing predictions to the PSTHs of repeated

trials in a validation set. When corrected for finite data sizes, this is

the ‘‘percentage of explainable variance’’ of Gallant and

colleagues. For natural scenes, the percentage of variance

explained in V1 has tended to be no more than 40% [17] These

results should be contrasted with studies in the LGN [72] which

have achieved much better (,80%) predictability). It should be

noted that the explained variance is a very different measure than

the pseudo R2 (see below). Possible reasons for poor performance

in V1 are temporal non-linearities, center surround interactions,

and complex network activity, none of which are captured by the

STRF.

Our goal was different from that of forward modelers. We

wanted to quantify, on an absolute scale, how much the spiking

was driven by the CRF versus the surround. For this reason we

employed the pseudo R2 [42,43] to quantify the single trial

statistics, rather than the explained variance. We also did not

attempt a forward model, but instead used a non-parametric, basis

spline based, model for the stimulus. This has the advantage that

the explained variance is extremely high (96% for training and

92% for test data, see Figure S6) and one does not have to worry

that the stimulus model is ‘‘wrong’’ when trying to quantify how

important different effects are on the spikes. Our results show that

the CRF is not sufficient, even for describing the trial averaged

response, suggesting that forward models employing a STRF type

filter, localized within the CRF, will always be problematic for

natural scenes stimuli and that center surround interactions must

be included. Further, the trial averaged response is an exceedingly

poor descriptor of the single trial statistics, suggesting that if vision

Figure 5. Pseudo R squared of neurons responsive to natural
scenes, grating and moving bar stimuli. Box plots of total pseudo
R squared accounted for by the full stimulus only (CRF + surround) for
natural scenes, gratings and moving bars. The simpler ‘‘laboratory type’’
stimuli are better fit (median 10% gratings, 7% bars) than the natural
scenes (median 3%) suggesting that the they may impose a more
coherent dynamics on V1 than natural stimuli do.
doi:10.1371/journal.pone.0039699.g005
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is to be understood, the stimulus must be treated as a small

perturbation of an individual neuron’s dynamics.

Spikes are binary variables with a ms precise, time scale dictated

by their width. It has been shown that neurons can respond with

ms precision to sharp changes in membrane potential [73] and are

capable of learning fine timing encoding representations [74]. It is

therefore important to use a model that operates at fine temporal

resolution and also respects the binary character of the data. Our

spline-based stimulus model was nested in a GLM which

simultaneously also models the influence of the spike history and

LFP. The dynamics of the stimulus, spike history and LFP all have

different time scales. The GLM provides a multiscale model of

how they influence the neuron at the time scale appropriate for

describing spikes. Still, an argument that could be put forward is

that since the stimulus changes at a slower (here 20 ms frame rate)

speed, any analysis of its importance should be based upon this

time scale. At a 20 ms time scale, the data is described by spike

counts, Poisson variables from which a pseudo R2 can also be

calculated. When we did this, we found that the natural scene

spike counts were slightly better fit than the individual spikes, but

not dramatically so. Thus even at stimulus’s own time scale,

neuronal activity is not well described. We note that the situation

may be different for experiments that generate more coherent

neuronal activity, such as those that use grating type stimuli or

anesthetized protocols. Indeed we found we could fit the single

trial spiking statistics of both grating and moving bar stimuli with

much higher accuracy than natural scenes movies (Figure 5).

Most likely, the dominant factor driving V1 neurons is the

network, a view supported by the fact that recurrent, lateral and

top down connections dominate over feed forward [25,75,76] and

the fact that ongoing network states are known to strongly

influence spiking [77,78]. In the absence of detailed information

about the network, we used the LFP as a surrogate. It is important

to recognize that the LFP is a population averaged measure of

local network activity, whose exact meaning is strongly debated.

We found that spikes tended to be localized on sharp LFP

transients in the gamma range. This indicates that during natural

scenes viewing the ongoing LFP carries information important for

predicting spike timing despite there being no gamma peak in the

LFP power spectrum. (Figure S8) It was the use of the PTA, based

upon the nested GLM, that allowed us to uncover this feature.

Many studies use the spike triggered average (STA) or spike

triggered spectrogram to make inferences about how spikes

depend upon the LFP [47,79,80]. These measures average the

LFP (or its power spectra) as a function of when spikes occur. In

contrast, the PTA leverages the GLM spike probability model to

average the LFP when spikes are most probable. These are not the

same, because spikes do not always occur when they are

maximally probable. Directly comparing the PTA and the STA

(see Methods below) shows that the STA largely reflects a

deflection after the spike. In contrast the PTA reveals the entire

feature (sharp transient) that increases the spike probability.

Another difference between the approaches is that our nested

GLM takes into account the effect of stimuli and previous spiking

history in addition to the LFP. Thus it can dissociate between the

case when spiking and LFP are being simultaneously driven by the

stimulus, and are thus correlated, and when spikes are correlated

with the LFP independent of the stimulus.

The observation that spike timing is coupled to LFP oscillations

is not new. However the majority of studies comparing LFPs to

spikes have focused on either spectral power, or phase relation-

ships between low (,10 Hz) frequency LFPs and multiunit activity

(MUA) [47,81–83]. In contrast we found phase relationships

between the gamma band and individual spikes. At these higher

frequencies, it has been shown that increased gamma power

correlates with MUA [38,47,84]. Further, intracellular studies

have shown that inhibitory neurons, thought to be involved in

gamma, tend to fire in the gamma trough [85]. Still, studies of

phase relationships have tended to be confined to grating stimuli,

anesthetized animals, or both [38,86–88]. Based upon these and

similar studies, it has been hypothesized that gamma implements a

temporal coding scheme (see [46] for a review). However gamma

power has been shown to be a function of grating contrast [89]

and it is also known that the LFP power spectrum is sharply

modulated by different (grating versus natural scene) stimuli [90]

(and see Figure S8). Our results suggest that even when gamma is

incoherent, as during our natural scenes stimulus, it may still

induce timing codes and play a computational role.

LFPs provide one measure of network activity, and indeed the

pseudo R2 of the LFP portion of the GLM was comparable in

magnitude to that of the stimulus (Figure 4A). However, the

overall fit, even including the LFP was poor (R2,5%). This

suggests that under natural scenes conditions, the dynamics of the

V1 network are highly complex, and neither the stimulus, nor the

LFP, are the dominant drivers of V1 neurons. Instead, ongoing

and mostly incoherent network activity driven by input from other

cortical areas or even processes intrinsic to V1 predominates at the

single neuron level. At some point in the visual pathway,

information must be combined into a collective representation.

Our results suggest that this is already happening in V1 and that

vision must be considered as a tightly integrated, and complex,

phenomenon of the network, not the sum of the individual

neurons receptive fields.

Methods

Training and Visual Paradigm
Two rhesus monkeys were used in this study. All experimental

procedures were approved by local German authorities (Regier-

ungspraesidium, Hessen, Darmstadt) and were in accord with the

guidelines of the European Community for the care and use of

laboratory animals (European Union directive 86/609/EEC). In

order to ameliorate suffering and improve the well being of the

monkeys, we employed the following practices and techniques.

The monkeys were housed in groups of 3 to 5 animals within large

spaces and with access to open air. During training, the monkeys

were taught to spontaneously come to the primate chair without

need of restraining collars. Titanium head-fixation implants and

recording chambers were fixed directed to the bone without the

use of acrylic cement. These techniques are less invasive and

contributed to the monkeys’ quality of life. A camera based non-

invasive technique was used for monitoring eye movements,

precluding the use of scleral search eye coils. Finally, the recording

sessions were always interleaved with long recovery periods.

A detailed description of the training paradigm and recording

procedures is given elsewhere [91]. Briefly, each trial started with a

blank screen and then, at 200 ms, the appearance of a 0.15u
square red fixation point (464 pixels; luminance, 10.0 cd/m2)

centered in the screen. The monkeys were required to press and

hold a lever within the following 700 ms, and to maintain their

gaze within a ,1u61u window. At 3400 ms the color of the

fixation point changed from red to green. To obtain a reward, the

monkey had to release the lever within a window of 200 to 500 ms

after the fixation point color change. Trials were aborted

whenever early or late lever releases occurred, or whenever

fixation was interrupted. Eye position was monitored by an

infrared eye tracker (Matsuda et al., 2000; temporal resolution of

33 ms). See Figure 1 for a schematic timeline of the experiment.

The Illusive Simplicity of Receptive Fields

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e39699



Visual Stimuli
Test stimuli consisted of natural scene movies recorded with a

digital video camera (resolution 9606720 pixels at 30 frames per

second, non-interleaved, Panasonic DVCPRO-HD format). All

video clips were fully desaturated and converted into bitmap

image sequences cropped to a size of 9366702 pixels. The

sequences were displayed at 100 Hz (the same frame was

presented twice) using a standard graphical board (GeForceH
6600-series, NVIDIAH, Santa Clara, USA) controlled by ActiveS-

tim (www.activestim.com) (average luminance, 10 cd/m2). This

software allowed high timing accuracy and stimulus onset jitters

below one millisecond. The cathode-ray tube monitor used for

presentation (CM813ET, Hitachi, Japan) subtended a visual angle

of 36u628u (10246768 pixels).

A total of 7 different video sequences were used in this study.

They consisted of images of leaves, garden trees, or scenes in our

laboratory obtained after a single panning movement of the

camera (i.e., the video sequences always contained a single

predominant global movement component). The movies (irrele-

vant for the task) were always presented 800 ms after fixation onset

and lasted 2800 ms until the fixation point color change. In a

given experiment 300 presentations of a single video sequence

were made to the monkey. These trials were split equally into 3

stimulus conditions, generated from the same video sequence. In

Condition 1 the full frame (FF) was presented. In Condition 2

(Aperture Masked, (AM)), only the portion of the film within the

CRF was presented. The remainder was obscured by an opaque

Gaussian mask that prevented any sharp edges in the image.

Finally, in condition 3, the surround (visual field external to the

CRF) was presented reversed in time while the region within the

aperture remained unchanged (TR condition). The CRF and

surround were blended using Gaussian masks so that no sharp

edges were generated in the images. Example frames of these

stimuli can be seen in Figure 2A. and also see Figure S1.

We also recorded moving bar (see below) and grating stimuli for

comparison with the natural scenes movies. Grating stimuli had

spatial frequency ranging from 1.25 to 2.0 cycles per degree and

velocity ranging from 1.0 to 1.5 degrees/s orthogonal to their

orientation). These values were chosen because they elicited robust

average responses in V1. The gratings were square wave functions

and had a duty cycle of 0.3. Moving bar stimuli were the same as

used for mapping the CRF and are described below.

Aperture Mask Generation
Apertures were created online, individually for each recording

electrode as follows. At the beginning of each recording session,

CRFs were mapped using an automatic procedure in which a bar

(100065 pixels, corresponding to 3960.2u in visual angle) was

moved across the screen in 16 different directions (N = 160 trials).

CRF maps were obtained by computing an average matrix, in

which the responses were added in 10 ms bins (corresponding to

0.2u in visual angle) for all directions. This method allowed us to

estimate precisely the center and size of the aggregate CRFs

(MUA) for a given electrode. Based on these parameters we were

able to determine the position and the width of the aperture mask.

For most of the experiments we selected the best electrode for unit

isolation and responsiveness. A single aperture mask was used in

these cases. Occasionally, two aperture masks were used for non-

overlapping CRFs located, respectively, at the central (2 to 5

degrees of eccentricity) and peripheral (10 to 14 degrees)

representations of the visual field.

Each aperture mask was adjusted as function of CRF size in

a way that the CRF‘s hot spot was always fully covered by the

mask (see Figure 6 for an example, and Figure S1 for additional

examples). This procedure was performed visually based on the

obtained RF maps. We used several different sizes of apertures,

(30,40,50,60,70 pixels corresponding to 1.17, 1.57, 1.96, 2.35,

2.74 degrees of visual angle). Our aim was to ensure that our

apertures contained the full CRF. Thus we erred on the side of

caution and it is possible that our apertures contained part of

the proximal surround. As an additional check however, we

varied the aperture size for a subset of the experiments and

found the results to be relatively stable in the 30–70 pixel range

(see Figure S2).

Recording Procedures and Data Collection
Recordings were made from the opercular region of V1

(receptive fields centers, 2u to 5u eccentricity) and from the

superior bank of the calcarine sulcus (10u to 14u eccentricity).

Electrodes were inserted independently into the cortex via guide

tubes positioned above the dura (diameter, 300 mm; Ehrhardt

Söhne, Germany), assembled in a customized recording device

(designed by one of the authors, SN). Quartz-insulated tungsten-

platinum electrodes (Thomas Recording, Germany; diameter,

80 mm) with impedances ranging from 0.3 to 1.0 MV were used

to record simultaneously the extracellular activity from 4 to 5

sites in both superficial and deep layers of the cortex.

Spiking activity of small groups of neurons (MUA) and the

local field potential (LFP) were obtained by amplifying (1000X)

and band-pass filtering (MUA, 0.7 to 6.0 kHz; LFP, 0.7 to

170 Hz) the recorded signals with a customized 32 channels

Plexon pre-amplifier connected to an HST16o25 headset

(Plexon Inc., USA). Additional 10X signal amplification was

done by on-board amplifiers (E-series acquisition boards,

National Instruments, USA). The signals were digitized and

stored using a LabVIEW-based acquisition system developed in

our laboratory (SPASS, written by SN. Spike sorting and

identification is discussed in detail in the Text S1 and see

Figure S3. The LFP was acquired with a temporal resolution of

1 ms. We performed careful controls to determine the extent to

which the spikes were ‘‘leaking’’ into the LFP and concluded

that the effect of leakage upon our GLM fits was small

compared to the influence of other features in the LFP. These

controls are detailed in Figure S4 and the Text S1.

Nested Logistic Regression Models
Quantifying the relative contributions of different influences

upon a neuron’s spiking statistics requires that they be considered

within a single unified modeling framework. Spikes are stereotyped

binary events localized in time. Logistic regression, a type of

Generalized Linear Model (GLM), allows for the simultaneous

regression of multiple influences on binary data at fine (here ms)

temporal resolution. To quantify the role played by different

influences, such models can be nested, that is made progressively

more complex by sequentially adding the effects of the CRF,

surround, spike history and LFP to the model.

log
l(t)

1{l(t)

� �
~mzfCRF (t)zfS(t)zghist(t)zhlfp(t)

mIs a parameter denoting a mean firing rate. fCRF (t) models the

stimulus within the CRF and fS(t) that of the surround. ghist(t)and

hlfp(t) model the previous spiking history, and LFP respectively.

The above model was partitioned into a series of models of

increasing complexity, or nested models.
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1) Mean Firing Rate Model: Poisson spiking is assumed. This

model has one free parameter (the mean firing rate) and is the null

model.

log
l(t)

1{l(t)

� �
~m

2) CRF Model: It is assumed that only the stimulus in the

classical receptive field is important. We do not attempt to create a

forward model of the how the stimulus generates the spikes.

Instead we take a non-parametric approach and use a linear

combination of 4th order B-spline basis functions generated using

a knot spacing of 20 ms chosen to match the movie frame rate.

Since the CRF does not change between the FF, AM, and TR

movies, all three are modeled by the same basis spline expansion

which subsumes both the mean firing rate and any CRF induced

time varying modulation of this firing rate.

log
l(t)

1{l(t)

� �
~mzfCRF (t)~

XM
m~1

amBm(t)

The basis functions Bm(t)are functions of the time since the

beginning of the movies, and the amare parameters fit by logistic

regression. The result of this approach is essentially a smoothed

PSTH, and had a first order B-spline basis been used the model

would be identical to a PSTH. Such splines provide extremely

accurate smooth fits, see Figure S6. Although our non-parametric

approach does not tell us how the stimulus is translated into the

spikes, it allows us to quantify the stimulus’s influence, more

specifically that of changes in the surround, upon the spikes.

3) CRF and Surround Model: It is assumed that the surround is

important, and therefore the movies (FF, AM and TR) are each

modeled by a separate basis spline expansion.

Figure 6. Three examples of aperture mask placement. Top left: movie frame. Top right: CRFs of multiunit activity from two recording
electrodes. Lines are artifacts resulting from the use of bars moving in discrete directions for CRF mapping. Bottom left: aperture masks generated on-
line. Bottom right: aperture masks overlaid on CRFs. Note that masks fully contain CRFs.
doi:10.1371/journal.pone.0039699.g006
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log
l(t)

1{l(t)

� �
~mzfCRF (t)zfS(t)~

XM
m~1

aFF
m Bm(t)

z
XM
m~1

aAM
m Bm(t)z

XM
m~1

aTR
m Bm(t)

In effect, this makes separate smoothed PSTHs for the FF, AM

and TR movies. See Figure 7 for a graphical explanation of the

stimulus terms.

4) Receptive Field, Context and Spike History Model. The

effects of the previous spiking history are added.

log
l(t)

1{l(t)

� �
~mzfCRF (t)zfS(t)zghist(t)

The influence of the previous spiking history is modeled as a

function of the time since the most recent spike. Again a linear

combination of B-splines is used.

ghist(t)~
XK

k~1

bkBk(t{tls)

The bkare parameters fit via logistic regression and tls is the

time of the most recent spike. We used 8 knots spaced

logarithmically at [0,1,2,3,5,9,15,25] ms. By restricting the effect

of the previous spiking history to 25 ms, we avoid interactions

between the history and stimulus terms. This model form can

capture both refractoriness and bursting. See Figure 8 for a

graphical explanation of the history term and examples of how it

modulates the spike probability.

5) Receptive field, Context, Spike History and trial varying LFP

model. Trial to trial variability (as reflected by the LFP) is

included.

log
l(t)

1{l(t)

� �
~mzfCRF (t)zfS(t)zghist(t)zhlfp(t)

Figure 7. Equations and schematic representation of the three nested models for the stimulus fstim. A) Model 1: Mean firing rate model
assumes Poisson spiking for all three (FF, AM, TR) conditions. Model 2: Receptive field model assume modulation by the portion of the stimulus within
the CRF. All three conditions are modeled non-parametrically with the same basis spline expansion because the CRF is identical in all three
conditions. Model 3: CRF and surround model. The surround changes between the conditions and therefore each is modeled with a separate basis
spline expansion. B) Schematic of the basis spline expansion. A linear combination of 4-th order basis splines, functions of the time since the onset of
the natural scenes movie, was used to model the effect of the stimulus. The parameters a are fit in the logistic regression model.
doi:10.1371/journal.pone.0039699.g007
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The functional form of hlfp(t) is described below.

Including Time Varying LFP in the Model
To obtain a trial specific measure of the population activity we

subtracted theevoked (trial averaged)LFPfromtheongoingLFP.We

then decomposed it into band limited LFP time ‘‘scales’’ sr(t) using a

stationary multi-resolution analysis. This preserves the dynamics of

the original signal in that the scales collectively sum to the original

LFP.

LFP(t)~
XR

r~1

sr(t)

The individual scales sr(t)areband limited,withcenter frequencies

that scale as powers of 2. Summing a subset of the scales immediately

reconstructs the dynamics in a restricted frequency range. It is

important that a stationary MRA be performed so that the

decomposition is shift invariant. A standard discrete wavelet

transform based decomposition will not be shift invariant because

of the discrete tiling of the time frequency plane (1). The Matlab

function swt.m can be used as the basis of the sMRA.

Once the scales were found, they were separated into stimulus

locked and trial to trial varying LFP scale components.

sr(t)~�ssr(t)zdsr(t)

where �ssr(t)is the scale averaged over trials with identical stimulus

presentations (FF, AM or TR) and dsr(t)is the trial varying

component. We only use the trial varying component because any

trial averaged component is implicitly included in the stimulus

locked basis spline expansion.

We calculated the instantaneous amplitude and phase of each

scale’s trial varying component. The imaginary part ds
0

r(t) was

found using a Hilbert transform (MATLAB hilbert.m function

and the instantaneous amplitude and phase of each scale

calculated as.

Ar(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dsr(t)�2z½ds

0
r(t)�

2
q

and

wr(t)~tan{1 ds
0
r(t)

dsr(t)

 !

We included the amplitude and phase in the logistic regression

by assuming that the dependence was oscillatory and scaled with

the amplitude of the oscillation. E.g.

hlfp(t)~
X

r

nrAr(t)cos(wr(t){wr,0)

~
X

r

crAr(t)coswr(t)zerAr(t)sinwr(t)½ �

The second equality follows via a trigonometric identity, and

allows the LFP to be included in the logistic regression model as

a sum of terms linear in the parameters. Inclusion of phase

term allows the LFP dynamics to be captured and inclusion of

the amplitude allows the overall magnitude of the dynamics to

be captured. We tested model forms with higher order terms in

Figure 8. Modeling the effect of previous spiking history. A) Schematic of basis spline expansion for the spike history dependent term ghist of
the logistic regression model is a function of the time since the most recent spike. B) Histogram across all neurons of the difference in the firing
probabilities with and without history normalized by the mean firing rate. C) Fitted spike probability for three identical stimulus presentations
without (blue) and with (red) the spike history term included in the model. Black dots indicate the spikes.
doi:10.1371/journal.pone.0039699.g008
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the phase and found no improvement in model fit. Models that

did not include the phase, but just the power (amplitude

squared) of the scales, provided no improvement in fit over

models that did not include the LFP at all.

Model Validation
For each neuron, the set of experimentally recorded stimulus

trials was split into training (70% for model fitting) and test (30%,

for model validation) data. We used the log likelihood of the

Figure 9. Phase triggered averaging. A) Schematic of phase triggered averaging (PTA) for a single neuron. Times for which the three high
frequency scales have their preferred phases are identified, and the sum of the three scales about these times is averaged over all instances. B) PTAs
are compared across neurons by inverting them (if necessary) so that all have increasing derivatives at t = 0. The peaks are then aligned, and all PTAs
plotted together with a histogram showing the time (relative to the peak) at which the spike probability is maximized. C) Comparison of PTA and
spike triggered average (STA) for using only the three high frequency scales. See text for discussion.
doi:10.1371/journal.pone.0039699.g009
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validation data to test whether each step in the nested model was

justified. In the case of normally distributed random variables the

log likelihood is proportional to the residual sum of squares. Thus

improvements in the log likelihood have both an intuitive and

statistically rigorous, connection to error reduction. The log

likelihood for binary data can be written as.

log L~
XT

t~1

DNt log l(t)½ �z(1{DNt) log 1{l(t)½ �

Where DNt~1 if there is a spike in bin t and is 0 otherwise, and

the sum is over all time bins. We also calculated the changes in the

Akaike and Bayesian Information Criteria and used a discrete time

Kolmogorov Smirnov test [92,93]. These results are displayed in

Table S1, along with the percentages of neurons that passed the

log likelihood validation procedure described above.

PSTH Difference Measures
To quantify the differences between two GLM fitted PSTHs we

used three different statistics. Notation below assumes FF and AM

fits are being compared, but identical statistics are used to compare

FF and TR fits.

1) The percentage of time that the two PSTHs were statistically

different. This was determined from 95% confidence bounds on

the GLM fits. This procedure is explained in detail in the text S1.

2) To quantify the size of the difference between PSTHs we

calculated the normalized difference between firing probabilities. This

averages the absolute value of the difference between firing

probabilities over time and normalizes by the mean firing

probability.

g~
SDlAM{lFF DTt

S0:5(lAMzlFF )Tt

3) To quantify the degree to which changing from FF to AM (or

TR) movies either enhanced or suppressed the mean firing rate we

calculated the normalized difference between mean firing rates. This is

different from 2) because the firing probabilities are averaged to

get mean rates before taking the difference.

j~
SlAMTt{SlFF Tt

0:5 SlAMTtzSlFFTtð Þ

Pseudo R Squared
To quantify overall goodness of fit we used the pseudo R2.

R2
pseudo~100| 1{

LL

LLnull

� �

[42,43]LLnull is the log likelihood of the mean firing rate (null)

model, for whichR2
pseudo~0%. If instead the spiking is described

exactly, LL~0, and R2
pseudo~100%. For Gaussian random

variables, the log likelihood is proportional to the variance and

the pseudo R2 reduces to the commonly used R2. Use of this

measure can also be thought of as performing a deviance type

goodness of fit analysis [94,95]. To compare the importance

(improvement in fit) resulting from different terms in the logistic

regression model at 1 ms temporal resolution, we used ratios of the

increase in pseudo R2 after inclusion of the term to the pseudo R2

of the most complicated of our fitted models (model 5).

To calculate pseudo R2 at 20 ms resolution, we binned our

spikes into spike counts ntwithin nonoverlapping 20 ms bins. We

then averaged the spike probability over each 20 ms bin to get a

mean firing rate r within the bin. Finally we calculated the Poisson

log likelihood of each bin’s spike count and used this to construct

the 20 ms resolution pseudo R2. That is, LL20ms~
PT
t~1

P(nt) where

the sum is over 20 ms bins and P(nt)~(rtD)nt e{rtD=nt! is the

Poisson probability of a firing rate rt producing spikes within a bin

of width D~20ms.

Phase Triggered Averaging
An sMRA of hlfp(t)and subsequent calculation of the mean

instantaneous power of each resulting scales, indicated that the

three highest frequency scales were most predictive of spiking.

These three scales were used to calculate phase triggered averages

(PTAs) of the LFP. This is similar to calculating a spike triggered

average (STA) but instead of triggering the average upon spikes,

the triggering is upon the LFP scale phases which correspond to

the highest probability of spiking in the logistic regression model.

The procedure is described schematically in Figure 9. In brief, the

PTA of a single neuron is calculated from the three high frequency

scales by first locating all instances where these scales have their

‘‘preferred’’ phases. In a [225 25] ms epoch surrounding these

instances the sum of the high frequency scales is then averaged

analogously to calculating an STA, but triggered on the phases

instead of on spikes (Figure 9 A). To compare these PTAs across

neurons we used the procedure presented schematically in Figure 9

B. First we inverted all PTAs with negative derivatives at t = 0 so

that all PTAs had positive derivatives. Second we shifted all PTAs

so that their peaks aligned. Finally we made a histogram of the

time of maximum spike probability, relative to the PTA peak.

The PTA is similar to an STA but the STA is a measure

computed directly on the data (averaging of the LFP based on

when spikes occur) and the PTA is a measure computed from a

fitted model (averaging the LFP based upon fitted model

parameters). Thus the PTA reflects what the LFP (or frequency

restricted LFP) looks like when spikes are most probable. The STA

reflects what the average LFP is when spikes occur. We compare the

two in Figure 9C.

Supporting Information

Text S1 Details on spike sorting, control of LFP ‘‘leakage’’ into

spikes, calculation of confidence bounds on GLM fits, goodness of

fit of GLM to trial averaged PSTHs and the effect of eccentricity

on results.

(DOC)

Figure S1 Three examples (columns) of aperture mask
placement. Top row: movie frame. Second row: CRFs of

multiunit activity of recording electrodes. (Example in left column

records from both 2-5 degrees eccentricity and 10-14 degrees, i.e.

two different electrodes). Third row: aperture masks generated on-

line. Bottom row: aperture masks overlaid on CRFs. Note that

masks fully contain CRFs.

(TIF)

Figure S2 Varying aperture mask size. The percentage of

the PSTH that was statistically different (at 95% confidence levels)

between FF and AM movies (upper panel) and the normalized

difference in time varying firing rates (lower panel) for different

sized apertures. There are (38, 13 38, 38, 38, 19) neurons for the
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(30, 50, 70, 100, 150, 200 pixel) diameter apertures respectively.

Corresponding diameters in degrees of visual angle are given in

the figure.

(TIF)

Figure S3 Spike waveforms isolated from multiunit
activity. Waveforms of the three neurons whose PSTHs are

presented in the paper (Figure 1 & Figure S4) are shown in red.

Grey shows non-isolated background spikes (MUA).

(TIF)

Figure S4 Quantifying spike leakage into the LFP. A)

Spike triggered averages from 9 representative neurons. Dark blue:

STA of original LFP, Light blue: STA of compound LFP

generated using original spike times, Red: STA of compound

LFP generated using altered spike times. STAs of the original and

first compound LFPs are highly similar indicating that our

procedure for generating compound LFPs works properly. The

STA of the second (red) compound LFP is, in contrast negligible

with only minor leakage effects. B) Histogram of log likelihood

increase, upon inclusion of LFP in a GLM model, of the second

(altered spike time) compound data normalized by the log

likelihood of the first (original spike time) compound data. For

70% (out of 44 neurons shown) the control (altered spike time)

data has a log likelihood increase less than one fifth (20%) that of

the original data. C) Scatter plot of the LFP induced increase in log

likelihood for the original and control data. Each dot represents a

single neuron. Red line is a linear regression.

(TIF)

Figure S5 PSTHs of two additional V1 neurons. These

exhibit significantly different stimulus locked firing responses to

natural scenes stimuli when the surround is changed but the CRF

stimulus is not. As in the main text, upper panels show GLM fitted

‘‘PSTHs’’ (blue = FF, green = AM, red = TR) and lower panels

show differences (in yellow) between PSTHs. Lighter lines are the

PSTHs and differences while the dark bands denote 95%

confidence regions.

(TIF)

Figure S6 Spline based GLM models accurately fit trial
averaged firing rate (PSTH). A) PSTHs (20 ms histogram)

and spline fits (red) for two example neurons under natural scenes

stimulation. B) Distribution of explained variance of training data

(left), test data (middle) and test data corrected for finite number of

test data trials (right). C) Splines used to non-parametrically model

the stimulus drive tiled the entire 2800 ms span. Here we show a

subset. Colors are visual aid to distinguish adjacent splines.

(TIF)

Figure S7 Comparing differences between the PSTHs as
a function of eccentricity (2-5 degrees versus 10-14

degrees). A) Percentage of PSTH statistically different, B)

normalized difference between PSTHs, C) normalized mean

firing rate difference between PSTHs. Distributions are all

identical (via KS test) between 2-5 and 10-14 degrees except for

the normalized mean firing rate difference between FF and TR

(p = 0.049).

(TIF)

Figure S8 Grating stimuli drive strong oscillations that
are not observed during natural scenes. A) Z-scored power

spectra for LFP and B) MUA during 1.875 Hz grating stimulus

(speed 1.5 degree/s and spatial frequency 1.25 cycles per degree)

(green) and natural scenes movies (black). C) Frequency dependent

coherence between LFP and MUA. Z-scored power spectra were

determined by first calculating the multi-taper power spectra of

spontaneous activity, activity during grating stimuli and during

natural scenes stimuli. Then the spontaneous activity power in

each frequency bin was subtracted from both the grating and

natural scenes power and this was normalized by the spontaneous

power’s standard deviation.

(TIF)

Figure S9 ‘‘Sharp’’ LFP oscillations cause crosstalk
between frequencies. A) sMRA of a 70 Hz sawtooth (black)

involves high frequency harmonics (colored curves) to capture its

‘‘sharpness’’. B) ‘‘Preferred’’ LFP scale phases (at which the GLM

predicts the highest probability of spiking) of the 44, 89 and

178 Hz scales compared across all neurons. C) Scatterplot of

preferred phases reveals a strong correlation between the scales,

indicating that the scales represent different aspects of the same

underlying oscillation.

(TIF)

Table S1 Percentages of neurons for which different
nested models passed statistical validation tests. LL: The

log likelihood of the test data was greater for the more complicated

model than for the next simplest model. AIC: The Akaike

Information Criterion of the more complex model was smaller

than that of the simpler model. BIC test: Same but using the

Bayesian Information Criterion. KS test: Kolmogorov Smirnov

time rescaling test was passed on the test data.

(TIF)
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