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Abstract

Motivation: High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene

expression. Identification of transcript isoforms that are differentially expressed in different condi-

tions, such as in patients and healthy subjects, can provide insights into the molecular basis of dis-

eases. Current transcript quantification approaches, however, do not take advantage of the shared

information in the biological replicates, potentially decreasing sensitivity and accuracy.

Results: We present a novel hierarchical Bayesian model called Differentially Expressed Isoform

detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE)

isoforms from multiple biological replicates representing two conditions, e.g. multiple samples

from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condi-

tion by (1) capturing common patterns from sample replicates while allowing individual differ-

ences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate.

Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern

of replicates from the same condition, and treat the isoform expression of individual replicates as

samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution,

and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally,

DEIsoM couples an efficient variational inference and a post-analysis method to improve the accur-

acy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to

an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The rele-

vance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read

coverage visualization, and the biological literature.

Availability and implementation: The software is available at https://github.com/hao-peng/DEIsoM

Contact: pengh@alumni.purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

RNA-seq is a powerful tool for investigating the transcriptomes of

various organisms. There are many complex issues in RNA-seq and

transcriptome analysis ranging from RNA-seq read correction (Le

et al., 2013), transcriptome assembly (Martin and Wang, 2011) to

alternative splicing and gene fusion detection (Ozsolak and Milos,

2011). However, one of the most fundamental issues is to quantify

and identify isoforms differentially expressed in two conditions,

while each containing multiple replicates. Most DE isoform quanti-

fication methods treat each replicate independently, ignoring the

fact that, because the underlying biological mechanism is the same

in a given condition, the replicates tend to share similar expression

patterns. DEIsoM improves DE isoform identification and quantifi-

cation by catching the information shared between replicate sam-

ples; rather than separately estimating the isoform expression for

each replicate, it captures the common expression pattern of the

whole condition in one single model.

Although many computational tools have been developed for

quantifying and identifying DE isoforms using RNA-seq data, nearly

all approaches estimate the isoform abundance in each replicate sep-

arately, and do not attempt to actively capture the aforementioned

shared information. For instance, Mixture of ISOforms (MISO)

(Katz et al., 2010) infers the isoform fractions for each replicate and

evaluates the DE of every pair of replicates using the Bayes Factor,

not considering replicates as a group. Additionally, MISO is slow

due to its use of MCMC sampling, which is computationally chal-

lenging to adapt to the rapid growth in the amount of RNA-seq data

(Kakaradov et al., 2012). Dirichlet-Multinomial framework

(DRIMSeq) (Nowicka and Robinson, 2016) infers the isoform frac-

tions for each replicate in a Dirichlet-Multinomial model with a

fixed hyperparameter and evaluates DE between two conditions by

likelihood ratio test. Cufflinks (Trapnell et al., 2012) quantifies the

isoform abundance in individual replicates by maximum a posteriori

(MAP) and detects DE isoforms by the hypothesis test based on

Jensen-Shannon divergence. RNA-Seq by Expectation

Maximization (RSEM) (Li and Dewey, 2011) estimates isoform

abundance for each replicate using an Expectation Maximization

(EM) algorithm. Empirical Bayesian Seq (EBSeq) (Leng et al., 2013)

then takes the expected counts from all replicates to fit a joint model

and estimates the probability of DE for each isoform between mul-

tiple conditions. However, the variance of the expected counts stem-

ming from ambiguous read mapping is simply lost in this process,

compromising the DE isoform detection. Bayesian inference of tran-

scripts from Sequencing data (BitSeq) (Glaus et al., 2012; Hensman

et al., 2015) estimates the per condition mean isoform abundance

from multiple replicates. However, BitSeq accomplishes this estima-

tion in two stages rather than in an integrated model, which could

potentially lose information when the “pseudo-data” from each fit-

ted model in stage 1 is fed to the conjugate normal-gamma model in

stage 2. Some other models do take the strategy of utilizing the

shared information from multiple biological replicates, such as

rMATS (Shen et al., 2014), and MAJIQ (Vaquero-Garcia et al.,

2016). However, they are both exon-centric, quantifying and iden-

tifying alternative splicing at the exon level not the isoform level.

Here, we present DEIsoM, a hierarchical Bayesian model for

quantifying and identifying DE isoforms between two conditions.

Other than estimating the isoform abundance in each replicate sep-

arately, DEIsoM actively captures the shared information of percon-

ditioned replicates in one principle framework. Specifically,

DEIsoM uses a Dirichlet prior distribution to capture the shared in-

formation among replicates in each condition, and implements a

fast Variational Bayesian (VB) method to gain computational effi-

ciency instead of MCMC sampling when computing the posterior

distributions of isoform fractions. Figure 1A shows a typical design

for an RNA-Seq experiment with three replicates in each condition.

Because we assume that the replicates in one condition share the

same underlying biological mechanism, their expression patterns

tend to be the same within a certain sample variance. We capture

this common pattern through a Dirichlet prior with a tracable and

effeciently updated hyperparameter. Additionally, we evaluate the

DE isoforms by computing the Kullback–Leibler (KL) divergence

between the posterior distributions of the two conditions, which is

intrinsically fast in our model. Figure 1B gives a qualitative idea of

how KL divergence is used to evaluate DE; the DE level is repre-

sented as the non-overlapping areas between the two posterior

distributions.

Simulations in Section 3 demonstrate the superior performance

of DEIsoM over alternative methods for quantifying and predicting

DE isoforms, as well as the improved computational speed of VB

method compared to MCMC sampling. Furthermore, on a real

HCC dataset (Section 4), DEIsoM identifies HCC relevant DE iso-

forms which are supported by PCA, read coverage visualization, and

the biological literature.

2 Materials and methods

DEIsoM consists of three parts: the hierarchical graphical model for

isoform quantification (Section 2.1), the VB algorithm for model es-

timation (Section 2.2) and the identification of DE isoforms between

two conditions (Section 2.3).

2.1 Model
Suppose we have collected RNA-seq data from M replicates in each

condition. For the mth replicate, there are in total NðmÞ paired-end

reads that can be aligned to a given gene with K isoforms. Here, we

utilize the previous annotated or assembled isoforms, so K is known

for each gene. We use a K-dimensional binary vector, RðmÞn , to repre-

sent the read alignment to isoforms. If the nth read from the mth rep-

licate maps to the kth isoform, the kth element of RðmÞn ; R
ðmÞ
n;k , is set to

be 1, and 0 otherwise. The unsequenced fragment length between

the nth paired-end reads is denoted as kðmÞn ¼ ½kðmÞn;1 ; . . . ; kðmÞn;K �.

A B

Fig. 1. DEIsoM estimation concept. (A) shows a typical RNA-Seq experimental

setting targetted by DEIsoM. There are two conditions, each of which com-

prises three replicates shown as pie charts representing the expression frac-

tions of two isoforms of a particular gene. We assume that the replicates in

one condition are more likely to share a similar expression pattern, which will

be captured by the Dirichlet prior distribution. (B) shows the posterior distri-

bution of fractional isoform expression for each condition. The DE level of the

isoform between two conditions can be represented by the non-overlapping

regions (purely blue and yellow) under the two curves. In other words, the

smaller the overlapping region is, the more distinct the two posteriors are,

and the more differentially expressed the isoforms of this gene is. We meas-

ure this distinction by KL divergence, which is a widely recognized method to

capture the difference between two probability distributions
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First, we model how a read is generated from an isoform. We use

a binary random variable Z
ðmÞ
n;k to represent whether the nth read of

the mth replicate is actually generated from the kth isoform. We call

Z
ðmÞ
n;k the latent read origin. Although a read can map to multiple iso-

forms, it can only be sequenced from one isoform. Therefore, ZðmÞn is a

K-dimensional vector with exactly one element equal to 1 and all the

others equal to 0, where
PK

k¼1 Z
ðmÞ
n;k ¼ 1. We assume that for the mth

replicate, ZðmÞn follows a multinomial distribution pðZðmÞn jwðmÞÞ, where

wðmÞ is a K-dimensional vector representing the fractions of isoforms

in the mth replicate for a given gene. Thus, w
ðmÞ
k 2 ½0; 1� for all k andPK

k¼1 w
ðmÞ
k ¼ 1. The fractions of isoforms fwðmÞgm¼1::M can vary

among replicates, but we assume that the replicates all follow the

same Dirichlet prior distribution pðwjaÞ in each condition. Different

from MISO, which uses one fixed prior pðwÞ for each replicate,

DEIsoM shares the same prior among replicates. The underlying rea-

son is that the distributions of isoforms from different replicates of the

same condition are not independent, but share some common pat-

terns. DEIsoM summarizes the shared information in the hyperpara-

meter a. In Section 2.2, we will further explain how the

hyperparameter a is updated using the information from all replicates.

We assume that the observed read alignments R
ðmÞ
n;k and the unse-

quenced fragment length kðmÞn;k are conditionally independent

given the corresponding latent read origin ZðmÞ and some fixed par-

ameters H:

pðRðmÞn;k ; k
ðmÞ
n;k jZ

ðmÞ
n;k ;HÞ ¼ pðRðmÞn;k jZ

ðmÞ
n;k ;HÞpðk

ðmÞ
n;k jHÞ

where H includes lk, L, l and r2. lk is the length of the kth isoform;

L is the sequenced read length; l and r2 are the mean and variance

of kðmÞn respectively. The first part, pðRðmÞn;k jZ
ðmÞ
n;k ;HÞ, represents the

probability that a read can be aligned to a specific region of the kth

isoform conditioned on whether it is generated from this isoform. If

the nth read is generated from the kth isoform, this read is assumed

to be uniformly generated from one of all the possible positions in

this isoform. Otherwise, pðRðmÞn;k jZ
ðmÞ
n;k ;HÞ is 0. The number of all pos-

sible positions is ~l
ðmÞ
n;k ¼ lk � ð2Lþ kðmÞn;k Þ þ 1, Then the conditional

distribution is:

pðRðmÞn;k ¼ 1jZðmÞn;k ;HÞ ¼
1=~l
ðmÞ
n;k if Z

ðmÞ
n;k ¼ 1

0 otherwise:

8<
:

The second part, pðkðmÞn;k jHÞ, is the probability of observing a

paired-end read with unsequenced length kðmÞn , which follows a nor-

mal distribution with mean l and variance r2. Both l and r2 can be

given or estimated from the aligned RNA-seq data. As a result,

we have the following generative process for each of M replicates

(Fig. 2):

1. wðmÞ � DirichletðaÞ
2. For each of NðmÞ reads:

a. ZðmÞn �Multinomialð1;wðmÞÞ
b. R

ðmÞ
n;k � pðRðmÞn;k jZ

ðmÞ
n;k ;HÞ

c. kðmÞn;k � Normalðl; r2Þ

2.2 Estimation
To compute the posterior distribution of isoform fractions and read

assignments,

pðw;ZjR; a;HÞ ¼ pðw;Z;Rja;HÞ
pðRja;HÞ

we need to compute the denominator:

pðRja;HÞ ¼
Y
m

ð
pðwðmÞjaÞ

Y
n

X
k

h
pðZðmÞn;k ¼ 1jwðmÞk Þ�

pðRðmÞn;k ; k
ðmÞ
n;k jZ

ðmÞ
n;k ¼ 1;HÞ

i
dwðmÞ

which is computationally intractable, so we have to use approximate

inference techniques, such as Markov Chain Monte Carlo (MCMC)

sampling method or Variational Bayesian method. Classical MCMC

methods may take a long time to converge due to the high correl-

ation between the latent variables (Section 3.2). The Variational

Bayesian method (Jordan et al., 1999) tends to be faster and better

scalable to large data for many graphical models. The VB algorithm

approximates the intractable posterior p by a proposed distribution

q, where q belongs to a family of distributions controlled by the

variational parameters. We can optimize the variational parameters

to minimize the Kullback-Leibler divergence between q and the pos-

terior p, KLðqjjpÞ. This is equivalent to maximizing a variational evi-

dence lower bound. In such a way, the inference problem is cast to

an optimization problem, which can be efficiently solved by

gradient-based optimization algorithms.

For our model, we propose a family of variational distributions,

which has the form:

qðw;ZÞ ¼
Y
m

q
�
wðmÞ; bðmÞ

�Y
n

q
�

ZðmÞn ; rðmÞn

�
;

where qðwðmÞ; bðmÞÞ is a Dirichlet distribution parameterized by bðmÞ

and qðZðmÞn ; r
ðmÞ
n Þ is a multinomial distribution parameterized

by r
ðmÞ
n .

We use the following iterative variational EM algorithm updates

to find the optimal parameters for our model:

1. (E-step) For each replicate, estimate the variational parameters

r
ðmÞ
n ; bðmÞ;

2. (M-step) Maximize the variational evidence lower bound with

respect to the hyperparameter a.

In E-step, we estimate the posterior distribution using a very

commonly used algorithm, coordinate ascent variational inference

(CAVI) (Bishop, 2006). We iteratively update:

r
ðmÞ
n;k ¼

qðmÞn;kPK
l¼1

qðmÞn;l

and bðmÞk ¼ ak þ
XNðmÞ
n¼1

r
ðmÞ
n;k (1)

where

q
mð Þ

n;k ¼ p R
mð Þ

n;k ; k
mð Þ

n;k jZ
mð Þ

n;k ¼ 1;H
� �

�

exp z b mð Þ
k

� �
�z

XK

l¼1

b mð Þ
l

 !" #
(2)

and z denotes the digamma function which is the derivative of the

log-gamma function.

In M-step, we can use the Newton-Raphson method to update

the hyperparameter a. This method is widely used for parameter es-

timation of models with Dirichlet priors (Blei et al., 2003; Minka,
Fig. 2. The graphical model representation of DEIsoM
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2000; Ronning, 1989). Here, we initialize the hyperparameter

a ¼ 1. The Newton–Raphson method finds the stationary point of

an objective function using the iterative updates:

anew ¼ aold �HðaoldÞ�1gðaoldÞ (3)

where g and H denote the gradient and the Hessian matrix of the ob-

jective function respectively. However, some new ak may become

non-positive during the iterative updates, which is invalid for

Dirichlet distributions. Therefore, instead of working on a directly,

we update log ðaÞ first and then take the exponential of it. Let

c ¼ log ðaÞ. The gradient and the Hessian of the variational lower

bound with respect to c can be computed as:

gk cð Þ ¼M z

XK

l¼1

al

 !
�z akð Þ

 !
akþ

XM
m¼1

ak z b mð Þ
k

� �
�z

XK

l¼1

b mð Þ
l

 ! !
(4)

Hi;j cð Þ ¼M z
0
XK

l¼1

al

 !
aiaj

 !
þ r i; jð ÞDi að Þ (5)

where we define r i; jð Þ ¼ 1 if i¼ j, otherwise r i; jð Þ ¼ 0; z0 is the

trigamma function, and

Di að Þ ¼M z

XK

l¼1

al

 !
�z

0 aið Þai �z aið Þ
 !

ai

þai

XM
m¼1

z b mð Þ
i

� �
�z

XK

l¼1

b
mð Þ

l

 ! !
(6)

A drawback of taking the logarithm is that we can no longer use

the special structure of Hessian to compute H�1g efficiently as in

Blei et al. (2003). Since Hessian computation can be expensive for

large K, we update c with L-BFGS method using the gradient only.

Updates for a will terminate when the maximum number of iter-

ations is reached or the change in evidence lower bound is smaller

than our threshold.

2.3 Identification
The DE level of an isoform can be represented as the difference be-

tween the posterior distributions of isoform fractions under two

conditions. As used in the Variational Bayesian method, KL diver-

gence measures the difference between any two distributions.

Therefore, we compute the KL divergence between the posterior dis-

tributions of isoform fractions under the two conditions to evaluate

the DE level of the isoforms. A higher KL divergence implies that

the isoforms of this gene are more differentially expressed under the

two conditions. Specifically, we train the model and estimate the

posterior distribution pðwjR; a;HÞ with data from healthy and dis-

eased conditions respectively. As described in Section 2.2, although

the exact posterior distribution cannot be computed, we use the ap-

proximate posterior distributions from two conditions, qðw; bÞ and

q0ðw0; b0Þ, to compute the KL divergence. Because qðwmÞ or q0ðwmÞ
are independent Dirichlet distributions, the KL divergence, DKL can

be computed analytically as:

DKL qjjq0ð Þ ¼
XM
m¼1

(
log

PK
k¼1

b
mð Þ

k

PK
k¼1

b0 mð Þ
k

þ
XK

k¼1

log
C b0 mð Þ

k

� �
C b

mð Þ
k

� � þ

XK

k¼1

b mð Þ
k � b0 mð Þ

k

h i
z b mð Þ

k

� �
�z

XK

l¼1

b mð Þ
l

 !" #)
(7)

To remove the asymmetry of DKL between two conditions, we

further compute the Jensen-Shannon divergence DJS ¼ 1
2

DKLðqjjq0Þ þDKLðq0jjqÞ�½ .

3 Simulations

In this section, we present four simulation studies to test that (1)

whether DEIsoM benefits from the shared information from the

multiple biological replicates compared with alternative methods;

(2) whether the VB inference speeds up the computation without

loss of accuracy; (3) whether DEIsoM is robust to different simula-

tion settings; (4) whether the quantification of DEIsoM outperforms

alternative methods under a more realistic setting.

3.1 Comparison of five methods on synthetic data
To test whether the shared information contributes to DE isoform

detection, we generate synthetic data and compare DEIsoM with

four commonly used programs: Cufflinks (v2.2.1), MISO (v0.5.3),

RSEM (v1.2.30), and BitSeqVB (v0.7.5). The synthetic data are gen-

erated as follows. We first randomly select 200 genes (1395 iso-

forms) from the annotation of chromosome 1 in the hg19 human

reference genome, in which 100 genes are labeled as containing DE

isoforms and the rest are non-DE. We sample the expression levels

of genes from a log-normal distribution (Gierli�nski et al., 2015).

Isoform fractions are generated from a symmetric Dirichlet distribu-

tion with a ¼ 1, which means the chance of sampling any fraction of

isoforms is equally probable. For instance, if there are three iso-

forms, the probability of sampling the isoform fraction as (0.1, 0.2,

0.7) is the same as (0.2, 0.3, 0.5). For DE isoforms, we draw two dif-

ferent samples for two conditions respectively; for non-DE, we draw

only one sample shared by both conditions. To model the variation

among replicates, we add Gaussian noise with a standard deviation

equal to 10% of the expression level of each replicate. According to

Standards, Guidelines and Best Practices for RNA-Seq V1.01, the

number of paired-end RNA-Seq reads used in current studies is

around 30 million per replicate. And for each tissue, it is generally

expected more than 10, 000 genes are expressed (Consortium,

2015). Following the above empirical read numbers, we generate

600, 000 RNA-Seq reads for 200 genes using

RNASeqReadSimulator 2 for each of five replicates in both condi-

tions, using default settings.3 To test the robustness of DEIsoM, we

repeat the above simulation process 10 times. For RSEM, BitSeq,

MISO, and DEIsoM, the simulated reads are mapped back to the

reference transcriptom using Bowtie2 (Langmead and Salzberg,

2012). For Cuffdiff, the reads are mapped back to the hg19 refer-

ence genome using Tophat (Trapnell et al., 2009). The machine used

to run all experiments has two 8-Core Intel Xeon-E5 processors and

64 GB memory.

First, we compare the quantification performance of DEIsoM

with MISO, Cuffdiff, RSEM and BitSeqVB in terms of the

1 Standards, Guidelines, and Best Practices for RNA-Seq V1.0 can be

found at: https://genome.ucsc.edu/ENCODE/protocols/dataStanda

rds/ENCODE_RNAseq_Standards_V1.0.pdf

2 RNASeqReadSimulator is available at: http://alumni.cs.ucr.edu/liw/

rnaseqreadsimulator.html

3 Our simulation code is available at: https://github.com/hao-peng/

DEIsoM/tree/master/simulation
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correlations between the predicted isoform fractions and the ground

truth on the synthetic data. Figure 3A summarizes the means and

the standard errors of the correlation coefficients in 10 replicates.

They show that the correlation coefficients in DEIsoM is higher

than the alternative methods.

Second, we compare the DE isoform identification performance

of DEIsoM with MISO, Cuffdiff, RSEM-EBSeq, and BitSeqVB in

terms of the area under curve (AUC) of receiver operating character-

istic (ROC) curves on the synthetic data. The ROC curves are com-

puted based on different ranking criteria for the five methods.

DEIsoM uses the KL divergence; MISO uses both the average of

Bayes factors of all pairs of subjects (MISO-BF) and the average of

KL divergences of posteriors of isoform factions (MISO-KL);

Cuffdiff uses a log-fold-change based P-value; RSEM-EBSeq uses

the Posterior Probability of Differential Expression (PPDE);

BitSeqVB uses the Probability of Positive Log Ratio (PPLR). To

make different criteria comparable, we take the minimum of all iso-

form P-values of the gene, and the maximum of all isoform PPDEs

and PPLRs of the gene as the gene DE level. And we choose the

“isoform-centric” mode for MISO. Also, PPLR is more sensitive to

the upregulated DE isoforms than the downregulated ones by defin-

ition. Figure 4A shows the ROC curves for one of the 10 repeated

experiments. Figure 3B summarizes the means and standard errors

of the AUCs over 10 runs. They show that DEIsoM consistently out-

performs MISO-BF, MISO-KL, Cuffdiff, and RSEM-EBSeq on the

synthetic data under our settings.

Third, we compare the CPU time of DEIsoM, Cuffdiff, RSEM-

EBSeq and BitSeqVB. The time we count is from the point we give

the alignment files as input to the point that the programs generate

the quantification results. We summarize it in Supplementary Table

S1 for one run of the simulated data and the real data which will be

discussed in Section 4. The numbers of hours used by the three algo-

rithms are comparable, where Cuffdiff is always the fastest in all

methods. However, DEIsoM has better DE isoform identification

and quantification performance than the alternative methods, which

is shown in both Section 3 and Section 4.

3.2 Comparison of VB and MCMC on synthetic data
To test whether the VB inference algorithm speeds up the computa-

tion over MCMC sampling without loss of accuracy, we compare

the ROC curves and running time of the two implementations. We

set the maximum iteration number as 1500 for both VB and

MCMC. The burn-in time of MCMC is 150 iterations. Note that

the MCMC sampling here is not completely the same as MISO.

MISO combines the Metropolis-Hasting algorithm with a Gibbs

sampler. We follow the same approach to estimate w, but we itera-

tively sample a from its posterior distribution given a non-

informative prior which depends on all five replicates. Details of our

MCMC sampling method are described in the Supplementary. The

VB inference shows an advantage over MCMC in both the ROC

curve and computing time within the limited number of iterations.

Figure 4B shows the ROC curves for both implementations; VB in-

ference achieves an AUC¼0.9445 in 1.4 CPU h, whereas the

MCMC method has AUC¼0.8844 in 56 CPU h. Although MCMC

theoretically can give samples from the exact target posterior distri-

bution, it converges slowly on this dataset, which may cause in-

accurate predictions and long running time. However, VB usually

converges before the limit is reached under the same number of

maximum iterations. Therefore, the VB method achieves a faster

speed and a higher accuracy than the MCMC sampling.

3.3 Comparison of sensitivity of five methods
To demonstrate the robustness of DEIsoM, we vary the parameter

of Dirichlet distribution a used for generating isoform fractions.

When we increase a, the variance of generated isoform fractions

under two conditions becomes smaller, but the mean remains the

same. As a result, the difficulty of distinguishing DE genes from

non-DE genes increases. In this experiment, we set a ¼ 1, 3, and 5

and keep the other settings unchanged to simulate the data. We test

all above five methods on the simulated reads to see whether they

are sensitive to the change of a. Table 1 shows that as a increases,

the AUCs of all methods decrease, since the task becomes harder.

However, DEIsoM consistently outperforms the alternative methods

throughout all a settings.

3.4 Comparison of abundance estimation
To test the quantification performance of DEIsoM under a more

realistic setting, we simulate RNA-Seq reads using real data. Two

RNA-Seq datasets of human stomach tissue were chosen from the

ENCODE project4. Following the same percedure in Hensman et al.

(2015), we estimate the abundance of 196, 317 transcripts using

four models, RSEM, Cuffdiff, BitSeqVB and DEIsoM, as the ground

truth for each scenario. By feeding the ground truth to Spanki

(Sturgill et al., 2013), we generate about 10 millions paired-end

reads for each of the five replicates under each scenario. Four

A B

Fig. 3. RNA-Seq simulation studies. (A) Means and standard errors of correl-

ation coefficients between the estimation and the ground truth in 10 repli-

cates, using DEIsoM, MISO, RSEM, BitSeqVB and Cuffdiff. (B) Means and

standard errors of AUCs of 10 repeated simulations for DEIsoM, MISO-KL,

MISO-BF, Cuffdiff, RSEM-EBSeq, and BitSeqVB

A B

Fig. 4. RNA-seq simulation studies. (A) ROC curve comparison of MISO,

Cuffdiff, RSEM-EBSeq, BitSeqVB, and DEIsoM from one run of 10 repeated

experiments. For MISO we use two evaluation methods, MISO-KL and MISO-

BF. MISO-KL denotes the average of KL divergences of the posteriors of iso-

form fractions. MISO-BF denotes the average of Bayes factors. (B) ROC curve

comparison of VB and MCMC implementations of DEIsoM on the same

dataset

4 The datasets from ENCODE project can be found at: https://www.

encodeproject.org/experiments/ENCSR853WOM/ and https://www.

encodeproject.org/experiments/ENCSR752UNJ/
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different evaluation criteria are used, see Supplementary S.2.1:

Theta, Theta-Group, WGE-True and WGE-Inter. Theta measures

the accuracy of transcript fraction estimation for all the replicates;

Theta-Group measures the accuracy of transcript fraction estimation

for the whole group; WGE-True measures the accuracy of within-

gene relative fractional estimation; WGE-Inter measures the predict-

ive consistency among all replicates. Figure 5 summarizes the rela-

tive root mean square errors (RMSE) of DEIsoM, RSEM, BitSeqVB,

and Cuffdiff on four simulated datasets. They show that the

DEIsoM RMSEs in both Theta-Group and WGE-Inter are lower

than the other three methods, indicating that DEIsoM tends to give

more consistent and accurate estimates for the whole condition.

This result is consistent with the one in (Hensman et al., 2015). A

similar result evaluated by the relative mean absolute errors (MAE)

is shown in Supplementary Figure S1.

4 Real data experiments and results

In this section, we test whether DEIsoM successfully identifies DE

isoforms in real data. We apply DEIsoM and alternative programs

to a hepatocellular carcinoma (HCC) RNA-seq dataset, and evalu-

ate the predicted DE isoforms by PCA, read coverage visualization,

and comparison to the biological literature. Aberrant alternative

splicing is known to be involved in HCC (Berasain et al., 2010), so

DE isoforms should be present.

4.1 Data pre-processing
RNA-seq data was collected from nine pairs of HCC tumors and

their matched adjacent normal tissues (Kan et al., 2013; Sung et al.,

2012). The mRNA of each sample was extracted, amplified and

sequenced. 150 base paired-end reads were generated and aligned to

the hg19 human reference genome using RUM (RNA-Seq Unified

Mapper) (Grant et al., 2011). The aligned reads are used as input to

three methods, Cuffdiff, RSEM-EBSeq, BitSeqVB, and DEIsoM, for

DE isoform detection. MISO is not included because it cannot per-

form a group-wise analysis.

4.2 PCA
Because there is no exact ground truth for the HCC real data, we

evaluate the quantification ability of each method by PCA plots. We

first choose 38 significantly DE genes that are verified by polymer-

ase chain reaction (PCR) from the previous publications (Dong

et al., 2009; Huang et al., 2017; Wang et al., 2015, 2017). For each

gene, we sum up the Fragments Per Kilobase of transcript per

Million mapped reads (FPKM) of all the child isoforms as the gene

expression. If the gene/isoform expressions associated with the HCC

are correctly estimated, these gene/isoforms can be used as features

to distinguish between the normal and tumor samples in PCA plots.

Figure 6 shows that DEIsoM and RSEM can linearly separate tumor

samples from their matched normal samples; BitSeqVB has one

tumor sample (9) very closed to the normal cluster; Cuffdiff misses

three tumor samples (4, 5, 6) in the normal cluster.

4.3 Read coverage visualization
To understand the expression patterns of the DE isoforms selected

by DEIsoM, we visualize the read coverage on the hg19 reference

genome. Because it may be possible to align a read to multiple iso-

forms, it is hard to determine the exact expression level of each iso-

form from the read coverage visualization. But it is possible to tell

the change in isoform expression in some cases. A previous study

successfully identified the genes with DE isoforms by testing the dif-

ference in read coverage between two conditions (Stegle et al.,

2010). Following the same logic, we assume that if the read coverage

of a gene is similar in the two conditions, the isoforms of that

gene will be predicted as non-DE. Otherwise, they are more likely

to be DE.

First, we examine the read coverage of IGF2, a gene identified by

DEIsoM as having DE isoforms. IGF2 is the 2nd most DE gene iden-

tified by DEIsoM. Eight isoforms of IGF2 have been observed ac-

cording to the human transcriptome annotation. Figure 7A and B

show the read coverage of IGF2 in nine pairs of normal and tumor

samples. Note that the reads aligned to the last two exons (in the

box) can only contribute to isoform 4 (ENST00000300632). Figure

7B shows that the absolute numbers of reads aligned to the last two

exons in all tumor samples are much lower than that in normal sam-

ples. Figure 7C is the same as Figure 7B but with an automatically

scaled y-axis. (C) shows that in eight of nine tumor samples (1T, 2T,

4T – 9T), the fractions of reads aligned to the last two exons are

much lower in the HCC samples than that in the normal samples.

This indicates that IGF2 isoform 4 is down-regulated in HCC

tumors. However, in the Cuffdiff results, this isoform has a P-value

of 0.039 with rank 95; in RSEM-EBSeq, the PPDE equal to 1 out of

1147 DE isoforms all with PPDE¼1. But if we further rank by tran-

script real fold change (condition 1 over condition 2) as recom-

mended, it ranks 671 out of 1147 DE isoforms.

Second, we show the read coverage of IGF2BP1, a gene identi-

fied by Cuffdiff as having DE isoforms. Isoform 1

(ENST00000290341) of IGF2BP1 is the 6th most DE gene.

Supplementary Figure S1 shows the read coverage of IGF2BP1 in

normal and tumor samples. Note that the reads aligned to the last

exon only contribute to isoform 1 (the box indicates the last exon).

Fig. 5. Relative root mean squared errors of DEIsoM, RSEM, BitSeqVB and

Cuffdiff on four simulated datasets. Theta: estimated transcript fractional ex-

pression compared with the ground truth for all the replicates. Theta-Group:

mean estimated transcript fractional expression of the whole group com-

pared with the true group mean. WGE-True: within-gene relative estimates

compared with the ground truth. WGE-Inter: inter-replicate consistency of

within-gene relative estimates

Table 1. AUCs for MISO, Cuffdiff, RSEM-EBSeq, BitSeqVB, and

DEIsoM on simulated data with different a

a 1 3 5

MISO-BF 0.849 0.727 0.673

MISO-KL 0.912 0.878 0.844

Cuffdiff 0.890 0.834 0.815

RSEM-EBSeq 0.873 0.798 0.762

BitSeqVB 0.807 0.771 0.704

DEIsoM 0.931 0.915 0.887
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However, only four of nine tumor samples show moderate differen-

tial expression of isoform 1 (lower than 500), and the expression

level is near zero in all normal samples and five of the tumor samples

(1T – 4T, 8T). Cuffdiff evaluates DE level using the log-fold-change

between the conditions. This “fold” will be extremely large when

the expression of one condition is near zero and the other is slightly

higher. However, due to the low count numbers in both conditions,

the confidence of calling this gene as having DE isoforms is low.

Often, an empirical value is set to avoid low signals (NOTEST or

LOWDATA). On the contrary, DEIsoM ranks IGF2BP1 as 244.

Because both large sample variance and low read coverage lead to

relatively “flat” posterior distributions in both normal and tumor

conditions, which are close to the prior distribution. Thus, the KL

divergence between two posterior distributions is small and the iso-

forms are not identified as DE.

Lastly, we visualize the five least differentially expressed iso-

forms identified by DEIsoM, showing that the low ranked isoforms

have very similar read coverage patterns in both normal and tumor

samples. Supplementary Figure S2 shows COX16 has a similar read

coverage pattern among all samples in both normal and tumor con-

ditions. This is because a low KL divergence requires a high similar-

ity between two posterior distributions of isoform fraction.

4.4 Biological relevance of predicted DE isoforms
To further understand the functions of DE isoforms selected by

DEIsoM, we examine whether they are supported by HCC relevant

literature. PubMed searches were performed using the keywords

‘gene nameþhepatocellular carcinoma’. Since most current experi-

mental work focuses on the expression levels of genes rather than

isoforms, we associate the DE isoforms identified by DEIsoM,

Cuffdiff, RSEM-EBSeq and BitSeqVB with their gene names. Also,

we assume that if the expression of a gene changes, it is very likely

caused by a change of its isoforms. DE isoforms/genes are then cate-

gorized into four groups (3, 2, 1, 0) according to their relevance to

HCC. ‘Category 3’ refers to a gene whose function in HCC has been

well studied and can be used as a potential biomarker for prognosis

or diagnosis. ‘Category 2’ indicates that differential expression of a

gene has been detected in vivo, but not used as a biomarker.

‘Category 1’ indicates a gene whose function has only been studied

in vitro but not in patient biopsies. ‘Category 0’ indicates a gene for

which we found no HCC relevant literature.

First, we compare the number of genes that are HCC biomarkers

(Category 3) in the predictions by DEIsoM, BitSeqVB, RSEM-EBSeq

and Cuffdiff (the first four columns in Fig. 8). In the top 10 lists, more

genes are identified as HCC biomarkers by DEIsoM than BitSeqVB,

RSEM-EBSeq or Cuffdiff. Specifically, 6/10 genes identified by

DEIsoM (ASS1, TTR, IGF2, AHSG, GPC3, CRP) vs. 4/10 genes iden-

tified by BitSeqVB (GPC3, AFP, IGF2BP3, UBE2C), 3/10 genes identi-

fied by Cuffdiff (SKP2, C-FOS, SOCS2) and 3/10 genes identified by

RSEM-EBSeq (PEG10, TERT, ACAN) belong to Category 3.

Second, we have examined the six specific HCC biomarkers status

(ASS1, TTR, IGF2, AHSG, GPC3, CRP) in the top 10 list of DEIsoM.

Specifically, ASS1 is detected to be down-regulated in HCC liver

A B C

Fig. 7. Read coverage of IGF2 – a top selection by DEIsoM. The data was normalized across replicates by scaling the total number of reads to that of 1N (replicate

1 under normal condition). (A) Read coverage patterns of nine normal samples with y-axis scaled to 5000. (B) Read coverage patterns of nine matched tumor

samples with y-axis scaled to 5000. (C) is the same as (B) but uses an automatically scaled y-axis. This illustrates that 1–5 and 8–9 tumor samples have very low

read abundance in the last two exons, and the low signals are not due to the imposition of a fixed large y-axis scale. The exon positions of eight isoforms are

listed under each panel

A B

C D

Fig. 6. PCA plots for nine pairs of HCC samples and their matched normal

samples. Each sample is represented by a vector with 38 gene expressions.

All these 38 genes are PCR verified DE genes in HCC. A, B, C, D are PCA plots

using the estimations from DEIsoM, BitSeqVB, RSEM and Cuffdiff, respect-

ively. Circle: normal sample. Cross: tumor sample. Percentage: the proportion

of variance of the corresponding principle component
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samples, which can be used to predict metastatic relapse with a high

sensitivity and specificity (Tan et al., 2014); TTR is down-regulated in

HCC patient serum (Qiu et al., 2008); (Yim and Chung, 2010) state

that both IGF2 and GPC3 are effective biomarkers for HCC—particu-

larly, circulating IGF2 mRNA is positive in 34% of HCC patients and

100% correlated with the extrahepatic metastasis; GPC3 has been re-

ported to interact with the Wnt signaling pathway to stimulate cell

growth in HCC; GPC3 has also been used combined with PEG10,

MDK, SERPINI1, and QP-C as a classifier that successfully distin-

guishes noncancerous hepatic tissues from HCCs (Yim and Chung,

2010); AHSG combined with two other HCC-associated antigens—

KRT23 and FTL—can be used to diagnose HCC with sensitivity up to

98.2% in joint tests and specificity up to 90.0% in serial tests. (Wang

et al., 2009); CRP, an inflammatory cytokine, is highly expressed in

HCC and its expression is correlated with tumor size, Child-Pugh

function and survival time (Jang et al., 2012).

Generally, DEIsoM ranks genes/isoforms highly associated with

HCC on the top. In the top 10 list (the first four columns in Fig. 8),

60% of genes identified by DEIsoM as having DE isoforms are ex-

perimentally proven HCC biomarkers (Category 3), and 90% are

HCC biomarkers plus DE genes verified in vivo (Category 3þ2).

On the contrary, BitSeqVB, RSEM-EBSeq, and Cuffdiff show a

lower performance than DEIsoM 30 to 40% of genes having DE iso-

forms that are experimentally proved HCC biomarkers (Category

3), and 40% to 50% are HCC biomarkers plus DE genes verified

in vivo (Category 3þ2).

Even if we expand this search to top 50 lists (the fifth column in Fig.

8 and Supplementary Table S4), DEIsoM still identifies 18 genes (36%)

as HCC biomarkers, and 10 genes (20%) as DE genes verified in vivo.

However, BitSeqVB, RSEM-EBSeq, and Cuffdiff identify fewer litera-

ture proven DE genes than DEIsoM in the top 50 list (the last three col-

umns in Fig. 8 and Supplementary Tables S5–7). BitSeqVB identifies 16

genes (32%) as HCC biomarkers, 12 genes (24%) as DE genes in vivo;

RSEM-EBSeq identifies 12 genes (24%) as HCC biomarkers and 3

genes (6%) as DE genes verified in vivo; Cuffdiff identifies 11 genes

(22%) as HCC biomarkers, 12 genes (24%) as DE genes in vivo.

Therefore, DEIsoM has a clear superior ability to select DE genes that

are supported by the published literature.

Moreover, the isoforms of four genes (FGFR2, survivin,

ADAMTS13 and CD44) identified as DE by DEIsoM have been

found to be up or down-regulated in HCC. This provides additional

support for DE isoforms identified by DEIsoM. In the case of FGFR2

(ranked 62 of 11950 genes), the FGFR2-IIIb isoform is down-

regulated and has been related to HCC aggressive growth, while the

FGFR2-IIIc isoform is expressed at the same level in normal and HCC

tissues (Amann et al., 2010). All three isoforms of survivin (ranked

120 of 11950 genes), survivin normal, survivin 2B and survivin Delta

Ex3 have been detected in well, moderately and poorly differentiated

HCC but none of these are found in normal tissues (Takashima et al.,

2005). RT-PCR results are available for ADAMTS13 (ranked 201 of

11950 genes) showing differences in the expression of three known

isoforms (WT and 1, 2) between normal liver tissue and hepatoma

cell lines (Shomron et al., 2010). For CD44 (ranked 607 of 11950

genes), CD44-v6 is up-regulated in HCC, while CD44 standard form

remains stable (Zhang et al., 2010).

To more clearly understand the performance of different meth-

ods, we also examine the overlapping DE genes in the top 200 lists

from the compared methods. Supplementary Table S2 shows the

overlapping DE genes by feeding the FPKM of all isoforms from

each method to EBSeq. This tests the quantification similarity be-

tween any two methods. According to the number of overlapping

DE genes, the quantification performance of RSEM and BitSeqVB

are the most similar, followed by RSEM and DEIsoM.

Supplementary Table S3 shows the overlapping DE genes using the

DE evaluation methods of their own. This tests the performance of

both the quantification and DE identification. After changing the

DE evaluation method, the number of overlapping DE genes be-

tween RSEM and BitSeqVB decreases from 96 to 62, while this

number between RSEM and DEIsoM decreases from 74 to 14,

which suggests that KL divergence performs differently from PPDE

or PPLR. PPDE and PPLR are only sensitive to the absolute abun-

dance change of an isoform, while KL divergence is sensitive to the

overall isoform fractional pattern change within a gene, not limited

to the absolute abundance change. This is useful in searching iso-

form switching events in many cases.

5 Discussion

In contrast to the models that treat each biological replicate separ-

ately, DEIsoM incorporates all biollogical replicates in one seamless

framework. By capturing the shared information across multiple bio-

logical replicates, DEIsoM achieves a higher prediction accuracy and

inter-replicate consistency than the alternative methods in the simula-

tion studies (Section 3.1, 3.3, 3.4). This shared information comes

from the intrinsic fact that all the replicates in one condition share the

same underlying biological mechanism. As described in model con-

struction (Section 2.1), we use a Dirichlet prior to represent a base

fraction, which is characterized by the hyperparameter a and learned

from data, and then sample the instance-specific fraction for each rep-

licate. The fractions for different replicates are not necessarily the

same, because we allow some within-condition variance, however,

those fractions retain underlying coherence since they are sampled

from the same Dirichlet prior (or the base fraction). In addition, as the

conjugate prior for the multinomial distribution, the Dirichlet prior

enables close form, efficient updates in our VB inference, which

greatly benefits the computation. Furthermore, faster computing

speed is gained using the VB algorithm, instead of the MCMC sam-

pling used in MISO, during the inference step. The VB method con-

verts a sampling problem to an optimization problem and speeds up

the estimation (Section 3.2). DEIsoM is also promising in real applica-

tions. On the HCC dataset, by PCA plotting, we find that the normal

and tumor samples can be linearly separated by the estimated expres-

sion levels of PCR verified DE genes, suggesting an accurate quantifi-

cation of DE isoforms in DEIsoM. Using read coverage visualization,

we find that the DEIsoM KL divergence is capable of identifying iso-

forms whose read coverage patterns change, and does not give false

positive results for isoforms with low read abundance in both

Fig. 8. HCC relevance of DE isoforms identified by DEIsoM, BitSeqVB,

Cuffdiff, and RSEM-EBSeq. Relevance is defined as Category 3: HCC bio-

markers, Category 2: DE genes verified in HCC tissues, Category 1: DE genes

verified in HCC cell lines, and Category 0: HCC non-related genes. We analyze

both the top 10 and top 50 selections for all four methods
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conditions. This property is desirable in practice, since a low number

of reads causes a large uncertainty in estimation. In DEIsoM, the pos-

terior distributions of both conditions are close to the uniformly dis-

tributed prior if the read number is low, which reduces the KL

divergence between the two conditions. However, neither Cuffdiff nor

RSEM-EBSeq will automatically prune such isoforms (Section 4.2,

4.3). Moreover, a great number of isoforms predicted to be DE by

DEIsoM are supported by the biological literature, providing encour-

aging results for real applications.

However, there are still some improvements that could be incor-

porated into DEIsoM. First, DEIsoM builds on the approach of

MISO, which considers the quantification of isoforms gene by gene.

In order to handle the reads multi-mapped to different gene loci, we

have also added a variant version of DEIsoM that simultaneously

considers all transcript isoforms, rather than performing a gene by

gene analysis. This enhancement will allow the inclusion of multiply

mapped reads into the analysis. However, the KL divergence is not

applicable to this version, since KL divergence measures the isoform

pattern change within a gene. Second, the KL divergence as a DE

evaluation method is not based on a hypothesis test, but rather on

the difference of the posterior distributions of fractional isoform ex-

pression between two conditions, so it only provides a rank instead

of P-values to infer ‘significantly’ DE genes. However, KL diver-

gence is sensitive to the overall isoform pattern change within a

gene, and more differentiable for ranking isoforms/genes than P-val-

ues, which tend to give the same rank to many genes. DEIsoM

allows the estimated isoform levels to be reported as FPKM, thereby

allowing P-values to be calculated by many existing differential ex-

pression analysis methods. Lastly, DEIsoM assumes a known refer-

ence genome/transcriptome and the uniform read distribution. The

misannotation or the non-uniformity of the read data may com-

promise the estimation accuracy in DEIsoM. We are considering

including the novel isoform construction and the modeling of non-

uniformly distributed read data into our future versions.

6 Conclusion

We propose a hierarchical Bayesian model, DEIsoM, for detecting DE

isoforms using multiple biological replicates from two conditions.

DEIsoM captures the information shared across replicates, and pro-

vides fast and accurate prediction compared to alternative methods in

simulations. On the HCC real dataset, the estimated expression levels

of PCR verified DE genes can be used as features to separate the tumor

samples from their matched normal samples in PCA plots; read cover-

age visualization confirms that DEIsoM KL divergence is capable of

identifying DE isoforms. DEIsoM is relatively resistant, compared to

alternative methods, to identifying isoforms with low read abundance

in both conditions as DE. Biological literature review suggests that the

DE isoforms selected by DEIsoM have high relevance to HCC.
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