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Abstract: A fast and automated strategy has been developed for identifying unknown substances
in the atmosphere (concretely, in the particulate matter, PM10) using LC-HRMS (MS3). A total
of 15 samples were collected in three different areas (rural, urban and industrial). A sampling
flow rate of 30 m3 h−1 was applied for 24 h, sampling a total volume of around 720 m3. A total
of 49 compounds were tentatively identified using very restrictive criteria regarding exact mass,
retention time, isotopic profile and both MS2 and MS3 spectra. Pesticides, pharmaceutical active
compounds, drugs, plasticizers and metabolites were the most identified compounds. To verify
whether the developed methodology was suitable, 11 substances were checked with their analytical
standards and all of them were confirmed. Different profiles for industrial, rural and urban areas were
examined. The Principal Component Analysis (PCA) model allowed us to separate the obtained data
of the three assessed area. When the profiles obtained in the three evaluated areas were compared
using a Volcano plot (the rural area was taken as reference), 11 compounds were confirmed as being
discriminant: three of them (3-hydroxy-2-methylpyridine, 3-methyladenine and nicotine) were more
likely to be found in industrial sites; ten compounds (3-hydroxy-2-methylpyridine, 3-methyladenine,
azoxystrobin, cocaine, cotinine, ethoprophos, imidacloprid, metalaxyl-M, nicotine and pyrimethanil)
were more probable in the case of urban sites; finally, triisopropanolamine was more likely to be
detected in rural locations.

Keywords: PM10; HRMS; unknown analysis; confidence level; pollutants profiles

1. Introduction

The atmosphere is a reservoir of volatile emissions mainly coming from anthropogenic
sources such as industrial processes, agricultural production or incineration of fossil
fuels [1] but also from biogenic sources [2]. Furthermore, the atmosphere is a transport
medium where chemical emissions might have lasting effects on the environment and
a major impact on human health, even in communities that are somewhat remote from
origin sources [1,3]. However, on top of that, the atmosphere is a chemical reactor where
compounds continuously transform [4].

The literature provides comprehensive descriptions of the sources, emissions and
levels of organic pollutants in the ambient air such as polyaromatic hydrocarbons (PAHs),
pesticides, dioxins (PCDD/F), polychlorinated biphenyls (PCBs) and polybrominated
diphenyl ethers (PBDEs) [5–8]. High concentrations of these organic air pollutants increase
the risk of mortality, mainly due to respiratory and cardiovascular problems [9–11]. In the
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atmosphere, these airborne pollutants are mainly distributed between two different phases
(particulate and gaseous phase) according to their physicochemical properties and ambient
conditions (temperature and humidity) [12–14]. Particulate matter has raised significant
concern in relation to public health, given that 80% or more will deposit somewhere in the
respiratory system (often up to 50% of the average mass concentration) [15,16].

Concerning the levels of the organic pollutants in the ambient air, there are certain
differences in the atmosphere between urban, industrial and rural areas [17,18]. On the one
hand, on the whole, urban areas represent the main areas of anthropogenic emissions [19,20]
although in China, black carbon emissions could be larger in rural than in urban areas [21].
In addition, many industrial areas exceed anthropogenic emissions as their activity is a
major source of pollutant release into the European environment [22]. Meanwhile, pesticide
concentrations are higher in rural than in urban and industrial areas, but other persistent
organic pollutants (POPs), such as PCDD/F and PCBs, are found at low concentrations in
rural areas [23,24]. In addition, there are differences between these pollutants taking into
account the seasons of the year [25].

In order to identify new compounds, it is crucial to carry out an appropriate structural
elucidation. In this sense, hybrid instruments have been successfully employed for this
purpose in different matrices [26–29]. These instruments help to provide information
on the accurate mass (full scan) and the fragmentation pattern (MS2, second-generation
spectrum) to carry out a tentative identification of the unknown compound. Furthermore,
the emergence of the Orbitrap-tribrid mass spectrometers (which include a quadrupole,
an Orbitrap analyser and a linear ion-trap) has provided an increased mass resolving
power (450,000 FWHM at m/z 200) and the scan speed (30 Hz) as well as the possibility of
performing MSn for better structural elucidation [30,31]. The suitable characterization of
unknown compounds relays on the acquisition of full-scan data, fragmentation data (MS2,
MS3, third-generation spectrum, MSn) and their in-depth interpretation. Additionally, and
trying to automate structural elucidation, new acquisition tools have been developed for
background removal and exhaustive precursor selection [32]. Likewise, an automated
library search has been improved through the data processing tool Compound Discoverer
TM (CD) [33].

In the literature, there are few studies related to non-target analysis in ambient air using
liquid chromatographic techniques coupled to high-resolution mass spectrometry [34–38],
but in some cases, only MS2 fragmentation data were employed. The other published
studies in the literature employed gas chromatography [39–41].

In the present study, a comprehensive strategy to identify unknown pollutants in
the particulate matter of ambient air (PM10) and to characterize the pollutants profiles in
different areas (industrial, urban and rural) has been developed. This methodology enables
us to detect compounds in the ambient air using MS2 and MS3 spectra. The capabilities of
a Tribrid instrument (MS3 acquisition data) improve the structural elucidation obtained in
other studies (MS2 acquisition). Furthermore, the developed methodology is able to detect
which compounds have the greatest power of discrimination between areas, obtaining
11 characteristic substances in the three assessed areas. For this purpose, the improved
capabilities of a Tribrid instrument for non-target acquisition data (MS3) has been combined
with the powerful automated data processing workflows including PCA analysis and
Volcano plot.

Eleven compounds that allowed discriminating between these three areas were finally
identified and confirmed using analytical reference standards. As far as we are aware,
this study is the first work that uses Tribrid mass spectrometer to search for unknown
compounds and to characterize pollutants profiles in the ambient air.

2. Materials and Methods
2.1. Reagent and Chemicals

The following certified commercial standards were employed to create a Quality Con-
trol Reference Material (QCRM): acetaminophen, caffeine, reserpine, sulfaguanidine, sul-
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fadimethoxine, terfenadine and Val-Tyr-Val, all purchased from Sigma Aldrich (Taufkirchen,
Germany). Individual stock standards were prepared weighting 5 mg of pure standard
using a 5-decimal analytical balance and dissolving each compound in 25 mL of acetone.
Mix working solutions at 10 and 1 mg L−1 were prepared in H2O/MeOH (70:30, v:v) and
stored in capped amber vials at −20 ◦C. These standards were added in the evaluated
samples at 10 ng mL−1.

In addition, to confirm the substances detected in the different areas studied, the follow-
ing commercial standards were prepared: 3-hydroxy-2-methylpyridine, 3-methyladenine,
azoxystrobin, cocaine, cotinine, ethoprophos, imidacloprid, metalaxyl, nicotine, pyrimethanil
and triisopropanolamine, all provided by Sigma Aldrich (Taufkirchen, Germany). Individ-
ual analytical standards were prepared by weighting 10 mg of pure standard employing
a 5-decimal analytical balance and dissolving each compound in 50 mL of acetone. Mix
working solutions at two different concentrations (1000 ng mL−1 and 50 ng mL−1) were
prepared in H2O/MeOH (70:30, v:v) and were stored at −20 ◦C using capped amber vials.

Acetone, ethyl acetate and water were of HPLC grade and were purchased from
Merck (Darmstadt, Germany). Methanol was HPLC grade and was supplied by Scharlau
(Barcelona, Spain). Formic acid 98% was provided by Panreac (Barcelona, Spain).

2.2. Sampling and Site Characterization

Sample collection was carried out in the same way as described by López et al.
(2017) [6]. Samples were collected using a high-volume sampler from Digitel (Volketswill,
Germany) and quartz fiber filters (QFF) of 150 mm of diameter, supplied by Munktell Filter
AB (Falun, Sweden). A sampling flow rate of 30 m3 h−1 was applied for 24 h, sampling a
total volume of around 720 m3. PM10 samples were collected in May 2021 from three differ-
ent areas: one industrial (Onda), one urban (Valencia-Viveros), and one rural (Burriana)
(see Table 1). A total of 15 samples (5 samples in each area) were collected.

Table 1. Description of sampling sites of PM10 samples.

Sampling Site Latitude Longitude Description

Burriana 39◦53′52′′ 0◦03′54′′ Rural and agricultural area surrounded by citrus groves (orange
trees). Samples collected about 20 m above sea level.

Onda 39◦57′46′′ 0◦15′00′′ Industrial area. Samples collected about 160 m above sea level.

Valencia-Viveros 39◦28′46′′ 0◦22′10′′ Commercial and urban area and inside a park (Viveros) with
gardens. Samples collected at 11 m above sea level.

2.3. Sample Preparation

When applying a wide-scope analysis, it is preferable to use a non-selective sample
preparation to extract the highest number of compounds. A generic extraction method
developed in a previous study using microwave assisted extraction (MAE) with ethyl
acetate was employed [34]. In short, extraction was carried out using a Mars system from
CEM Corporation (Mathews, NC, USA) equipped with Teflon® TFM 100 mL extraction
vessels. The extraction conditions were as follows: a temperature of 50 ◦C was applied for
20 min, using 1200 W, and 30 mL of ethyl acetate was added. After cooling, the reactor was
opened, and the extracts were filtered. Samples were evaporated with a Turbo Vap 500
(Zymark, Idstein, Germany), and the extracts were then re-dissolved with 1 mL of QCRM
and centrifuged prior to the LC–HRMS determination. The pooled sample was obtained
by mixing an aliquot of each extracted sample.

2.4. LC-HRMS Analysis

The chromatographic separations were performed on a Thermo Ultimate 3000 UH-
PLC (Ultra High Performance Liquid Chromatography) system equipped with a UHPLC
reversed-phase column Hypersil Gold, 1.9 µm particle size, 100 mm × 2.1 mm (Thermo
Scientific) interfaced with an Orbitrap ID-X Tribrid mass spectrometer (Thermo Fisher
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Scientific, Bremen, Germany). The injection volume was 5 µL, and the column was eluted
with a flow rate of 300 µL min−1. The initial conditions of the mobile phase were: 90%
phase A (water + 0.1% formic acid) and 10% B (methanol + 0.1% formic acid). The em-
ployed gradient was from 0 to 18 min., linear gradient to 70% B; from 18 to 21.5 min.,
linear gradient to 98% B; maintained at 98% B from 21.5 to 25 min; linear decrease to initial
conditions from 25 to 26 min, and maintained until 30 min.

The mass spectrometer used was a heated electrospray interface (H-ESI) operating
in positive ionization. The H-ESI parameters were the following: electrospray voltage of
3.5 kV; sheath gas of 25 arbitrary units (a.u); and auxiliary gas of 5 a.u. The ion transfer
tube operated at 270 ◦C and the vaporizer temperature at 180 ◦C. The full scan (FS) was
acquired with a resolving power of 120,000 FWHM for parental ions and a mass range
of 100–900 m/z. The MS2 data were acquired at a resolving power of 15,000 FWHM, with
a precursor mass range of 125–900 m/z. Both FS and MS2 were acquired in the Orbitrap
analyser. The MS3 precursor was isolated in the quadrupole mass filter (0.4 Da), fragmented
in the HCD cell, and detected in the Ion Trap (FWHM ≤ 0.3) [29].

2.5. Acquisition Workflow for Unknown Analysis

A wide range of different acquisition workflows can be achieved by the use of Orbi-
trap Tribrid-HRMS. In this study, the AcquireX© Data Acquisition Technology (Thermo
Fisher Scientific) was used in Deep Scan (DS) mode, which automatically creates an ex-
clusion and inclusion lists after the injection of a blank and a sample (acquired in full
scan), respectively. Three iterative injections of the air samples automatically update both
lists (inclusion/exclusion) which permits an in-depth acquisition of the relevant features,
excluding those present in the blank [29,42].

2.6. Data Processing

To be able to tentatively identify the chemicals, post-acquisition data processing was
performed. Raw files were processed by CD TM 3.1 (Thermo Fisher Scientific). Mass
Frontier TM 8.1 has been used in order to confirm MS3 spectra. Figure S1 shows the general
workflow employed in the Orbitrap-tribrid system, and Table S1 provides a description of
each node and Figure S2 illustrates the CD workflow.

In addition, CD has been employed for the statistical analysis. The data were analysed
by PCA to compare the differences between the studied areas. PCA is the most commonly
used approach to reduce the number of variables of a dataset while preserving as much
information as possible [43]. PCA enables to explore differences between samples collected
in different areas.

Moreover, a Volcano plot was performed to observe the more relevant substances in
each area. A volcano plot is a type of scatter plot for replicate data that shows statistical
significance (p-value) versus magnitude of change (log2Fold measures how much a variable
has changed between the two measurements). In this plot, the x axis represents the log2Fold
between two samples groups (generated ratio), and the y axis represents the negative log10
of the p-value (test of significance) of the fold change. Compounds in the volcano plot
showing a relatively low-fold change between the two different evaluated areas appear in
the centre of the plot (few differences between the two compared areas) while compounds
that have significant differences between the compared areas are found in the upper-left
(more likely to be found in industrial/urban areas) or the upper-right (more likely in rural
areas) [44]. The following parameters were employed in order to construct the Volcano
plot: p-value = 0.001 and log2Fold = 3.

2.7. Identification Criteria

In order to identify substances in the analysed samples, different levels of substance
identification were considered following the criteria described by Yusà et al., (2020) [29].

The criteria used for the different levels of identification confidence were the following:
predicted composition, exact mass, isotope pattern, MS2 and MS3 spectra match and RT
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(min). Taking into account these parameters, five different levels were defined (see Table 2)
depending on the compliance of the identified substances with the identification criteria.
The substances identified at Level 1 in the different Volcano plots have been compared with
analytical reference standards, when these were available. In a second injection, concentra-
tions in the ambient air (pg m−3) for these substances were estimated using the response of
their analytical standards. The resulting one-point calibration (corresponding to 66 pg m−3)
on identified compounds yielded semi-quantitative concentrations. This approach gives
only approximate concentrations, because the purpose of the study is basically to identify
and if possible confirm substances but not an accurate quantification method.

Table 2. Levels of confidence and criteria used for tentative identification.

Level Parameter Criteria

Level 1

Molecular formula (Predicted composition) 1 Full match
∆ mass (ppm) 2 <0.5 ppm

Isotope profile (SFit) 3 >70%
MzCloud Match 4 >70%

MS2 Data 5 Yes

RT (min) Consistent with the predicted RT (min)
(±2 min)/analytical standard *

Level 2

Molecular formula (Predicted composition) 1 Full match
∆ mass (ppm) 2 <0.5 ppm

Isotope profile (SFit) 3 50–70%
MzCloud Match 4 50–70%

MS2 Data 5 Yes
RT (min) Consistent with the predicted RT (min) (±2 min)

Level 3
Molecular formula (Predicted composition) 1 Full match

∆ mass (ppm) 2 <0.5 ppm
MS2 Data 5 Yes

Level 4

Molecular formula (Predicted composition) 1 Full match
∆ mass (ppm) 2 <0.5 ppm

MS2 Data 5 No
Predicted substance 6 Name

Level 5

Molecular formula (Predicted composition) 1 Full match
∆ mass (ppm) 2 <0.5 ppm

MS2 Data 5 No
Predicted substance 6 No Name
1 Molecular formula (Predicted composition): Assigned elemental composition coincidence with a proposed
substance from databases (ChemSpider, Mass List). 2 ∆ mass (ppm): mass error (in ppm). 3 Isotope profile (SFit):
match between the experimental isotopic pattern and the theoretical one. 4 MzCloud Match: match between
the experimental and the MS2 spectra in the mzCloud library. 5 MS2 data: Match between experimental MS2

spectra and the theoretical one in CD. 6 Predicted substance: Name described in one of the employed databases:
mzVault/mzCloud Library/ChemSpider/Mass List. * When analytical standard was available, the RT difference
between standard and sample was compared.

For the other 38 substances identified at Level 1, concentrations in the atmosphere
(pg m−3) were estimated taking into account the average response factor of the seven
substances employed in the QCRM (see average factor in Table S2).

2.8. Quality Assurance/Quality Control

To show the robustness of the developed methodology, some aspects have been assessed.

(i) Instrument drift was monitored by analysing the areas of QCRM in the batch. Coeffi-
cient of variation (CV (%)) should be lower than 30%.

(ii) To assure the unbiased of the methodology, all samples were injected in the same
batch, sample injections were randomized, and sample preparation was performed
the same day [45].
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(iii) Blank samples results were checked in order to assure that the exclusion list acquired
did not contain any contamination.

(iv) The batch acquired in CD was checked to assure that the seven substances added in
the QCRM were identified.

3. Results and Discussion

The fifteen samples (5 from each area) were analysed according to the workflow
described in Figure 1. After the instrumental analysis, the acquired analytical data (raw
data) were processed for the following: (i) identification of unknown substances and
(ii) multivariate analysis (PCA) and Volcano plot.
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3.1. Identification of Unknown Substances

Using the employed workflow, a total of 2528 features were automatically annotated
(see Figure S2). These features were classified into five different levels taking into account
the identification criteria (see Table 2): 49 features met the criteria to be considered the
highest confidence level (Level 1), 52 features were identified with a high confidence level
(Level 2) and 1011 features were identified in level 3; meanwhile, 920 substances were
tentatively identified in level 4 and 496 features were tentatively identified with the lowest
confidence level (Level 5).

The experimental retention time (RT) was compared with the predicted RT considering
log Kow [46] for each substance, using a known set of 116 analytical reference standards
(see Table S3 and Figure S3). In most cases (more than 80%), the difference between the
experimental retention time for the tentatively identified compounds and the predicted
retention time was lower than 2 min.

Moreover, given that MS3 has been employed in our study and CD only automatically
compares the acquired MS2 spectra with those included in the database (MzCloud) to
perform the tentative identification, MS3 data need to be manually checked to increase
the confidence of our results [47]. Ten out of the 49 identified substances did not have
available MS3 acquired spectra in CD. Consequently, the experimental spectrum of the
other 39 identified substances was compared with the available MS3 spectrum in MzCloud.
For those compounds that did not have MS3 spectra in MzCloud, the theoretical in silico
fragmentation performed with CD was compared with the experimental spectra. A total of
27 out of the 39 substances were successfully identified at the MS3 level.
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Table S4 shows the 49 identified substances at the highest level of confidence (Level 1),
which belong to different types of compounds such as pesticides, pharmaceutical active
compounds, drugs, plasticizers or metabolites. While some of them had been previously
detected in the ambient air, there were others which, as far as we know, have not been
previously detected in the ambient air. In order to confirm that the developed methodol-
ogy is suitable to identify unknown compounds, the discriminant substances detected in
Section 3.2 (3-methyladenine, 3-hydroxy-2-methylpyridine, azoxystrobin, cocaine, cotinine,
ethoprophos, imidacloprid, metalaxyl-M, nicotine, pyrimethanil and triisopropanolamine)
were checked with their analytical reference standards. All of them were confirmed.

3.2. Differences between Areas

The acquisition in full-scan mode allowed us to obtain an individual footprint for each
evaluated sample [48,49].

A PCA of the analysed samples was carried out. Figure 2 shows that the PCA model
clearly enabled air samples collected in the different sampling sites to be separated. These
differences imply different pollutant profiles for the assessed areas (industrial, urban
and rural).
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In a second step, the differences between each area (industrial, rural and urban) were
assessed by comparing them in pairs to determine which substances have the greatest
power of discrimination among the studied areas. In both cases, rural samples were used
as reference. The substances with the greatest power of discrimination were classified
according to the confidence level of their identification (see Table 2). Substances classified
as Level 1 were compared with an analytical reference standard, when available so as
to confirm their identification. Figure 3 summarizes the results obtained in the different
Volcano plots.
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Thus, taking into account the results obtained in the volcano plot where industrial
samples versus rural samples were compared (see Figure S4), 171 substances (located in
the upper-left) were more likely to be present in industrial areas (Table S5) while 185 com-
pounds (located in the upper-right) were more likely to be found in rural areas (Table S6).

Four out of the 171 substances more likely to be present in industrial areas were
classified as Level 1. Three of them were confirmed with their analytical standard (3-
methyladenine, 3-hydroxy-2-methylpyridine and nicotine), and one of them (anhydroecgo-
nine) was not possible to confirm because the analytical standard was unavailable. Nicotine
was previously detected in the ambient air of certain urban and industrial areas: the urban
atmosphere of Algiers [50]; industrial and urban areas in the National Territory Capital
of Delhi in India [51] and the urban atmosphere of cities such as Amsterdam, London
and Stockholm [52]. 3-methyladenine is an inhibitor of phosphatidylinositol 3-kinases
(PI3K) and also has a role as a human metabolite [53], and 3-hydroxy-2-methylpyridine
is an intermediate in the vitamin B6 metabolism [54]. To our knowledge, neither of these
two substances has been previously identified in the ambient air. Figure 4 illustrates the
chromatographic confirmation for nicotine, while in Figure S5 and Figure S6, the chromato-
graphic confirmations for 3-methyladenine and 3-hydroxy-2-methylpyridine are shown.

Regarding the compounds more likely to be detected in rural areas, none of those
detected compounds were identified at the highest confidence level (Level 1).

In the volcano plot obtained between urban and rural samples (see Figure S7), 171 compounds
(in the upper-left) were classified as being more probable detected in urban areas (see
Table S7), and 161 compounds (in the upper-right) were classified as more likely in rural
areas (Table S8).

Twelve out of the 171 compounds classified as more probable in urban areas were iden-
tified with the highest level of confidence (Level 1). Ten out of twelve substances were con-
firmed using analytical standards: 3-hydroxy-2-methylpyridine, 3-methyladenine, azoxys-
trobin, cocaine, cotinine, ethoprophos, imidacloprid, metalaxyl, nicotine and pyrimethanil.
However, two other compounds, (anhydroecgonine and 1,8-diazabicyclo [5.4.0] undec-7-
ene) could not be confirmed because the analytical standards were unavailable.
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Cocaine was also detected in the atmosphere of certain major cities such as Amsterdam,
London [52] and Barcelona [55]. Cotinine, the most important metabolite of nicotine, was
detected in urban samples. Taking into account that nicotine (its parent) has been found
in some urban and industrial areas around the world, [50–52], it is likely that cotinine is
present in urban areas. Figure 4 (nicotine), Figure 5 (cocaine) and Figure S8 (cotinine) show
the confirmation of these compounds.
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In this study, certain pesticides such as azoxystrobin, ethoprophos, imidacloprid,
metalaxyl and pyrimethanil were identified and confirmed. These pesticides have been
already detected in our region in previous studies [6]. Moreover, pyrimethanil was detected
in the same urban area studied in an earlier study carried out by our research group.
The detected semi-quantified levels in the present study are higher (21.84 pg m−3 vs.
8.00 pg m−3) than the ones found in our previous study [6]. Figures S9–S13 show the
chromatographic confirmation of the detected pesticides.

Concerning the compounds that are more likely to be found in rural areas, one of
them (triisopropanolamine) was confirmed with their analytical standard (see Figure S14)
and then classified as Level 1. Triisopropanolamine is widely used as emulsifier, stabilizer,
surfactant and chemical intermediate. One of its main applications of triisopropanolamine
is to neutralize pesticides [56].

4. Study Limitations

Samples were collected in only one season, and there may be differences in the partic-
ulate phase at different seasons of the year.

In some cases, it could be difficult to classify in only one group a sampling area that
should be part of more than one group.

Regarding structural elucidation, the detection of isomers is not possible, and we
should use other techniques (for instance, nuclear magnetic resonance).

5. Conclusions

A novel analytical approach has been developed in order to identify unknown com-
pounds in PM10 ambient air. This strategy enables the tentative identification of 49 com-
pounds, belonging to different chemical groups such as pesticides, pharmaceutical products,
drugs, plasticizers and metabolites. Furthermore, when applying it, the use of MS3 showed
better structural elucidation for the detected compounds.

Different profiles were obtained for rural, urban and industrial areas, and since, each
area has a specific footprint, different organic pollutants were detected.

When industrial and rural areas were compared, three substances were confirmed
in industrial areas: 3-methyladenine, nicotine and 3-hydroxy-2-methylpyridine. In the
comparison of urban and rural areas, 10 substances were detected in urban areas: 3-
hydroxy-2-methylpyridine, 3-methyladenine, azoxystrobin, cocaine, cotinine, ethoprophos,
imidacloprid, metalaxyl, nicotine and pyrimethanil whereas the presence of one substance
(triisopropanolamine) was confirmed in rural areas.

This strategy could be implemented as an analytical tool in future studies related to Air
Quality projects worldwide. Moreover, it may provide useful information about unknown
compounds (regulated or not) which can be detected in the ambient air by LC-HRMS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10050220/s1. Table S1: Description of the different nodes
of the CD workflow; Table S2: Average response factor of internal standard; Table S3: Table of Log
Kow vs. Retention time (RT) of the analytical reference standards; Table S4: Identified compounds
and spectrometric and chromatographic criteria; Table S5: Compounds more probably present in
industrial areas (Industrial-Rural); Table S6: Compounds more probably present in rural areas
(Industrial-Rural); Table S7: Compounds more probably present in urban areas (Urban-Rural);
Table S8: Compounds more probably present in rural areas (Urban-Rural); Figure S1: Workflow
used in AcquireX Deep Scan Mode-MS3; Figure S2: Workflow used in Compound Discoverer™
data processing; Figure S3: Graphic of Log Kow vs. Retention time (RT) of the analytical reference
standards; Figure S4: Volcano plot for identification of discriminating substances between industrial
and rural areas (employed parameters: p-value = 0.001 and log2Fold = 3); Figure S5: 3-methyladenine;
Figure S6: 3-hydroxy-2-methylpyridine; Figure S7: Volcano plot for identification of discriminating
substances between urban and rural areas (employed parameters: p-value = 0.001 and log2Fold = 3);
Figure S8: Cotinine; Figure S9: Azoxystrobin; Figure S10: Ethoprophos; Figure S11: Imidacloprid;
Figure S12: Metalaxyl; Figure S13: Pyrimethanil; Figure S14: Triisopropanolamine.
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