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Gross tumour volume radiomics for prognostication of
recurrence & death following radical radiotherapy for NSCLC
Sumeet Hindocha 1,2,3,4, Thomas G. Charlton5, Kristofer Linton-Reid4, Benjamin Hunter1,3,4, Charleen Chan3, Merina Ahmed6,
Emily J. Greenlay7, Matthew Orton8, Catey Bunce 7, Jason Lunn 3, Simon J. Doran 3, Shahreen Ahmad5, Fiona McDonald1,3,
Imogen Locke6, Danielle Power9, Matthew Blackledge10, Richard W. Lee 1,11,12 and Eric O. Aboagye 3,12✉

Recurrence occurs in up to 36% of patients treated with curative-intent radiotherapy for NSCLC. Identifying patients at higher risk of
recurrence for more intensive surveillance may facilitate the earlier introduction of the next line of treatment. We aimed to use
radiotherapy planning CT scans to develop radiomic classification models that predict overall survival (OS), recurrence-free survival
(RFS) and recurrence two years post-treatment for risk-stratification. A retrospective multi-centre study of >900 patients receiving
curative-intent radiotherapy for stage I-III NSCLC was undertaken. Models using radiomic and/or clinical features were developed,
compared with 10-fold cross-validation and an external test set, and benchmarked against TNM-stage. Respective validation and
test set AUCs (with 95% confidence intervals) for the radiomic-only models were: (1) OS: 0.712 (0.592–0.832) and 0.685
(0.585–0.784), (2) RFS: 0.825 (0.733–0.916) and 0.750 (0.665–0.835), (3) Recurrence: 0.678 (0.554–0.801) and 0.673 (0.577–0.77). For
the combined models: (1) OS: 0.702 (0.583–0.822) and 0.683 (0.586–0.78), (2) RFS: 0.805 (0.707–0.903) and 0·755 (0.672–0.838), (3)
Recurrence: 0·637 (0.51–0.·765) and 0·738 (0.649–0.826). Kaplan-Meier analyses demonstrate OS and RFS difference of >300 and
>400 days respectively between low and high-risk groups. We have developed validated and externally tested radiomic-based
prediction models. Such models could be integrated into the routine radiotherapy workflow, thus informing a personalised
surveillance strategy at the point of treatment. Our work lays the foundations for future prospective clinical trials for quantitative
personalised risk-stratification for surveillance following curative-intent radiotherapy for NSCLC.
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INTRODUCTION
Lung cancer is the leading cause of cancer mortality globally1, of
which 85% is non-small cell lung cancer (NSCLC)2. Radiotherapy is
a key treatment modality for NSCLC, used when surgery is not
appropriate due to the tumour location or patient’s fitness.
Recurrence occurs in up to 36% of NSCLC patients treated with
curative-intent radiotherapy3. Detecting recurrence early may
facilitate further (curative) treatment and improve overall survival
(OS). Post-treatment surveillance is variable in frequency and
imaging-modality used. High-quality evidence to inform optimal
surveillance strategies post-treatment is lacking and, the UK’s
National Institute for Healthcare and Clinical Excellence have
called for further research to develop risk-stratification models to
determine the optimal follow-up pattern4.
TNM-stage is currently the gold-standard prognosticator5,6

however outcomes within each TNM-stage group vary consider-
ably, highlighting the need for more accurate tools1. Radiomics,
the use of multitudinous data-characterisation algorithms to
comprehensively quantify tumour phenotype, has demonstrated
prognostic value in numerous studies7–10. As a non-invasive
biomarker it may herald a paradigm-shift in personalised
medicine.
Several studies have employed CT or PET-CT radiomics to

predict OS in large heterogeneous post-radiotherapy NSCLC
cohorts with good results (AUC 0.65–0.66)2,8,11–14. Arshad et al.

identified a PET-radiomics feature vector that was able to predict a
14-month survival difference. The feature vector was independent
of known prognostic factors, such as stage and tumour volume,
and invariant to the type of PET/CT manufacturer1. While OS is a
less ambiguous and often more readily obtained endpoint, we
believe recurrence and recurrence-free survival (RFS) are more
clinically useful as predicting the timepoint of recurrence may
facilitate the earliest possible introduction of the next line of
treatment. Studies with smaller cohorts looking specifically at
Stage III patients or those treated with SBRT have been under-
taken with mixed results15–18.
Feature reduction is often required prior to radiomics modelling

owing to the large number of available features contrasted with
relatively small clinical datasets. The best combination of feature
reduction and machine learning classifier is often data and task-
dependent, thus warranting a comparison of several viable feature
reduction and classifier combinations.
We hypothesised that radiomic features extracted from radio-

therapy planning CT gross tumour volumes (GTVs) could be used
to predict OS, RFS, and recurrence at two years from treatment
and risk-stratify patients. GTV definition is based on international
guidelines and subject to peer-review, thus representing a robust
and readily available structured dataset19,20. To the best of our
knowledge only one study has used GTV as the volume of interest
for radiomics, however specific utility of GTV-derived radiomics
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was not discussed and the study only looked at OS8. Such models
could be integrated into the routine radiotherapy workflow, thus
informing a personalised surveillance strategy at the point of
treatment. We compared 11 machine learning algorithms and 9
feature reduction techniques to determine the best combination
for prediction of each endpoint.

RESULTS
Characteristics of data and patients
A total of 931 patients were eligible for inclusion. A total of 509
eligible patients from the Royal Marsden (RMH), Imperial College
Healthcare (ICHT) and Guy’s and St Thomas’ (GSTT) Datasets were
split into training (n= 302), validation (n= 75) and external test
sets (n= 132) and a further 422 patients from the TCIA Lung 1
dataset were used as a second external test set for the radiomic-
OS model, as described above (Fig. 1). Median follow-up was
762 days. Patient demographics and clinical parameters are
summarised in Table 1.
Training-validation and external test set median age was 76 and

73 respectively, and recurrence, RFS and OS rates at two years
were 36·3% vs 30·3%, 48% vs 43·9% and 33.7% vs 32.6%,
respectively. The external test set had a higher proportion of
patients with earlier stage disease (TNM8 T1-stage 55.3% vs 48%,
N0-stage 79.5% vs 73.5%), treated with SBRT (54.5% vs 46.1%),
with a radiological diagnosis (28% vs 17.5%) and less patients with
adenocarcinoma (38.6% vs 45.1%)
A hierarchical clustering heatmap (Fig. 2) generated from the

training data indicated multi-collinearity suggesting feature
reduction could be undertaken without resultant loss of useful
information.
Heatmaps in Fig. 3 showing validation set AUCs illustrate the

results of our experiments combining feature reduction techni-
ques and machine learning algorithms for each endpoint. When
averaging across the machine learning algorithms (columns), the
feature reduction techniques (rows) resulting in the highest AUCs
were: Spearman correlation, Pearson correlation, and Principle
Component Analysis for OS, RFS and recurrence respectively
(Fig. 3). The final prediction models chosen were: For OS and RFS,
PLS alone; for recurrence, an ensemble of PLS, KNN, and Elastic-
Net regression.

The list of radiomic features surviving feature reduction for OS
and RFS, and the top 15 features contributing to principal
components for recurrence are indicated in Supplementary Tables
5 and 6.
Table 2 and Fig. 4 illustrate validation and external test set

results for our models compared to the TNM model. For OS, the
Radiomic model consistently demonstrated superior AUC across
the validation and external test set and also performed well on the
second external Lung 1 dataset.
Despite overlap in confidence intervals, the Radiomic and

Combined models were significantly superior to the TNM model in
the validation set at the 5% significance level (p-values 0.013 and
0.007, respectively). This was not seen in the external test set,
however. For RFS, the Combined model was significantly superior
to TNM in the external test set (AUC 0.755 vs 0.677, p-value 0.037).
For recurrence, the Radiomic and Combined models were

significantly superior to TNM in the validation set, however this
did not extend to the external test set.
Validation and external test set Kaplan Meier curves for each

endpoint are shown in Fig. 5 and demonstrate good separation
between high and low-risk groups with log-rank tests confirming a
statistically significant difference for prediction of each endpoint
at the 5% level. For OS-risk-stratification, Kaplan-Meier curves
based on the external test set Radiomic and Combined models
demonstrate a median survival difference of >300 days. In the
Lung 1 dataset for the Radiomic model this extends to >400 days.
For RFS, Radiomic and Combined models demonstrate a median
difference in the external test set of >700 days, and for recurrence,
Kaplan Meier curves again demonstrate good risk-stratification
ability with <25% of the low-risk group experiencing recurrence
over the study period. Using the same threshold as for Kaplan-
Meier analysis, classification was performed for each endpoint
(Supplementary Table 7). Classification metrics including Balanced
Accuracy, F1 score, sensitivity, specificity, positive and negative
predictive value along with Brier scores and calibration curves are
detailed in Supplementary Tables 7, 8 and Supplementary Fig. 3.

Lymph node models
Validation set AUCs are presented in Table 3 and show that for
predicting OS, a model built on lymph node radiomic features
does not outperform or enhance the primary tumour model,
however for recurrence and RFS, integration of nodal features is

Fig. 1 Datasets used for the study. The RMH and ICHT Datasets were combined and eligible patients (n= 377) were divided with an 80:20
ratio for training and validation. Eligible patients from the GSTT dataset (n= 132) were used for external testing. The TCIA Lung 1 dataset
(n= 422) was used as a second external test set for the radiomic-OS model. Ineligible patients were those lacking full follow-up data or where
the GTV did not encompass only the primary tumour.
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seen to improve model performance. Similar results have been
demonstrated for predicting OS with PET-CT derived nodal
features in NSCLC, and loco-regional control with CT-derived
nodal features in head and neck cancer21,22, however we believe
we are the first to report on OS, RFS and recurrence in NSCLC
using CT-derived nodal radiomics. This dataset is small, and more
data is required before we can draw meaningful conclusions, but
this does suggest that there is merit in developing imaging
models that utilise more than just the primary tumour in outcome
prediction.

DISCUSSION
In this multicentre study of more than 900 patients treated with
curative-intent radiotherapy for NSCLC, we have explored multiple

Table 1. Demographic and clinical parameters for combined training-
validation and external test sets.

Parameter Combined
Training &
Validation Sets
n= 377

External Test
Set n= 132

P-value

Age (IQR) years 76 (12) 73 (13) <0.001

Sex (% of n) 0.854

Male 205 (54.4) 55.3

Female 172 (45.6) 59 (44.7)

WHO Performance
Status (% of n)

0.215

0 58 (15.4) 11.3

1 210 (55.7) 52.3

2 109 (28.9) 48 (36.4)

Body Mass Index (IQR) 25.5 (6.2) 26.45 (7.5) 0.093

Smoking Status (% of n) 0.552

Never 35 (9.3) 7.6

Ever 342 (90.7) 122 (92.4)

TNM8 T stage (% of n) 0.506

1 181 (48.0) 55.3

2 110 (29.2) 26.5

3 46 (12.2) 9.1

4 40 (10.6) 12 (9.1)

TNM8 N stage (% of n) 0.109

0 277 (73.5) 9.5

1 17 (4.5) (0.8)

2 67 (17.8) 13.6

3 16 (4.2) 8 (6.1)

TNM8 Overall stage (%
of n)

0.072

1 197 (52.3) 63.6

2 62 (16.4) 11.4

3 118 (31.3) 33 (25)

FEV1, percent
predicted (IQR)

73.2 (34) 69 (35.25) 0.04

TLCO, percent
predicted (IQR)

58 (23) 56 (29) 0.206

Days from planning scan
to first fraction (IQR)

18 (7) 18(6) 0.789

Size of primary (IQR) 29 (21) 27 (20.5) 0.253

SUV primary (IQR) 9.1(8.5) 8.65 (7.65) 0.999

Max nodal SUV (IQR) 6.7 (6.25) 6.4 (3.8) 0.084

Nodal avidity (% of n) 0.296

Yes 102 (27.1) 42(31.8)

No 275 (72.9) 90 (68.2)

Nodal Sampling (% of n) 0.269

Yes 101 (26.8) 31.8

No 276 (73.2) 90 (68.2)

Histology (% of n) 0.012

Adenocarcinoma 170 (45.1) 38.6

Squamous 112(29.7) 31.1

Other 29 (7.7) 3(2.3)

No pathology 66 (17.5) 37 (28)

Treatment type (% of n) 0.174

SBRT 174 (46.1) 54.5

Conventional RT 98 (26) 18.9

Table 1 continued

Parameter Combined
Training &
Validation Sets
n= 377

External Test
Set n= 132

P-value

Chemo + RT 105 (27.9) 35 (26.5)

Number of
fractions (IQR)

20 (15) 8 (19.75) 0.962

Total Dose, Gy (IQR) 55 (5) 55 (5.4) 0.017

Biologically Effective
Dose, Gy (IQR)

79.2 (45.4) 105 (38.7) 0.219

Planning Target Volume,
cm3 (IQR)

103.65 (246.3) 91·4 (238.7) 0.524

Recurrence at 2 years
(% of n)

137 (36.3) 40 (30.3) 0.21

Recurrence or death at 2
years (% of n)

181 (48) 58 (43.9) 0.42

Death at 2 years (% of n) 127 (33.7) 43 (32.6) 0.816

Median length of follow-
up (range) days

739 (33–2358) 785 (26–1442)

Features not used for modelling are not shown. Categorical data are
summarised with means and percentages and p-values pertain to Fishers
exact test. Continuous data are summarised with median and inter-quartile
range (IQR) and p-values pertain to Wilcoxon rank sum test.

Fig. 2 A hierarchical clustering heatmap based on training set
data shows correlation between radiomic and clinical features,
with all features on the X and Y axes respectively. Axis trees show
a number of groups based on sample-wise similarities.
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machine learning classifiers and feature reduction techniques
using radiomics to develop, validate and externally test prognostic
models for three different clinical endpoints—OS, RFS and
recurrence at two years from the start of treatment. Previous
studies for imaging-based NSCLC prognostication have focused
on univariate or multivariate survival analysis using Cox Propor-
tional Hazards models with a small number of features23. Cox
models require linearity of each variable and that the proportional
hazards assumption is met. This can be challenging in the context
of real-world data, leading to inappropriate model fit24. Here we
adopt a predictive modelling approach using a large radiomic and
clinical feature set for prognostication. The two year endpoint is
relevant for NSCLC and has been previously used for prognostica-
tion studies11,25.
Typically, radiomic models require manual segmentation,

however by utilising the GTV contoured for radiotherapy planning
as the VOI, our models avoid this added work. As GTV
segmentation is supported by international guidelines and best-
practice guidance advocates peer-review, it provides a readily
available structured dataset for feature extraction19,20. Such
models could be integrated into the routine radiotherapy work-
flow and may demonstrate future utility in personalised surveil-
lance stratification, whereby those at higher risk have the more
intensive follow-up. Those identified as lower risk could have
lower intensity follow-up and frequency of CT imaging resulting in
less radiation exposure, time burden and potentially anxiety for
patients, and less healthcare resource demand. A similar risk-
stratified surveillance programme has been described for post-
surgical management of NSCLC26,27.
An additional reason for using radiotherapy GTVs is that they

are determined using more than just macroscopic CT appear-
ances. In addition, clinician experts consider patient character-
istics, patterns of tumour spread pertaining to the specific stage
and histological tumour type, as well as information from other
sources e.g., EBUS and PET results. Though utilisation of semi and
fully automated contouring software may provide a more
objective VOI delineation, they are not able to capture this
nuanced clinical information and are therefore unlikely to
imminently replace clinician segmentations. While AI models to
auto-derive GTV are in development, these are commonly trained
on clinician GTVs as ground-truth and are likely to still require
clinical augmentation or sign-off prior to use28. A model that does
not use GTVs as input would therefore not be readily deployable

in the healthcare setting at the point of radiotherapy planning,
which is the goal of our model.
AUCs for the Radiomic and Combined models were consistent

between validation and external test sets for OS and RFS. For
recurrence, the combined model may demonstrate underfitting in
the validation set. Interestingly, the combination of clinical data
does not improve model performance markedly, suggesting that
radiomics alone may be capturing the clinical/biological picture of
disease effectively. Despite overlapping confidence intervals,
performance of the Radiomic and Combined models is reason-
able, demonstrating superior AUC values compared to the TNM-
model. This is statistically significant in the validation set for OS
and RFS and approaches significant for recurrence. Significance is
however only demonstrated in the external test set for the
Combined-RFS model.
The exception to TNM superiority is in the external test set for

recurrence where the combined, clinical and TNM models are
superior. This may be due to the external test set having a higher
proportion of early-stage patients treated with SBRT, a lower
number of adenocarcinoma cases and a higher number lacking
pathological confirmation for NSCLC.
Deep-learning is an alternative approach to radiomics which has

also shown promise in imaging-based predictive modelling. Both
approaches have well-described advantages and disadvan-
tages10,29. We used a radiomics method in this study due to the
requirements for very large datasets associated with deep-
learning. Deep-learning has been criticised for its black-box
nature10,11. While efforts to improve explainability of deep-
learning including class activation maps are in development30

and radiomic features themselves are not easily explainable to all
clinicians and patients, radiomics does offer a quantitative,
mathematical method to map from image to prediction8. We
have observed associations between radiomic and clinical features
selected for our OS, RFS and recurrence models. These include T1-
stage with NGLDM coarseness for OS, and GLSZM zone
percentage for recurrence (further detailed in the Supplementary
Material). In addition, efforts to derive biological meaning are
gaining traction, for example with genomic correlation (radio-
genomics), microscopic pathological image textures and histo-
pathologic marker expression31. One example of this is finding of
a positive association between the radiomic feature GLCM inverse
difference, included in our OS and RFS models, and hypoxia-
related carbonic anhydrase (CAIX), by gene expression profiling

Fig. 3 Heatmaps illustrating the performance of each machine learning algorithm (columns) with each feature reduction technique
(rows), measured by validation set AUC. PCA Principle Component Analysis, LASSO Least Absolute Shrinkage and Selection Operator, E Net
Elastic-Net, RFE Recursive Feature Elimination, MIM Mutual Information, XGB Extreme Gradient Boosting machine, RF Random Forest, NB
Naïve-Bayes, PLS Partial Least Squares, NNET Neural Network, L-SVM Linear Support Vector Machine, LR Logistic regression, KNN K-Nearest
Neighbours, Ridge Ridge regression. The best performing models were, for OS Spearman correlation with PLS, for RFS Pearson correlation
with PLS and for recurrence: PCA with an ensemble of PLS, KNN and E Net.
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and immunohistochemistry. Hypoxia is associated with radiation
resistance and poor survival outcome in NSCLC. CAIX, a pH
regulatory enzyme upregulated in hypoxia, results in an acidic
tumour microenvironment32. This suggests our models can reflect
tumour microenvironment characteristics, non-invasively.
Other strengths of our study include the multicentre design

including over 900 patients from the UK and the Netherlands.
Models were developed using readily available radiotherapy
planning CTs and clinical data. A broad set of radiomic and
clinical features were used incorporating imaging, patient demo-
graphics, fitness, tumour characteristics and treatment para-
meters. We also included patients treated with both SBRT and
conventional (chemo)radiotherapy, thus increasing clinical utility.
Many of the selected features are multi-level separable wavelet

filtered texture features. While non-separable or uni-level wavelet
features may be preferable33, appropriate steps have been taken
to remove excess features that correlate by chance, for example
through removal of correlated-features, as well as inclusion of
unseen validation and external test set modelling. The inclusion of
validation and test datasets to mitigate unknown reproducibility
concerns is also demonstrated in a recent study where Boehm
et al. use wavelet derived features, specifically the HLL Coif
wavelet-filtered image, which is IBSI-defined and has been found
to be strongly or very strongly reproducible in multiple studies34.
Similarly, Fotopoulou et al. validate a previously reported model
comprising TexLAB-generated wavelet features, on a European
patient cohort with good results35.
Interpolation has been shown to impact on robustness of

radiomic features36,37. While not all features that are robust to
interpolation may necessarily have clinical predictive value, given
the need for feature reduction to reduce overfitting, removal of
features that do not demonstrate interpolation stability may be a
useful step. Detailed reporting of feature extraction methods, as
described in our work, and a preliminary analysis to assess that
interpolation does not affect feature reproducibility may therefore
be beneficial37,38. While we did not undertake a preliminary
analysis, we used trilinear interpolation which is considered a
conservative approach39 and we note consistent results between
our validation and external test sets.
Limitations of our work include the retrospective nature and

reliance on clinical data exported from electronic healthcare
records which suffers omissions. The study included patients who
were treated with SBRT for presumed NSCLC without confirmed

pathological diagnosis. This potentiates inclusion of patients with
the benign disease or small cell lung cancer which may confound
recurrence or survival rates, however our models were provided
with this information, and this is reflective of real-world scenarios.
Furthermore, such patients would also benefit from prognostica-
tion. We did not include patients treated with surgery pre- or post-
radiotherapy, nor do we have accurate data on eligible patients
that went on to receive adjuvant durvalumab or those that had
oligometastatic recurrence or metachronous lung cancer that
influence recurrence or survival. Future research directions include
developing models built on larger homogenous datasets e.g.,
biopsy-proven cases treated with SBRT, or stage III only.
TexLAB 2.0, which was used for our analysis has not been

compared to the IBSI digital phantom, however, our models
perform well across validation and external test cohorts.
Finally, owing to the origin of the data used, while our models

are reproducible, they may not be generalisable outside Europe.
Testing our models in future international prospective clinical
trials is warranted.
In conclusion, we have explored multiple machine learning

algorithms and feature reduction techniques to develop radiomic-
based prediction models for recurrence, RFS and OS two years
post curative-intent radiotherapy for NSCLC. Our models can be
integrated into the routine radiotherapy workflow, automating
risk-stratification prior to commencement of treatment. Identifying
patients at higher risk of recurrence for more intensive
surveillance may facilitate earlier introduction of the next line of
treatment. Our validated and externally tested models demon-
strate reasonable performance with AUCs exceeding those of
traditional TNM-based methods. Kaplan-Meier curves demonstrate
median survival and RFS differences of >300 and >400 days
respectively between low and high-risk groups. Our radiomics
approach has mapped a large feature-space and may facilitate
increased future explainability as new biological correlates
emerge. Our work lays the foundations for future prospective
clinical trials for quantitative personalised risk-stratification and
surveillance following curative-intent radiotherapy for NSCLC.

METHODS
This study was reviewed by the Royal Marsden Committee for
Clinical Research and approved by the UK Health Research
Authority (reference number: 20/HRA/3051), ClinicalTrials.gov

Table 2. AUC with 95% confidence intervals for the validation and external test set(s) for each prediction model, benchmarked against a model
based on TNM-stage.

Out-come Model Validation set results External test set result NSCLC-radiomics lung
1 dataset result

AUC 95% CI p-value AUC 95% CI p-value AUC 95% CI

OS Radiomic 0.712 0.592–0.832 0.013 0.685 0.585–0.784 0.621 0.64 0.587–0.694

Combined 0.702 0.583–0.822 0.007 0.683 0·586–0.78 0.597

Clinical 0.627 0.494–0.76 0.204 0.674 0.579–0.77 0.725

TNM 0.573 0.442–0.704 0.663 0.57–0.759

RFS Radiomic 0.825 0.733–0.916 0.015 0.750 0.665–0.835 0.103

Combined 0.805 0.707–0.903 0.008 0.755 0.672–0.838 0.037

Clinical 0.705 0.582–0.829 0.880 0.682 0.587–0.777 0.869

TNM 0.711 0.597–0.824 0.677 0.59–0.765

Rec Radiomic 0.678 0·554–0.801 0.053 0.673 0.577–0.77 0.833

Combined 0.637 0.51–0.775 0.084 0.738 0.649–0.826 0.131

Clinical 0.601 0·47–0.732 0.238 0.678 0.582–0.774 0.391

TNM 0.551 0·42–0.682 0.683 0.596–0.77

P-values compare each model to the TNM-model.
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Fig. 4 ROC curves for the validation and external test sets for the
Radiomic and Combined models for each prediction. The final
models were, for OS: Spearman correlation with PLS, for RFS:
Pearson correlation with PLS and for recurrence: PCA with an
ensemble of PLS, KNN and Elastic Net.
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Fig. 5 Kaplan Meier survival curves for low and high-risk groups
in both validation and external test set(s) for the Radiomic and
Combined models for OS, RFS and recurrence. P-values correspond
to log-rank tests. Curves demonstrate good separation between
high and low risk groups with log-rank tests confirming a statistically
significant difference for prediction of each endpoint at the
5% level.
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identifier: NCT04721444. As the data used in the study were
deidentified, patient consent was not required for this type of
study and as per the respective Health Research Authority and
Research Ethics Council approvals.

Datasets & pre-processing
Four datasets of patients receiving primary curative-intent radio-
therapy for stage I–III NSCLC were used for this study: three
independent, novel datasets (RMH, ICHT and GSTT) from UK
cancer centres (the Royal Marsden NHS Foundation Trust, Imperial
College Healthcare NHS Trust and Guy’s and St Thomas’ NHS
Foundation Trust respectively), and the TCIA NSCLC-Radiomics
Lung 1 dataset8,40, yielding a total of 1144 patients.
Each dataset was retrospectively collated from electronic

patient record (EPR) and radiotherapy treatment planning systems
(TPS) at UK National Health Service (NHS) Trusts:

The RMH Dataset consists of 434 patients with stage I to III
disease treated at The Royal Marsden NHS Foundation Trust
with stereotactic or conventional radiotherapy with or without
chemotherapy between 26/9/2014 and 23/10/2018.
The ICHT Dataset consists of 111 patients with stage I to III
disease treated at Imperial College Healthcare NHS Trust with
conventional radiotherapy with or without chemotherapy
between 3/2/2014 and 10/1/2019.
The GSTT Dataset consists of 177 patients with stage I to III
disease treated at Guy’s & St Thomas’ NHS Foundation Trust
with stereotactic or conventional radiotherapy with or without
chemotherapy between 21/1/2016 and 18/12/2018.

Eligible patients were those aged 18 or over and who received
curative intent radiotherapy for NSCLC as determined by the local
care team. Radiotherapy doses ranged from: 50–66 Gy in 3–33
fractions encompassing a range of radical stereotactic/conven-
tional dose-fractionation schedules.
Data were collected in 2021, to allow at least 2 years of follow-

up for every patient. Patients with no evidence of recurrence or
death within 60 days of the 2-year endpoint, or no evidence of
recurrence within 60 days of death, were labelled as having no
event. 60 days was selected as the cut-off as it is an approximate
time period between follow-up appointments and thus an
approximate half-way point between the last time a patient was
seen and the 2-year endpoint.
The following patient and tumour data were collected: age, sex,

ethnicity, performance status, smoking status, body mass index,
disease stage according to TNM8 and size of the primary lesion.
Details on investigations and treatment were also collected,
including: Standard Uptake Value (SUV) of the primary lesion and
nodes based on FDG-PET-CT, details of nodal sampling, histology,
lung function parameters including pre-treatment forced expira-
tory volume in 1 s (FEV1, as percent predicted) and diffusing
capacity for carbon monoxide (TLCO, as percent predicted) and

neutrophil and lymphocyte counts both prior to and after
treatment, type of radiotherapy treatment administered, total
dose and number of fractions, the biologically effective dose in Gy
(assuming an α/β value of 10), the size of gross tumour volume
(GTV) and planning target volume (PTV) and dates of the
radiotherapy planning scan and first and final treatment.
Radiotherapy planning CT scans were curated and anonymised.

The primary tumour GTV contoured for radiotherapy planning was
used as the volume of interest (VOI) for radiomic feature
extraction. As five cancer centres contributed to this study,
contrast and non-contrast enhanced CT scans were acquired from
scanners with different manufacturers and imaging protocols.
GTVs were contoured by consultant clinical oncologists experi-
enced in thoracic radiation oncology. Cases without a separate
primary tumour GTV (i.e., where the GTV included adjacent lymph
nodes) were excluded.
Images and accompanying GTV structure sets were resampled

to 1 × 1 × 2.5 mm. As 2.5 mm was the median slice thickness of
scans used in the study, this was felt to minimise the inference
and introduction of artificial information, or information loss that
is associated with upsampling or downsampling respectively39.
Resampling to the intermediate voxel size of the dataset has also
been shown to minimise interpolation artefacts and maintain
robustness of radiomic features36,37. Trilinear interpolation was
used for resampling, as this is recommended as a conservative
approach in the IBSI guidelines39. Feature extraction was
performed using our in-house texture analysis software package,
TextLAB 2.01. Radiomics features were extracted using 25
Hounsfield Unit intensity bins and were broadly related to volume,
intensity, heterogeneity and wavelet transformations, as pre-
viously described8.
The patient, tumour, investigation and treatment data were also

pre-processed prior to machine learning. The treatment_corr
function41 was used to remove highly correlated features
(threshold= 0.85), with Pearson correlation for continuous and
Spearman correlation for categorical features. Categorical data
types were the converted to numeric, using One-hot-encoding
where required. Missing data were assumed to be non-dependent
on outcome and missing at random. Where features had greater
than a quarter of observations with missing data, these were
removed. Missing data for remaining features was imputed using
the Multiple imputation with chained equations (MICE) was used
to impute the remaining missing data in R42. Radiomic and
numerical clinical features were standardised by centreing on the
mean and dividing by the standard deviation (Z-score normal-
isation)43. ComBAT harmonisation was used to correct radiomic
features for the batch effect introduced by the use of images from
different CT scanners44.
To ensure assignment of datasets for training, validation and

testing did not lead to bias, the the UK datasets with the most
(RMH) and least patients (ICHT) were combined. Cases were then
randomly split into training and validation sets with an 80:20 ratio,
according to the the binarized outcome. The GSTT dataset was
allocated as an external test set. The Lung 1 dataset acted as a
second external test set, as described below.
Three models were built for each study endpoint (OS, RFS and

recurrence at two years from starting radiotherapy)—one built on
radiomic features only, one built on clinical features only, and a
combined radiomic-clinical model.

Statistical analysis
Demographics and clinical parameters are presented with
medians and interquartile range for continuous features, and
frequencies and percentages for categorical features. Wilcoxon
rank sum test (for continuous features) and Fisher’s exact test (for
categorical features) were used to summarise comparisons
between datasets. The roc.test R package was used to compare

Table 3. Validation set AUC and 95% CIs for models built using
radiomic features extracted from the primary tumour only, largest
nodal volume only, and these features combined.

Endpoint Metric Tumour Nodal Tumour+Nodal

OS AUC 0.72 0.453 0.573

95% CI 0.513–0.927 0.203–0.703 0.329–0.82

RFS AUC 0.679 0.582 0.746

95% CI 0.464–0.893 0.347–0.82 0.55–0.941

Rec AUC 0.583 0.571 0.622

95% CI 0.347–0.82 0.329–0.812 0.394–0.85

Models were produced for each clinical endpoint.
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ROC curves with 2000 bootstraps. Similar to our previous study45,
time-to-event data for recurrence, RFS and OS were binarized at
two years from the first fraction of radiotherapy for the purpose of
classification—cases were labelled “1” if there was recurrence or
death within two years, and “0” otherwise. Due to the nature of
clinical follow-up, 340 patients (47%) were not seen at or after the
two-year endpoint. As simply excluding these patients would bias
the datasets, those not known to have had a recurrence or have
died within 60 days of the endpoint, or not known to have had a
recurrence within 60 days of death, were taken to have no event.
Those last seen more than 60 days from the endpoint or date of
death were excluded (n= 65. 9%).

Feature handling and modelling
Given the large number of features extracted, feature reduction
was required prior to modelling to improve prediction accuracy.
We explored a combination of 9 different feature reduction
techniques with 11 machine learning algorithms. Feature reduc-
tion methods included unsupervised principal component analy-
sis, and 8 supervised approaches applied after first removing
highly correlated features (threshold= 0.9) and applying a
univariate logistic regression: Boruta, mutual information, recur-
sive feature elimination, correlation-based and multivariate linear
penalised methods. A description of algorithms and feature
reduction methods are detailed below.
Grid-search was used to identify optimal model hyper-

parameters with three repeats of ten-fold cross-validation using
the caret package in R. Hyper-parameters of the final selected
models are listed in Supplementary Table 3.
The validation set results of each algorithm-feature reduction

technique combination were used to create Receiver-Operator
Characteristic (ROC) curves and Area Under the Curve (AUC) was
calculated. As per our previous study45, ensemble prediction
models were explored by taking the average of the predictions of
the three algorithms with the highest AUC in the validation set for
each endpoint being predicted. Where the ensemble model was
superior, it was selected as the final model. Otherwise, the single
algorithm with the highest AUC was selected as the final model
for deployment on the external test set.

Summary of machine learning algorithms
The models used in this study are supervised classification
algorithms. LR—generalised linear model is a generalisation of
linear regression to modelling dependencies between predictors
and dependent features. Logistic regression is a form of GLM used
in this study. It uses the logistic sigmoid function to return a
probability value which can then be mapped to two or more
separate classes46. LASSO and Elastic Net regression can also be
used for classification. Ridge is another form of regression where
the loss function is modified to minimise the complexity of the
model. Here alpha = 0. L-SVM—linear support vector machines
plot training samples and assigns a hyperplane (decision
boundary) to separate these into classes. The optimal hyperplane
is that which maximises the distance between data-points47. KNN
– K-nearest neighbours assumes that data points that are close to
each other are of the same class. It takes a defined number (k) of
training samples closest in Euclidian distance to a new point and
predicts a class based on these48. RF & XGB—Random Forest and
Extreme Gradient Boosting Machines are ensemble decision-tree
based models. RF uses bagging and feature variability when
building each decision tree to create an uncorrelated forest whose
overall prediction is more accurate than each individual tree49.
XGB by contrast takes a boosting approach whereby trees are
grown iteratively using information from a previously grown tree,
to minimise the error of previous trees50. PLS – Partial Least
Squares is a multivariate linear regression model which forms
linear combinations of features in a supervised manner. It is able

to handle datasets with large numbers of features, high
collinearity between features and small numbers of observa-
tions51. NNET—the “nnet” package fits a single-layer feed-forward
neural network52.
NB—the Naive-Bayes model is based on Bayes theorem and

assumes no interdependence between variables53.

Summary of feature reduction techniques
Principal Component Analysis (PCA) is an unsupervised linear
transformation technique widely used for feature extraction and
dimensionality reduction. PCA identifies directions of maximum
variance in high-dimensional data and projects it onto a new
subspace with equal or fewer dimensions. Thus, a large set of
features is transformed to a smaller one that still retains most of
the information in the large set. LASSO (Least Absolute Shrinkage
and Selection Operator) and Elastic Net regression are examples of
regularisation methods54. Here a penalty is applied to the
coefficient which multiplies each feature in a linear model and
results in less overfitting and improved generalisation. LASSO uses
the L1 regularisation penalty to force some coefficients to zero.
This eliminates some features leaving a subset of predictors that
are thought to be important. Alpha = 1. Elastic Net incorporates
penalties from both L1 and L2 (ridge regression) regularisation.
Here, Alpha =0·5. The glmnet package was used to perform both
LASSO and Elastic-net regression. Pearson, Spearman’s and
Kendall’s rank correlation are “filter” feature selection methods
which rely only on the characteristics of feature independently of
any machine learning model. Pearson’s correlation assumes data is
parametric and linear. Spearman and Kendall’s rank are non-
parametric and assume a monotonic relationship between
variables. Kendall’s rank is preferred to Spearman’s where dataset
have a limited number of observations or contain outliers. For our
study we used the corr package and specified that the top 25% (8)
features be included in the feature sets following Pearson’s,
Spearman’s and Kendall’s rank correlation. Univariate LR—apply
univariate logistic regression for each feature to the outcome
variable and select only those features with a certain p-value. We
used the glm package with a p-value <0.005, adjusted for multiple
comparisons with the Benjamini & Hochberg method46. RFE—
Recursive Feature Elimination is a “wrapper” feature selection
method which fits a model and removes the weakest feature until
a specified number of features is reached. Cross-validation is used
to score different feature subsets and select the best scoring
collection of features to identify the optimal number of features.
Features are ranked by the model’s feature importance. By
recursively eliminating features iteratively the collinearity is
reduced55. We used the rfeControl package with a random forest
model and 10-fold cross validation with 5 repeats. Mutual
Information is a filter feature reduction technique that assesses
relevance of a subset of features in predicting the target variable
compared with redundancy with respect to other variables56.
Boruta is designed to act as a wrapper around a Random Forest
classifier and iteratively removes features which are proved to be
less relevant than random probes by statistical testing57.

Integrating clinical data
The combined radiomic-clinical model presented a question of
how to best integrate different feature types. After exploring three
approaches (Supplementary Material—Integrating clinical data),
we decided to use the algorithm-feature reduction technique
combination resulting in the best validation set AUC as per the
radiomic-only model, and then concatenating clinical features to
the input-matrix prior to classification (as described elsewhere in
predictive radiomics literature58–60).
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Class balancing
The OS and recurrence endpoint datasets were unbalanced (event
ratios of 0.34 and 0.36, respectively). Adaptive synthetic sampling
(ADASYN)61 did not improve validation set AUCs and so the
original unbalanced datasets were used (Supplementary Materials
—Class balancing).

Training set size
It has been suggested that predictive power is dependent on
training sample size up to a certain point, after which a classifier
reaches an efficiency threshold beyond which only marginal or no
improvement is seen62. We tested robustness of our model
development pipeline (Supplementary Material—Training set size)
and found that our training set size (n= 302) appears sufficient.

Benchmarking and double external testing for radiomic-OS
model
TNM-stage is a known prognostic factor in NSCLC63. A logistic
regression model based on T and N-stage features (all cases were
M0) was developed to benchmark our prediction models against.
As above, the Caret package was used with hyper-parameter
optimisation performed via grid-search with three repeats of ten-
fold cross-validation. AUC was calculated.
For the Radiomic-only OS model, the publicly available Lung 1

dataset was used as a second external test set. It was not possible
to test our other models with this dataset owing to lack of
matching clinical features and recurrence outcomes.

Risk-groups
The Youden Index of the validation set ROC curve for each final
model was used to separate groups into high (event occurs within
two years of first fraction of radiotherapy) or low (event does not
occur within two years of first fraction of radiotherapy) risk groups.
The full time to event data were used to create Kaplan Meier
curves which demonstrated difference in OS/RFS/recurrence
between groups. The log-rank test (significance level= 0.05) was
used to determine difference between survival curves. The
external test set was used to assess performance of the risk
models. Analyses were carried out in R 3.5.1.

Lymph node involvement
Radiomic models tend to focus on a single VOI around the primary
tumour, however afflicted nodal regions may also harbour
valuable prognostic information. We therefore explored how
radiomics from nodal regions may perform either in comparison
or combination to that of the primary tumour in a subset of 127
patients with separately contoured primary tumour and nodal
GTVs. These were divided into training (80%) and validation (20%)
sets, stratified by outcome. Image pre-processing and feature
extraction methods were as described above. Highly correlated
features were removed (threshold 0.9). Utilising univariate logistic
regression for feature reduction (as in the main study) failed in this
sub-study and an XGBoost model was therefore applied instead.
Three models were compared: one built on features from the
primary, one built on features from the largest LN region, and a
model built on these features combined.

Quality assurance
For quality assurance, the radiomics quality score64 was calculated
and TRIPOD recommendations65 and IBSI reporting guidelines66

were followed (Supplementary Materials).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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