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ABSTRACT The ability to accurately predict complex trait phenotypes from genetic and genomic data are
critical for the implementation of personalized medicine and precision agriculture; however, prediction
accuracy for most complex traits is currently low. Here, we used data on whole genome sequences, deep
RNA sequencing, and high quality phenotypes for three quantitative traits in the �200 inbred lines of the
Drosophila melanogaster Genetic Reference Panel (DGRP) to compare the prediction accuracies of gene
expression and genotypes for three complex traits. We found that expression levels (r = 0.28 and 0.38, for
females and males, respectively) provided higher prediction accuracy than genotypes (r = 0.07 and 0.15, for
females and males, respectively) for starvation resistance, similar prediction accuracy for chill coma recovery
(null for both models and sexes), and lower prediction accuracy for startle response (r = 0.15 and 0.14 for
female and male genotypes, respectively; and r = 0.12 and 0.11, for females and male transcripts,
respectively). Models including both genotype and expression levels did not outperform the best single
component model. However, accuracy increased considerably for all the three traits when we included gene
ontology (GO) category as an additional layer of information for both genomic variants and transcripts. We
found strongly predictive GO terms for each of the three traits, some of which had a clear plausible biological
interpretation. For example, for starvation resistance in females, GO:0033500 (r = 0.39 for transcripts) and
GO:0032870 (r = 0.40 for transcripts), have been implicated in carbohydrate homeostasis and cellular
response to hormone stimulus (including the insulin receptor signaling pathway), respectively. In summary,
this study shows that integrating different sources of information improved prediction accuracy and helped
elucidate the genetic architecture of three Drosophila complex phenotypes.
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Predicting complex traits is a fundamental aim of quantitative
genetics. Historically, prediction of economically important traits
has been important in animal and plant breeding, where the interest
lies in predicting breeding values (i.e., the additive genetic component
of the phenotype) to select the best individuals for reproduction. Until
recently, breeding values were predicted using mixed model meth-
odology and pedigree relationships between individuals (Mrode and
Thompson 2005). However, technological advances have enabled
genotyping of individuals for tens to hundreds of thousands of single
nucleotide polymorphisms (SNPs) throughout the entire genome.
This has improved our ability to utilize information on genotypes and
effects of SNPs on a trait of interest from individuals in a training
population to predict breeding values for this trait as a linear combi-
nation of SNP genotypes for individuals in a target population which
have genotype information only (Meuwissen et al. 2001; Goddard and
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Hayes 2009). The main advantages of the ‘genomic selection’ (GS)
method over classical pedigree-based selection are the higher accuracy
of the predicted breeding values due to capturing the Mendelian
sampling variation, and the shortened generation interval since indi-
viduals can be genotyped as soon as they are born (Meuwissen et al.
2001; Schaeffer 2006; Hayes et al. 2009).

GS has been applied to many agricultural species and has revo-
lutionized animal breeding; however, the results have varied greatly
between species. Dairy cattle, which have the largest and highest
quality reference populations, have the highest accuracy of genomic
estimated breeding values. This high accuracy combined with the
reduced generation interval has increased the rate of genetic gain up
to a few orders of magnitude for many traits since the implementation
of GS in breeding programs (Meuwissen et al. 2016; Weller et al.
2017). In beef cattle and pigs, where the reference populations are
much smaller within each breed, the accuracy of genomic estimated
breeding values is much lower. To overcome this issue, multi-breed
reference populations have been used; however, across breed pre-
diction also has low accuracy due to heterogeneous patterns of linkage
disequilibrium (LD) across breeds (de Roos et al. 2009).

The GS framework can be more widely applied to non-pedigreed
populations, where the goal is not to predict breeding values for the
purpose of selection, but to predict individual phenotypes from
genotype data, or ‘genomic prediction’ (GP). In human genetics,
precision medicine refers to the goal of predicting the probability of
developing a particular disease given an individual’s own genome (de
los Campos et al. 2010; Goddard et al. 2016). Traditionally, human
geneticists have used Polygenic Risk Scores (PRS) to predict complex
traits. PRS are constructed as a weighted sum of the SNPs associated
with the trait of interest from a genome wide association study
(GWAS), with the estimated effects used as the weights (Dudbridge
2013; Wray et al. 2014). While PRS have had some significant
predictive power, this has been generally limited (Machiela et al.
2011; Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014). Another approach to GP is by regressing pheno-
types on hundreds of variants concurrently using methods borrowed
from animal breeding. This class of methods, called whole-genome
regression (WGR), has the advantage of accounting for LD among
SNPs when estimating their effects (de los Campos et al. 2010).
However, early attempts at predicting human complex traits using
WGR still yielded low prediction accuracy, especially in samples of
unrelated individuals (Makowsky et al. 2011; de los Campos et al.
2013). Recently, much higher prediction accuracy was obtained using
extremely large datasets combined with prediction methods that
perform variable selection (Kim et al. 2017; Lello et al. 2018). These
results highlight that adequate sample sizes and methods that account
for trait architecture are needed to obtain higher prediction accuracy
(Morgante et al. 2018).

In recent years, it has become possible to obtain multiple high
quality ‘omic’ data (e.g., gene expression levels, protein levels, me-
tabolite levels) in addition to genotypes for the same samples. This
has enabled integrating different types of data to uncover genotype-
phenotype relationships using a systems genetics approach (Mackay
et al. 2009; Ritchie et al. 2015). The first type of omic data to become
available on a genome-wide scale were gene expression levels, initially
measured by hybridization of genomic RNA to microarrays and now
by direct RNA sequencing (RNA-seq). One way to use these data are
to perform expression quantitative trait loci (eQTL) mapping to
correlate expression levels with genetic variation (Gilad et al. 2008).
Combining eQTL studies with GWAS revealed that significant hits for
many diseases are likely to be eQTLs, meaning that disease-associated

SNPs presumably act by altering gene expression levels (Nicolae et al.
2010). As other types of omic data became available, studies mapping
protein QTL (pQTL) (Chick et al. 2016) and metabolic QTL (mQTL)
(Kraus et al. 2015; Zhou et al. 2020) have helped elucidate how the
effect of genetic variation percolates through intermediate molecular
layers before affecting phenotypes.

A complementary approach utilizing multiple omics levels is for
complex trait prediction, similar to prediction using genomic data.
Different layers of data may provide (partially) non-redundant in-
formation about phenotypes (Guo et al. 2016). For example, gene
expression levels may also capture environmental effects that affect
levels of expression. In addition, gene expression traits, which are
themselves genetically controlled, are much fewer and may have
larger effects on phenotypes than genetic variants, resulting in an
easier estimation problem.

Despite great promise, prediction of complex traits from multiple
layers of omic data are in its infancy. Ehsani et al. (2012) used
Bayesian methods to show that models including both genotypes and
expression levels could achieve higher prediction accuracy than
models with either one singularly. Wheeler et al. (2014) developed
a method called OmicKriging that can incorporate different omics
through similarity matrices, one for each omic level, among indi-
viduals. When applied to cell lines with RNA and micro-RNA data, a
combined model including both types of omics achieved a higher
prediction accuracy for a quantitative trait than the models including
a single type of data. However, when applied to a clinical dataset for
individuals with both DNA and RNA data, the combined model had
lower prediction accuracy for a quantitative trait than the best single
component model (Wheeler et al. 2014). Guo et al. (2016) used inbred
lines of maize with genotype (G), gene expression level (T) and
metabolite level (M) information to predict several complex traits
using the Best Linear Unbiased Predictor (BLUP). In general, MBLUP
yielded lower accuracy than all the other models. TBLUP and GBLUP
provided similar accuracies, although, on average, GBLUP had better
performance. In the majority of cases, poly-omic models (GTBLUP,
GMBLUP, GTMBLUP) performed better than single-omic models.
However, in many situations, the improvement provided by com-
bined models was minimal (Guo et al. 2016). Vazquez et al. (2016)
developed a Bayesian generalized additive model (BGAM) to in-
corporate multiple layers of omic data, each with a specific prior
distribution. Using BGAM to integrate gene expression levels, DNA
methylation levels and copy number variation status from The
Cancer Genome Atlas generally improved accuracy of prediction
of breast cancer survival in humans (Vazquez et al. 2016). Marigorta
et al. (2017) developed transcriptional risk scores (TRS) using
transcript abundance of genes with eQTLs that were in LD with
or were inflammatory bowel disease (IBD)-associated SNPs. TRS
outperformed PRS in distinguishing individuals with Crohn’s disease
from controls, and TRS were able to predict disease progression
whereas PRS were not (Marigorta et al. 2017). Li et al. (2019) used
genotype, gene expression (obtained by tiling arrays; Huang et al.
2015), and phenotypic data from the Drosophila melanogaster
Genetic Reference Panel (DGRP) (Mackay et al. 2012; Huang
et al. 2014) to evaluate the proportion of variance explained and
predictive ability of similar models to Guo et al. (2016). While
models including expression data could capture a greater amount
of variance, their predictive ability was generally similar to GBLUP
(Li et al. 2019). Even more recently, two studies in Drosophila
showed that using metabolites to predict a few complex traits can
provide higher accuracy than genotypes (Zhou et al. 2020; Rohde
et al. 2020).
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These studies show that the use of multiple omics data to increase
the prediction accuracy of complex traits is promising; however, the
results are not consistent and are trait-specific. Here, we further
examined the accuracy of poly-omic prediction of complex traits
using 200 inbred, fully sequenced DGRP lines for which gene
expression levels were recently obtained by RNA-seq (Everett
et al. 2020). Taking advantage of the optimal experimental design,
high quality omic data, and precise phenotype measurements, we
sought to evaluate the prediction performance of either single-omic
or poly-omic models using starvation resistance, startle response and
chill coma recovery as model complex traits.

MATERIALS AND METHODS

DGRP lines, genomic, transcriptomic and
phenotypic data
The DGRP is a collection of 205 inbred lines derived from 20 gen-
erations of full-sib mating from isofemale lines collected at the
Farmer’s Market in Raleigh, NC, USA. These lines were fully se-
quenced using a Illumina sequencing (Mackay et al. 2012; Huang
et al. 2014). After retaining all the variants with minor allele fre-
quency (MAF) . 0.05 and call rate . 0.8 for the 200 lines with gene
expression levels, a total of 1,908,995 variants were used in the
following analyses.

RNA-seq data have been obtained for 200 DGRP lines (Everett
et al. 2020). RNA from whole young adult flies (3-5 days old) raised
under standard conditions was extracted, rRNA depleted, sequenced
using the Illumina HiSeq 2500 with 125 bp single-end reads. Two
biological replicates each consisting of pooled groups of 30 flies were
obtained for each of the two sexes. A total of 11,957 genes (10,251
known genes and 1,706 novel transcribed regions, NTRs) were
genetically variable in females; and 13,672 genes (11,327 known
genes and 2,345 NTRs) were genetically variable in males.

To obtain a list of genes that were highly expressed, we retained
only the genes that had a mean expression across lines greater
than 21.828 log2FPKM. This threshold was obtained from an anal-
ysis where a mixture model was fitted to the distribution of all
expression values, which was bimodal (Everett et al. 2020). This
procedure yielded 11,338 (9,807 known and 1,531 NTRs) and 13,575
(11,262 known and 2,313 NTRs) highly expressed genes in females
and males, respectively. The following transcriptomic analyses were
performed using only these genes.

The DGRP has been phenotyped for many complex traits (Mackay
and Huang 2018). Here, we used line means for two fitness-related
traits (starvation resistance and chill coma recovery time) and one
behavioral trait (startle response) (Mackay et al. 2012). A total of 198,
172 and 199 lines for starvation resistance, chill coma recovery and
startle response, respectively, had both phenotypic measurements and
expression levels and were therefore retained for further analyses. The
phenotypes were adjusted for the effects of Wolbachia infection and
five major inversions (Huang et al. 2014).

Whole genome and transcriptome prediction using
linear mixed models
The data were analyzed using several different models. The baseline
model was the Genomic Best Linear Unbiased Predictor (GBLUP).
This is a linear mixed model where the covariance among lines is
modeled using their realized relationships based on DNA marker loci
(Habier et al. 2007). The model is y ¼ 1mþ y þ e, where y is an
n-vector of phenotypes, 1 is an n-vector of ones, m is the population
mean, g is an n-vector of random line genomic effects [g� N(0,Gs2

g)]

and e is an n-vector of random residual effects [e� N(0, Is2
e)].G is the

additive genomic relationshipmatrix (GRM) built using genetic variants
according to the formula WW ’

p , where W is the matrix of centered and
standardized genotypes for all the lines and p is the number of variants;
I is the identity matrix.

To evaluate the performance of transcriptomic data for predicting
complex traits, we used the Transcriptomic Best Linear Unbiased
Predictor (TBLUP). This is very similar to GBLUP, but the GRM is
substituted with a transcriptomic relationship matrix (TRM), which
evaluates the similarity among lines based on gene expression levels
(Guo et al. 2016). Themodel is y ¼ 1mþ t þ e, where y is an n-vector
of phenotypes, 1 is an n-vector of ones, m is the population mean, t is
an n-vector of random line transcriptomic effects [t � N(0, Ts2

t)]
and e is an n-vector of random residual effects [e � N(0, Is2

e)]. T is
the additive TRM built according to the formula ZZ’

m where Z is the
matrix of centered and standardized expression levels for all the lines
and m is the number of genes; I is the identity matrix.

A combined model, GTBLUP, that had two variance components
associated with the GRM and TRM, respectively, was also used. The
model is y ¼ 1mþ g þ t þ e, where all the parameters are as defined
above.

Finally, a fourth model, GTIBLUP, including three variance
components associated with GRM, TRM, and the interaction of
the two called IRM, respectively, was fitted. This model is
y ¼ 1mþ g þ t þ g · t þ e, where y, 1, m, g, t and e are as defined
above, and g·t is an n-vector of random line interaction (between
genomic and transcriptomic) effects [g·t � N(0, G#Ts2

i) where # is
the Hadamard product].

To avoid overfitting in the prediction analysis, 30 replicates of
fivefold cross-validation were used; variance components were esti-
mated in the training set using the ‘regress’ R package v. 1.3-15
(slightly modified by us to fix a small bug; available on the GitHub
repository noted below), and then used to predict phenotypes in the
test set. The proportion of variance explained in the training set by
each component was calculated as the ratio of the variance explained
by each component over the total phenotypic variance, estimated by
REML (e.g., in GBLUP, the proportion of variance explained by g is

equal to
s2
g

s2
gþs2

e
), averaged over folds and replicates. Prediction accu-

racy in the test set was evaluated as the Pearson’s correlation co-
efficient, r, between true and predicted phenotypes, averaged over
folds and replicates.

Whole transcriptome prediction using Random Forest
Genes may affect traits, at least partially, through non-linear inter-
actions. Therefore, we considered completely non-parametric meth-
ods that do not make the additivity assumption that linear mixed
models do. Among the available methods, we chose the Random
Forest (Breiman 2001), because it has been used for various bio-
informatics tasks successfully, including the detection of interaction
effects (Qi 2012; Yao et al. 2013). Following González-Recio and
Forni (2011), the general Random Forest model can be written as

y ¼ 1mþPS

s¼1
cshs y;Xð Þ, where S is the number of decision trees, cs is a

shrinkage factor that averages the trees, hs(y; X) is a single decision
tree (independent of the others) grown on a bootstrap sample of the
original data using only a subset of transcripts at each node, and X is
the matrix of expression levels for all the lines. The algorithm
implemented in the ‘randomForest’ R package v. 4.6.14 (Liaw
and Wiener 2002) was fitted with default values of the tuning
parameters and 1,000 trees. This analysis was performed using the
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same cross-validation scheme and metrics as the whole genome
and transcriptome analysis.

Transcriptome-Wide Association Study (TWAS)
informed prediction
To try and enrich the TBLUPmodel for genes associated with the trait
of interest and to eliminate noise from unassociated genes, variable
selection was performed by repurposing the approach of Morgante
et al. (2018). At each round of cross-validation, TWAS (regressing the
phenotype on the expression level of each gene one at a time) was
performed in the training set using the approach of Everett et al.
(2020). The genes with a p-value , X (X = 0.5, 0.1, 1022, 1023,
1024, 1025, 1026) were selected and used to build a trait-specific
TRM. The trait-specific TRM was fitted in the TBLUP model to
estimate variance components in the training set, to be used to
predict phenotypes in the test set.

As a control, prediction using only randomly sampled genes
was performed for the three traits. At each round of cross-
validation, k genes (k = 5; 50; 500; 1,000; 5,000) were randomly
sampled and used for prediction in a similar way to the TWAS-
selected genes.

Gene Ontology (GO) informed prediction
We used functional annotation, which relies on external sources of
information, to further attempt to disentangle signal from noise.
Edwards et al. (2016) showed that exploiting information about gene
ontology categories could improve the accuracy of variant-based
prediction. Here, we followed the same approach for variant-based
prediction with our data and extended it to expression-based pre-
diction. Variants were mapped to genes based on FlyBase v. 5.57
annotation (St Pierre et al. 2014). Genes were then mapped to Gene
Ontology (GO) terms using the R package ‘org.Dm.eg.db’ v. 3.5.0
(Carlson 2017) available in BioConductor.

For SNP-based prediction, a GO-GBLUP model was fitted:
y ¼ 1mþ gGO þ gnotGO þ e, where gGO is an n-vector of random
line genomic effects associated with variants pertaining to a specific
GO term (through a GO-specific GRM built using variants in a
specific GO), gnotGO is an n-vector of random line genomic effects
associated with all the remaining variants (through a GRM built using
all variants not in that GO), and all the other parameters are as
defined above. This model was fitted for all GO terms including at
least 5 genes, resulting in 2,605 GO terms.

For expression-based prediction, a GO-TBLUP model was
fitted: y ¼ 1mþ tGO þ tnotGO þ e, where tGO is an n-vector of
random line transcriptomic effects associated with genes pertain-
ing to a specific GO term (through a GO-specific TRM built using
genes in a specific GO), tnotGO is an n-vector of random line
transcriptomic effects associated with all the remaining genes
(through a TRM built using all genes not in that GO), and all the
other parameters are as defined above. This model was fitted for
all GO terms including at least 5 genes that were present in our
expression data, resulting in 2,346 and 2,287 GO terms for
females and males, respectively.

In order to evaluate whether genome-level and transcrip-
tome-level GO terms contribute overlapping information, the
following combined model (GO-GTBLUP) was fitted: y ¼ 1mþ
tGO þ tnotGO þ gGO þ gnotGO þ e, where all the parameters are as
defined above. This model was fitted for all GO terms that were in
common between GO-variants and GO-genes after pruning accord-
ing to the requirements described above, resulting in 2,338 and 2,282
GO terms for females and males, respectively.

All these analyses were performed using the same cross-validation
scheme and metrics as the whole genome and transcriptome analysis.
The mean proportion of variance explained by each GO term in the
training data set was estimated as the ratio of the variance explained
by the features in a specific GO term over the total phenotypic
variance, averaged over folds and replicates (e.g., in GO-GBLUP, the
mean proportion of variance explained by gGO is equal to mean

(
s2
gGO

s2
gGOþs2

gnotGOþs2
e
)).

All the statistical analyses were performed usingMicrosoft R Open
v. 3.4.3 (https://mran.microsoft.com/).

Data availability
All DGRP lines are available from the Bloomington Drosophila Stock
Center (Bloomington, IN). All raw and processed RNA-Seq data
are available at the NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE117850.
All quantitative trait data and genome sequence variant data are
available at http://dgrp2.gnets.ncsu.edu. The code used for the
analyses is available at https://github.com/morgantelab/multiomic-
prediction-dgrp. Supplemental material available at figshare: https://
doi.org/10.25387/g3.13133342.

RESULTS
We present the figures corresponding to all the analyses for starvation
resistance in the main text and those for startle response and chill
coma recovery are presented in the supplementary material.

Variance partition using linear mixed models
We first assessed to what extent the transcriptome could explain the
phenotypic variance in the training data set for the traits of interest,
compared to the variance explained by the genome, by fitting TBLUP
and GBLUP models. Note that these analyses utilize line means of
many individuals, so the majority of the phenotypic variance is
expected to be genetic. GBLUP explained 70 6 3% (97 6 1%) of
the phenotypic variability for starvation resistance in females (males).
The performance of TBLUP was similar to GBLUP for this trait,
explaining 73 6 2% (90 6 1%) of the phenotypic variability females
(males) (Figure 1). However, this pattern did not hold for all three
traits. For startle response, GBLUP explained 43 6 2% (31 6 2%) of
the phenotypic variance in females (males) and TBLUP could only
explain 8 6 1% (18 6 1%) of the trait variation in females (males)
(Fig. S1). For chill coma recovery, GBLUP explained 19 6 3% (11 6
2%) of the phenotypic variance in females (males) while TBLUP was
able to explain negligible phenotypic variance in either sex (Fig. S2).

We then fitted a joint genetic and transcriptomic model
(GTBLUP) to evaluate the relative variance explained from the
genome and the transcriptome. The performance of this model
was relatively similar to TBLUP alone for starvation resistance in
females, with the transcriptome explaining 69 6 2% of the pheno-
typic variance and only 9 6 2% being explained by the genome. For
male starvation resistance, the model explained nearly all of the
phenotypic variance, with 17 6 1% of the variation explained by the
genomic and 806 1% by the transcriptome contributions (Figure 1).
For startle response, the majority of the variance explained by
GTBLUP was contributed by the genome, 39 6 2%, while the
transcriptome could only explain 5 6 1% of the variance in females.
However, the contributions of genome and transcriptome to variance
of male startle response were more similar at 24 6 2% and 136 1%,
respectively (Fig. S1). For chill coma recovery, GTBLUP gives similar
results to GBLUP, with the genome explaining 20 6 3% (12 6 2%)
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and the transcriptome explaining negligible variance in females
(males) (Fig. S2).

Finally, we fitted a model considering the genome, transcriptome and
their interaction (GTIBLUP). For female starvation resistance, the per-
formance of this model was very similar to that of GTBLUP. The
transcriptome explained 69 6 2%, the genome explained 9 6 2% of
the phenotypic variance, and negligible variance was explained by their
interaction. For male starvation resistance, nearly all phenotypic variance
was explained, with 116 1% coming from the genome, 776 1% from the
transcriptome and 106 1% from their interaction (Figure 1). For female
startle response, the GTIBLUP model explained nearly half of the
phenotypic variance, with 35 6 2%, 5 6 1%, and 7 6 1% coming,
respectively from the genome, transcriptome and their interaction. For
male startle response, the GTIBLUP model was able to explain about a
third of the phenotypic variance, 246 2% from the genome and 126 1%
from the transcriptome, similar to GTBLUP; the interaction term
explained negligible variance (Fig. S1). The GTIBLUP model explained
15% of the variance for chill coma recovery in males, with 10 6 2%
coming from the genome and 4 6 1% from the interaction term; the
transcriptome explained negligible variance. On the other hand, almost all
the variance explained by GTIBLUP in female chill coma recovery came
from the genome-transcriptome interaction (576 2%) while the genome
only explained 46 1% of the variance, and negligible contribution from
the transcriptome (Fig. S2).

Whole genome and transcriptome prediction using
linear mixed models
Since the transcriptome contributes significantly to trait phenotypic
variance in the training set in most cases, we next evaluated the
predictive ability of the four models in the test set. For starvation
resistance, the predictive abilities of each of the models was greater in
males than females. The GBLUP model had the lowest prediction
accuracy – r = 0.07 6 0.01 (r = 0.15 6 0.01) in females (males). The
TBLUP model had greater than twice the prediction accuracy of

GBLUP for starvation resistance, with r = 0.28 6 0.01 (r = 0.38 6
0.01) in females (males). The predictive abilities of the GTBLUP and
GTIBLUP models were similar to TBLUP for starvation resistance
(Figure 2). In contrast, the GBLUP model had the highest predictive
ability for startle response, with r = 0.156 0.01 (r = 0.146 0.01) in
females (males). The TBLUP model had prediction accuracies of r =
0.12 6 0.01 and r = 0.11 6 0.01 in females and males, respectively.
The GTBLUP and GTIBLUP models has similar prediction accu-
racies to TBLUP in females (r = 0.10 6 0.01 and r = 0.10 6 0.01,
respectively), whereas in males they had the lowest prediction
accuracies (r = 0.08 6 0.01 and r = 0.08 6 0.01, respectively)
(Fig. S3). Prediction accuracies for all four models for chill coma
recovery were all less than zero (Fig. S4).

Whole transcriptome prediction using Random Forest
To assess whether non-parametric methods could perform better
than linear models by capturing potential interactions among genes,
we fitted Random Forest models to the data. For female starvation
resistance, Random Forest (r = 0.33 6 0.01) had a greater prediction
accuracy than TBLUP; whereas for male starvation resistance, the
reverse was true: TBLUP had greater prediction accuracy than
Random Forest (r = 0.31 6 0.01) (Figure 3). For startle response,
the prediction accuracies of TBLUP and the Random Forest model
(r = 0.106 0.01) were similar in females; but the prediction accuracy
of the Random Forest model (r = 0.15 6 0.01) was greater than
TBLUP for male startle response (Fig. S5). Both models had no
predictive ability for chill coma recovery in either sex (Fig. S6). Thus,
there was no consistent difference in the performance of Random
Forest compared to the TBLUP model.

Transcriptome-Wide Association Study (TWAS)
informed prediction
We next combined mapping and prediction into a single pipeline in
an attempt to enrich the TBLUP model for genes associated with the

Figure 1 Mean proportion of pheno-
typic variance for starvation resistance
explained by each component in the
models fitted to the training data set,
i.e., GBLUP (s2

g and s2
e), TBLUP (s2

t

and s2
e), GTBLUP (s2

g, s2
t and s2

e),
and GTIBLUP (s2

g, s2
t, s2

i and s2
e).

The bars represent the standard error
of the mean. The left panel represents
females, and the right panel represents
males.
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trait of interest (TWAS-TBLUP). For each trait and sex combination,
we included transcripts associated with the trait in the training set
with increasingly stringent p-vales (P, 0.5, 0.1, 1022, 1023, 1024,
1025, 1026). Again, the results of these analyses varied by trait and
sex. For female starvation resistance, the most stringent p-value
threshold (1026) significantly improved prediction accuracy (r =
0.37 6 0.01) over using all highly expressed genes and gave the
best accuracy overall. However, using all transcripts provided the

highest prediction accuracy for male starvation resistance, where
selecting transcripts always resulted in lower accuracy (Figure 4).
For female startle response, the best prediction accuracy was for
all transcripts; lowering the p-value threshold below 0.1 reduced
the prediction accuracy to zero. For startle response in males, the
best prediction accuracy was for P , 0.5 (r = 0.16 6 0.01);
lowering this threshold below P , 1022 significantly decreased
prediction accuracy (Fig. S7). Prediction accuracy for female chill

Figure 2 Prediction accuracy for star-
vation resistance, measured as mean
r (on the y-axis) in the test set, obtainedby
GBLUP, TBLUP, GTBLUP, and GTIBLUP.
The bars represent the standard error of
the mean. The left panel represents
females, and the right panel represents
males.

Figure 3 Comparison between the pre-
diction accuracy for starvation resistance,
measured as mean r (on the y-axis) in the
test set, obtained by TBLUP and Random
Forest. The bars represent the standard
error of the mean. The left panel repre-
sents females, and the right panel repre-
sents males.
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coma recovery was again zero for all models; for male chill coma
recovery, the model selecting genes with P , 1024 gave the best,
albeit very low, predictive ability (r = 0.07 6 0.01) (Fig S8).

We also performed a control analysis in which we randomly
selected 5000, 1000, 500, 50 and 5 transcripts with which to perform
TBLUP prediction. For starvation resistance, decreasing the number
of randomly selected genes monotonically decreased the prediction
accuracy relative to the model including all transcripts, as expected
(Figure 5). In particular, the prediction accuracies for 50 and 5 ran-
domly selected genes for starvation resistance, corresponding roughly
to the two highest p-value thresholds (P, 1025 and P, 1026), were
reduced by two and fivefold, respectively, from the TWAS-TBLUP
analysis (Figures 4, 5). However, 500 or more randomly sampled
genes actually give significant prediction accuracies for starvation
resistance in both sexes (Figure 5). This is also true for startle
response, where 500 or more randomly sampled genes gave similar
prediction accuracies to all transcripts in both sexes (Fig. S9). This is
in contrast to the true TWAS-TBLUP analysis for this trait, where
selecting genes with p-values for association with the trait of , 1022

in females and , 1024 in males gave very low to zero prediction
accuracies (Fig. S7). Predictive abilities for chill coma recovery were
zero or below for all models in females, and the randomly selected
genes did not yield any positive prediction accuracies in male, in
contrast to the true TWAS-TBLUP analysis, where significant pre-
diction accuracies were found for transcript association p-values ,
1024 (Figs. S8, S10). We conclude from these results that the TWAS-
TBLUP strategy was not effective for the three traits analyzed.

Gene Ontology (GO) informed prediction
We hypothesized that the lack of success of the TWAS-TBLUPmodel
might have been due to the small size of the DGRP, providing low
power to map genes (especially those with smaller effect) affecting the
traits. We therefore assessed whether prediction accuracy could be
improved by grouping variants and genes according to GO categories,

and whether some GO terms are particularly predictive of the traits.
First, we fitted the GO-GBLUP model proposed by Edwards et al.
(2016). We found that the majority of GO terms provided similar
accuracy to the baseline GBLUP model (the black horizontal line in
the graphs), but some GO terms achieved much higher prediction
accuracies for all the trait/sex combinations – even chill coma
recovery time (Figures 6, S11, S12). Some of the most predictive
GO terms had a clear interpretation (Table S1). The most predictive
GO terms for starvation resistance in females affect development and
reproduction and in males affect energy and protein synthesis. GO
terms involved in translation elongation are predictive of chill coma
recovery time, while GO terms involved in mitochondrial function
are predictive of startle response (Table S1). Some of the top pre-
dictive GO terms for each trait are in common between the two sexes
(GO:005741 and GO:007088 for startle response and GO:0033588 for
chill coma recovery time), but most are different for males and
females (Figures 6, S11, S12).

We then developed the GO-TBLUP model and fitted it to our
data. The results showed a very similar pattern to those of
GO-GBLUP – most GO terms had very similar predictive abilities
to TBLUP (the black horizontal line in the graphs), yet some GO
terms provided much higher accuracies (Figures 7, S13, S14). Again,
some of the most predictive GO terms had a clear interpretation. For
example, two of the most predictive GO terms for starvation re-
sistance in females, GO:0033500 and GO:0032870, have been impli-
cated in carbohydrate homeostasis and cellular response to hormone
stimulus (including the insulin receptor signaling pathway), respec-
tively (Table S2) (Gramates et al. 2017). Several genes in these
categories (Sik2, Sik3, Akh, AkhR) have previously been associated
with starvation resistance (Table S2). In particular, AkhR, which is
shared by both GO terms, was among the top associations with
starvation resistance in both females and males in the DGRP (Everett
et al. 2020). The three most predictive GO terms for male starvation
resistance share PDZ-GEF (Table S2), which was also among the top

Figure 4 Prediction accuracy for star-
vation resistance, measured as mean r
(on the y-axis) in the test set, obtained
by the TWAS-TBLUPmodel at different
p-value thresholds for selecting genes.
The bars represent the standard error
of the mean. The left panel represents
females, and the right panel represents
males.
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associations with starvation resistance in males in the DGRP (Everett
et al. 2020). The top predictive GO term for female startle response
includes genes affecting chromatin organization (GO:0006325), while
the top GO predictive GO terms for male startle response, GO:0030431
and GO:0006730, respectively affect sleep and one carbon metabo-
lism (Table S2). Two of the most predictive GO terms (GO:0042052
and GO:0008103) for female startle response shared two genes, Rab11
and capulet. Predictive GO terms affecting chill coma recovery

include GO:0003755 in females (unfolded protein binding) and
GO:0007266 and GO:0035025 in males (Rho signal transduction)
(Table S2). None of the top predictive GO terms for the same trait
are in common between males and females. Interestingly, the most
predictive SNP-based GO terms and the most predictive transcript-
based GO terms were distinct.

Finally, we fitted a GO-GTBLUP model to see whether genomic
data and transcriptomic data contributed overlapping information to

Figure 5 Prediction accuracy for star-
vation resistance, measured as mean r
(on the y-axis) in the test set, obtained
by using only different numbers of
randomly selected genes in the TBLUP
model. The bars represent the stan-
dard error of the mean. The left panel
represents females, and the right panel
represents males.

Figure 6 Prediction accuracy for star-
vation resistance, measured as mean r
(on the y-axis) in the test set, obtained
by the GO-GBLUP model. Each point
represents the prediction accuracy
achieved by a specific GO term; the
top 3 most predictive GO terms are
spelled out. The black horizontal line
represents the accuracy of the baseline
GBLUP model. The upper panel rep-
resents females, and the lower panel
represents males.

4606 | F. Morgante et al.

https://identifiers.org/bioentitylink/FB:FBgn0015790?doi=10.1534/g3.120.401847
https://identifiers.org/bioentitylink/FB:FBgn0261458?doi=10.1534/g3.120.401847


prediction accuracy for each GO. Generally, the combined model did
not yield higher accuracy than the better of the GO-GBLUP and
GO-TBLUP models; however, the ranking of the most predictive GO
terms changes slightly (Figures 8, S15, S16). Only in one case, chill
coma recovery in males, did this combined model achieve the best
accuracy, although only marginally (Fig. S16).

Under an additive, infinitesimal model of genetic architecture in
which loci affecting each trait have equal and infinitesimally small

effects and are distributed evenly throughout the genome, a trivial
reason for the increased prediction accuracy provided by some GO
terms could be that those are simply the GO terms with larger number
of variants/genes (Boyle et al. 2017). We tested this hypothesis, and
found very low correlations between prediction accuracy and GO size
for SNPs (Figure 9, Figs. S17, S18) and for transcripts (Figure 10, Figs
S19. S20). In contrast, the correlations between prediction accuracies
in the test set and proportion of variance explained in the training set

Figure 7 Prediction accuracy for star-
vation resistance, measured as mean r
(on the y-axis) in the test set, obtained
by the GO-TBLUP model. Each point
represents the prediction accuracy
achieved by a specific GO term; the
top 3 most predictive GO terms are
spelled out. The black horizontal line
represents the accuracy of the baseline
TBLUP model. The upper panel repre-
sents females, and the lower panel
represents males.

Figure 8 Prediction accuracy for star-
vation resistance, measured as mean r
(on the y-axis) in the test set, obtained
by the GO-GTBLUP model. Each point
represents the prediction accuracy
achieved by a specific GO term; the
top 3 most predictive GO terms are
spelled out. The upper panel repre-
sents females, and the lower panel
represents males.
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were high for the GO-GBLUP (Figure 11, Figs. S21, S22) and
GO-TBLUP (Figure 12, Figs S23, S24) models, as expected if the models
are capturing biological signal rather than overfitting the noise.

DISCUSSION
Here, we evaluated the use of transcriptomic data for the prediction of
complex traits, taking advantage of the unique resource of the DGRP,
for which accurate mean values of organismal quantitative trait
phenotypes (Huang et al. 2014; Mackay and Huang 2018) and

genome wide transcript levels (Everett et al. 2020) have been obtained
for the same population of genotypes. We used the genomic best
linear unbiased prediction (GBLUP) model as a standard for com-
parison for transcriptome best linear unbiased prediction (TBLUP),
as well as a combined genome and transcriptome model (GTBLUP)
and the combined model including an interaction between the
genome and transcriptome (GTIBLUP).

Using starvation stress resistance, startle-induced locomotion and
chill coma recovery time as model quantitative traits (Huang et al.

Figure 9 Relationship between pre-
diction accuracy obtained by the
GO-GBLUP model, measured as mean
r (on the y-axis) in the test set, and size
of the GO terms, measured as number
of variants (on the x-axis), for starvation
resistance. Each point represents a spe-
cific GO term. The black line represents
the linear regression fit. The left panel
represents females, and the right panel
represents males.

Figure 10 Relationship between pre-
diction accuracy obtained by the
GO-TBLUP model, measured as mean r
(on the y-axis) in the test set, and size of
the GO terms, measured as number of
genes (on the x-axis), for starvation re-
sistance. Each point represents a specific
GO term. The black line represents the
linear regression fit. The left panel repre-
sents females, and the right panel repre-
sents males.
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2014), we first assessed the proportion of phenotypic variance
explained for each model. We found that the proportion of genetic
and transcriptome variance explained varied by trait and by sex
within each trait. For starvation resistance, both the genome
(GBLUP) and transcriptome (TBLUP) explained similar and high
(�70% in females, .90% in males) proportions of the phenotypic
variance. The genome explained a higher proportion of variance for
startle response than the transcriptome, especially in females;

however, the total amount of variance explained for the genome
and transcriptome was much lower than for starvation stress
resistance in both sexes. While the transcriptome did not explain
any of the phenotypic variance in chill coma recovery, the genome
could explain a limited amount of variance in both sexes. The
combined GTBLUP model did not explain a significantly larger
proportion of variance than the better of the GBLUP or TBLUP
models. The GTIBLUP model explained similar amounts of

Figure 11 Relationship between pre-
diction accuracy obtained by the
GO-GBLUP model, measured as mean
r in the test set (on the y-axis), and
mean proportion of variance explained
by the GO terms in the training set (on
the x-axis), for starvation resistance.
Each point represents a specific GO
term. The black line represents the
linear regression fit. The left panel rep-
resents females, and the right panel
represents males.

Figure 12 Relationship between pre-
diction accuracy obtained by the
GO-TBLUP model, measured as mean
r in the test set (on the y-axis), and
mean proportion of variance explained
by the GO terms in the training set (on
the x-axis), for starvation resistance.
Each point represents a specific GO
term. The black line represents the
linear regression fit. The left panel rep-
resents females, and the right panel
represents males.
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phenotypic variance for starvation resistance and startle response
as the GTBLUP model. However, for chill coma recovery time, the
GTIBLUP model explained �60% of the phenotypic variance for
female chill coma recovery time (most of which came from the
interaction term), tripling the best of the other models. These
results indicate that the genome and transcriptome may contrib-
ute largely overlapping information, with the key player being
dependent on the trait analyzed. This contrasts with previous
results (Guo et al. 2016; Li et al. 2019; Azodi et al. 2020) in which
the genome consistently explained more variance than the tran-
scriptome in all models, and the interaction term contributed to
explaining more variance for almost all of traits analyzed (Guo
et al. 2016).

We next evaluated the performance of the four models in terms of
prediction accuracy in a cross-validation setting. Prediction accuracy
was low for starvation resistance and startle response, and zero for
chill coma recovery, consistent with previous GBLUP results for these
traits (Ober et al. 2012; 2015; Edwards et al. 2016; Li et al. 2019). One
potential explanation for the null prediction accuracy in chill coma
recovery could be the actual distribution of phenotypes not matching
that assumed by mixed models (Ober et al. 2015). However, Ober
et al. (2015) also fitted GBLUP to Box-Cox-transformed phenotypes
and found no difference. This was also confirmed by the fact that a
method that does not make any assumption regarding the distribu-
tion of the response variable – the Random Forest – provide similar
(null) accuracy to TBLUP. There was a large gap between the
proportion of variance explained and prediction accuracy for star-
vation resistance and startle response, also as previously observed
(Morgante et al. 2018). Although the genome and transcriptome
alone explained a similar and large amount of phenotypic variance
for starvation resistance, prediction accuracies for the transcrip-
tome out-performed the genome by 2.5 fold (males) to 3.5 fold
(females). For startle response, the genome explained more phe-
notypic variance than the transcriptome in both sexes (much more
for females); however, prediction accuracies were similar for the
GBLUP and TBLUP models. Prediction accuracies for the
GTBLUP and GTIBLUP models for any trait never exceeded those
from the better of the single component models, bolstering the
hypothesis that the genome and transcriptome contribute largely
redundant information.

Our results comparing prediction accuracies of the different
models agree with those of Guo et al. (2016) regarding the absence
of an improvement in predictive ability when including the genome-
transcriptome interaction term in the model. However, we did not
observe an improvement in prediction accuracy for the GTBLUP
model, in contrast to the previous study (Guo et al. 2016) which did
find an improvement with the same combined model. This discrep-
ancy may have occurred because we utilized only genes whose
expression levels were genetically variable across lines in our tran-
scriptome prediction models. This filter was necessary because the
individual flies that were phenotyped were not the same flies from
which RNA was extracted, although their genotypes were identical.
Thus, genetics was the only link between these two sets of flies.
Therefore, we will have missed contributions from any genes whose
expression levels were not genetically variable but may have captured
some (micro-) environmental effects. Our results also differed from
those of a previous study (Li et al. 2019) using gene expression
abundances derived from tiling arrays (Huang et al. 2015), which
found TBLUP to be consistently much worse than GBLUP, providing
null prediction accuracy for many traits. This is likely due to noisier
expression measurements from tiling arrays compared to estimates of

transcript abundance from RNA-seq (Everett et al. 2020) used in this
study.

The GBLUP, TBLUP, GTBLUP and GTIBLUP models evaluated
here all assume that all genomic variants and transcripts contribute
equally to all traits; i.e., the genetic architecture of each trait ap-
proaches the additive, infinitesimal model. However, single variant
association mapping shows that the distribution of genetic effects for
most quantitative traits follows a more exponential distribution, with
some larger effect variants and increasingly more with increasingly
smaller effects. This is why trait-specific variable selection models
have greater predictive ability than GBLUP models including all
variants, as the latter adds variants not associated with the trait (Ober
et al. 2015; Morgante et al. 2018). However, when we applied this
strategy to gene expression data using TBLUP, the results were very
variable across traits, sexes and p-value thresholds. This might be
attributable to the correlation structure among transcripts (Everett
et al. 2020) differing for the traits and sexes with different p-value
thresholds, but this is speculative and requires further investigation in
the future.

The top associated variants typically can be mapped to known
genetic or protein-protein interaction networks, or are enriched for
plausible GO categories (Morozova et al. 2015; Carbone et al. 2016).
Therefore, prediction methods based on mapping variants to genes
and then to GO categories (genomic feature BLUP, Edwards et al.
2016; Rohde et al. 2017; 2018; Sørensen et al. 2017) can achieve high
prediction accuracy than GBLUP. This is likely because these models
can give higher weight in the prediction model to variants pertaining
to biological processes or molecular functions specific to each trait
(Edwards et al. 2016). Therefore, we assessed predictive ability of
individual GO terms for each trait using the GO-GBLUP model
(Edwards et al. 2016) as a baseline, and then extended this approach
to GO-TBLUP. In agreement with Edwards et al. (2016), we found
that a limited number of GO terms provided much higher accuracy
with GO-GBLUP than the baseline GBLUP. The most predictive GO
terms in this study differed from those of Edwards et al. (2016), which
evaluated the same three quantitative traits in the DGRP, although
the general ranking of the most significant GO terms was consistent
between the two studies. Four factors likely contributed to these
differences. (1) The two studies used different subsets of lines, which
can give different quantitative outcomes with such a small sample
size. (2) Our study used fivefold cross-validation as opposed to the
10-fold cross-validation employed by Edwards et al. (2016), and the
size of the training set affects prediction accuracy (Ober et al. 2012).
(3) We used line means for phenotypes, while Edwards et al. (2016)
used individual measurements. (4) We used GO terms containing at
least 5 genes while Edwards et al. (2016) used GO terms containing at
least 10 genes.

The GO-TBLUP results also showed that a small number of GO
terms achieved a much higher accuracy than the baseline TBLUP
model, some of which shared genes that have been shown (statisti-
cally and/or functionally) to affect the traits analyzed. However, the
most predictive GO terms in GO-GBLUP and themost predictive GO
terms in GO-TBLUP were not the same. This suggests that while the
genome and transcriptome as a whole may contribute redundant in-
formation, this is not true when gene ontology information is incorpo-
rated. This observation also suggests that it may be possible to build a
trait-specific model with the most predictive SNP-based GO terms and
the most predictive gene-based GO terms to improve the overall pre-
diction accuracy. However, to be able to do so, it is necessary to develop a
procedure to select the most predictive GO terms without bias in the
training set, and more research is needed in that area.
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Epistasis is a common hallmark of the genetic architecture of
Drosophila quantitative traits (Huang et al. 2012; Shorter et al. 2015),
and accounting for epistasis when it is present can improve genomic
prediction (Ober et al. 2015; Morgante et al. 2018). The generally
similar performance of TBLUP and Random Forest may suggest that
gene expression affect these three traits mostly linearly. However, in a
recent study, Random Forest showed a poor prediction performance
with simulated phenotypes including a non-additive component (at
the variant level) (Abdollahi-Arpanahi et al. 2020). Thus, further
analyses are needed to elucidate this aspect. One such analysis could
be the extension of GO-TBLUP (and GO-GBLUP) to account for
epistatic interactions. This methodology would limit the inclusion of
interactions at the GO level, which has both statistical (i.e., fewer
effects to estimate) and biological (i.e., genes in GO categories often
interact genetically) advantages.

In summary, this study has confirmed that using transcriptomic
data to predict quantitative trait phenotypes is promising for some
traits. Our work, together with other studies (Finucane et al. 2015;
Edwards et al. 2016; Abdollahi-Arpanahi et al. 2017; Azodi et al.
2020), has shown that integrating omic data together with functional
annotation can identify features that are important to understand and
predict complex traits. However, there are several improvements to
the experimental design that can be made in the future that may
further increase predictive ability and consequently our understand-
ing of the genetic basis of variation in quantitative traits. The most
obvious improvement is to increase the sample size of the population
on which organismal and omic phenotypes are assessed. The small
size of the current DGRP limits the maximum prediction accuracy
that can be achieved. Second, RNA was extracted from whole flies;
this approach gives the average gene expression levels across all
tissues. This may be advantageous, because identifying tissues rele-
vant to specific traits is not trivial. However, it is conceivable that
brain gene expression may be more relevant to predicting startle
response than whole flies, and the other tissues that were not relevant
to startle response added noise to the expression levels, potentially
affecting prediction accuracy. Gene expression is known to be, at least
partly, tissue-specific in both flies (Leader et al. 2018) and humans
(Aguet et al. 2017). Third, RNA was extracted from flies that were
reared in standard conditions and were not subjected to any external
stimulus; however, all three traits analyzed were stress-based. This is
exactly the situation to which precision medicine applies – predicting
disease risk from baseline, healthy conditions. However, the tran-
scriptome relevant to predicting a stress-related phenotype such as
chill coma recovery time may well be a snap shot taken during chill
coma or immediately following recovery rather than baseline, and
might be one reason for the poor prediction accuracy of TBLUP for
this trait. For starvation resistance, which had the highest prediction
accuracy from TBLUP, expression levels on baseline flies may reflect
their ability to store and mobilize energetic resources. This might
explain the higher accuracy of TBLUP and agrees with the most
predictive GO term being implicated in carbohydrate homeostasis.
Finally, the GO-GBLUP and GO-TBLUPmodels are very flexible and
can be extended in the future to incorporate other omic levels as well
as regulatory features located outside of coding regions.
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