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ABSTRACT

MODBASE (http://salilab.org/modbase) is a database
of annotated comparative protein structure models
for all available protein sequences that can be
matched to at least one known protein structure.
ThemodelsarecalculatedbyMODPIPE,anautomated
modeling pipeline that relies on MODELLER for fold
assignment, sequence–structure alignment, model
building and model assessment (http:/salilab.org/
modeller). MODBASE is updated regularly to reflect
the growth in protein sequence and structure
databases, and improvements in the software for cal-
culating the models. MODBASE currently contains
3 094 524 reliable models for domains in 1 094 750
out of 1 817 889 unique protein sequences in the
UniProt database (July 5, 2005); only models based
on statistically significant alignments and models
assessed tohave thecorrect folddespite insignificant
alignmentsare included.MODBASEalsoallowsusers
to generate comparative models for proteins of inter-
est with the automated modeling server MODWEB
(http://salilab.org/modweb). Our other resources
integrated with MODBASE include comprehensive
databases of multiple protein structure alignments
(DBAli, http://salilab.org/dbali), structurally defined
ligand binding sites and structurally defined binary
domain interfaces (PIBASE, http://salilab.org/
pibase) as well as predictions of ligand binding

sites, interactions between yeast proteins, and func-
tional consequences of human nsSNPs (LS-SNP,
http://salilab.org/LS-SNP).

INTRODUCTION

The genome sequencing efforts are providing us with com-
plete genetic blueprints for hundreds of organisms, including
humans. We are now faced with the challenge of assigning,
investigating and modifying the functions of proteins encoded
by these genomes. This task is generally facilitated by 3D
structures of the proteins (1–3), which are best determined by
experimental methods, such as X-ray crystallography and
NMR-spectroscopy. The number of experimentally deter-
mined structures deposited in the PDB increased from 23 096
to 31 823 over the last 2 years (August 2005) (4). However, the
number of sequences in comprehensive sequence databases,
such as UniProt (5) and GenPept (6), continues to grow even
more rapidly, increasing from 1.2 to 2 million over the last
2 years (August 2005). Therefore, protein structure prediction
is essential to obtain structural information for sequences
where no experimental structure is available.

The most accurate models are generally obtained by homo-
logy or comparative modeling (7–10), a method that is applic-
able if an experimental structure related to a given target
sequence is available. The fraction of sequences for which
comparative models can be obtained automatically has
increased moderately from �57 to �60% over the last 2 years,
reflecting the counteracting effects of structural genomics
(11,12) and many new genomic sequences.
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The process of comparative modeling usually requires the
use of a number of programs to identify template structures, to
generate sequence–structure alignments, to build the models
and to evaluate them. In addition, various sequence and struc-
ture databases that are accessed by these programs are needed.
Once an initial model is calculated, it is generally refined and
ultimately analyzed in the context of many other related
proteins and their functional annotations.

In this paper, we present MODBASE, a database of com-
parative protein structure models, and several associated data-
bases and servers that facilitate these tasks for both expert and
novice users. We highlight the improvements of MODBASE
that were implemented since the last report (13), including
updated modeling software, a completely redesigned user
interface, incorporation of annotated human single point muta-
tions, homology-based prediction of interacting proteins and
improved access to information about structurally defined
ligand binding sites and binary domain interfaces.

CONTENTS

Comparative modeling

Models in MODBASE are calculated using MODPIPE, our
completely automated software pipeline for comparative mod-
eling (14). MODPIPE can calculate comparative models for a
large number of protein sequences, using many different
template structures and sequence–structure alignments.
MODPIPE relies on the various modules of MODELLER
(15) for its functionality and is adapted for large-scale opera-
tion on a cluster of PCs using scripts written in PERL.

The templates used for model building consist of represent-
ative multiple structure alignments extracted from DBAli (16).
These alignments were prepared by the SALIGN module of
MODELLER (M. S. Madhusudan, M. A. Marti-Renom and
A. Sali, manuscript in preparation), which implements a
multiple structure alignment method similar to that in the
program COMPARER (17). Sequence profiles are constructed
for both the target sequences and the templates by scanning
against the UniProt database of sequences, relying on the
BUILD_PROFILE module of MODELLER (N. Eswar,
M. S. Madhusudhan and A. Sali, manuscript in preparation).
BUILD_PROFILE is an iterative database searching protocol
that relies on local dynamic programming and a robust method
of estimation of alignment significance. Sequence–structure
matches are established by aligning the target sequence profile
against the template profiles, using local dynamic program-
ming implemented in the PROFILE_PROFILE_SCAN
module of MODELLER (18). Significant alignments covering
distinct regions of the target sequence are chosen for model-
ing. Models are calculated for each of the sequence–structure
matches using MODELLER. The resulting models are then
evaluated by a composite model assessment criterion that
depends on the compactness of a model, the sequence identity
of the sequence–structure match and statistical energy
Z-scores (D. Eramian, M. -Y. Shen, A. Sali, M. Marti-Renom,
manuscript in preparation).

Model datasets

Models in MODBASE are organized into a number of data-
sets. The largest dataset contains models of all sequences in the

UniProt database that are detectably related to at least one
known structure in the PDB. This dataset is freely accessible
to academic scientists. Currently, it contains �3 million mod-
els for domains in 1.1 million out of the 1.8 million unique
sequences in the UniProt database (July 5, 2005), with an
average length of 235 residues per model. For example,
there are models for domains in 32 985 human sequences,
22 880 sequences from Arabidopsis thaliana, 15 195
sequences from Drosophila melanogaster and 9691 sequences
from Escherichia coli. Other datasets include models
calculated for the New York Structural GenomiX Research
Consortium, datasets calculated by MODWEB and various
datasets associated with our other modeling projects.

Some of the older datasets were calculated with an earlier
version of MODPIPE (19) based on single template structures
and sequence–structure matches generated by PSI-BLAST
(20) and IMPALA (21).

MODWEB

Closely connected to MODBASE is MODWEB, our compar-
ative modeling web-server (http://salilab.org/modweb) (14).
MODWEB accepts one or many sequences in the FASTA
format and calculates their models using MODPIPE based
on the best available templates from the PDB. Alternatively,
MODWEB also accepts a protein structure as input and cal-
culates models for all identifiable sequence homologs in the
UniProt database. The latter mode is a useful tool for structural
genomics efforts (22) to assess the impact of a newly deter-
mined protein structure on the modeling of sequences of
unknown structure. It is also used to identify new members
of sequence superfamilies with at least one member of known
structure. The results of MODWEB calculations are available
through the MODBASE interface as private datasets protected
with passwords.

DBAli

DBAli (http://salilab.org/DBAli/) stores pairwise comparisons
of all structures in the PDB calculated using the program
MAMMOTH (23), as well as multiple structure alignments
generated by the SALIGN module of MODELLER. DBAli is
updated weekly. As of June 2005, DBAli contains more than
800 million pairwise comparisons and �8500 family-based
multiple structure alignments for �22 000 non-redundant pro-
tein chains in the PDB. Several programs are used to provide
additional information: (i) ModDom assigns domain bound-
aries from structure; (ii) ModClus allows the user to generate
clusters of similar protein structures; and (iii) AnnoLyze and
AnnoLite annotate the functions of proteins in DBAli. The
DBAli tools help users to analyze the protein structure space
by establishing relationships between protein structures and
their fragments in a flexible and dynamic manner.

Predicted ligand binding sites

MODBASE stores a list of the binding sites of known structure
for �100 000 ligands found in the PDB (24). The ligands
include small molecules, such as metal ions, nucleotides, sac-
charides and peptides. Binding sites in all known structures are
defined to consist of residues with at least one atom within 5 s

of any ligand atom. MODBASE also contains predicted bind-
ing sites on template structures that are inherited from any
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related known structure if at least 75% of the binding site
residues are within 4 s of the template residues in a global
superposition of the two structures in DBAli and if at least
75% of the binding site residue types are invariant. The putat-
ive ligand binding sites in the models are then mapped via the
target-template alignments. The putative ligand binding sites
are stored as SITE records and the binding site membership
frequency per residue is indicated in the B-factor column of
the model coordinate files. A total of 65% of MODBASE
models have at least one predicted binding site.

PIBASE

PIBASE (http://salilab.org/pibase) is a comprehensive data-
base of structurally defined interfaces between pairs of protein
domains (25). It is composed of binary interfaces extracted
from structures in the PDB and the Probable Quaternary Struc-
ture server PQS (26) using domain assignments from the
Structural Classification of Proteins (27) and CATH (28)
fold classification systems. PIBASE currently contains
158 915 interacting domain pairs between 105 061 domains
from 2125 SCOP families. A diverse set of geometric,
physiochemical and topologic properties are calculated for
each complex, its domains, interfaces and binding sites. A
subset of the interface properties is used to remove interface
redundancy within PDB entries, resulting in 20 912 distinct
domain–domain interfaces. The complexes are grouped into
989 topological classes based on their patterns of domain–
domain contacts. The binary interfaces and their correspond-
ing binding sites are categorized into 18 755 and 30 975
topological classes, respectively, based on the topology of
secondary structure elements. PIBASE is a convenient
resource for structural information on protein–protein inter-
actions and is easily integrated with other databases. It is cur-
rently used by the DBAli function annotation module and the
LS-SNP annotation system, and serves as a source of templates
for the complex prediction module of MODBASE.

Predicted protein complexes

The composition and structure of protein complexes are pre-
dicted based on similarity to template complexes of known
structure using comparative modeling. The structural models
of the complexes are assessed with a statistical potential
derived from binary domain interfaces obtained from
PIBASE. The approach is applied to the 2434 yeast proteins
with at least one structurally modeled domain, resulting in
3115 binary interaction predictions and 159 complex predic-
tions of more than two proteins involving 506 and 71 proteins,
respectively. The predictions are cross-referenced with the
YeastGFP database of yeast protein subcellular localizations
(29). A comparison of the predicted interactions to experi-
mental results in the BIND database (30) reveals an overlap
of �3%. The predictions are assigned confidence levels
(Z-scores) that may be used to produce a list of testable hypo-
theses about interacting proteins. The estimated false positive
rate at the Z-score threshold value of �1 is 16%.

LS-SNP

LS-SNP (http://www.salilab.org/LS-SNP) (31) is a database
of annotated single nucleotide polymorphisms in human

protein-coding exons that result in a changed amino acid res-
idue type (non-synonymous SNPs or nsSNPs). The genomic
locations of the SNPs were taken from the dbSNP database
(32) and comprehensively mapped on the human proteins in
the UniProt database via a collection of protein-to-mRNA and
mRNA-to-genome alignments produced with the Known
Genes algorithm (Fan Hsu, private communication). Using
MODPIPE, we built comparative protein structure models
for each significant alignment covering a distinct region of
protein sequence (E-value cut-off 0.0001). We used the
modeling results, in conjunction with PIBASE and the ligand
tables of MODBASE, to infer which SNPs may destabilize
protein quaternary structure or interfere with small molecule
ligand binding. In addition, a support vector machine (33) that
combines features of sequence, structure and evolutionary
conservation was used to predict the SNPs that are associated
with human disease. The resulting structural and functional
annotations can be queried via the web interface from
multiple viewpoints: single SNP, all SNPs in a gene or
protein of interest, all nsSNPs in a genomic region of interest
and all SNPs in a KEGG biochemical pathway (34). LS-SNP
annotations are cross-linked with MODBASE and UCSC
Genome Browser. The comparative models used in LS-SNP
as well as details of the SNP annotations are available through
MODBASE.

Case study: modeling of translated protein
sequences from EST data

MODBASE contains a new dataset of protein structure models
for the expressed sequence tags (ESTs) from the Vitis vinifera
genome (dataset Grape-1). While there are no protein struc-
tures from V.vinifera in the PDB, our dataset contains 5594
reliable models for domains of the most probable translated
reading frames of 3144 EST sequences obtained from the
UNIGENE database (32). The structural modeling of protein
sequences implied by the EST data presented new challenges,
including selection of the most probable reading frame and
consideration of the coverage of the ESTs and the template
structure in order to estimate the coverage of the target
sequence. There are at least two reasons for building protein
structure models directly from EST data: (i) a larger fraction of
transcript variants is probably considered for modeling than
when starting with entries in a protein sequence database; and
(ii) assessment of models built for inferred protein sequences
can contribute to gene annotation efforts by helping to decide
which ones are actually translated and folded into a stable
structure (35).

ACCESS AND INTERFACE

The main access to MODBASE is through its web interface at
http://salilab.org/modbase, by querying with Uniprot and GI
identifiers, annotation keywords, PDB codes, datasets,
sequence similarity to the modeled sequences (BLAST) and
model specific criteria, such as model reliability, model size
and target-template sequence identity. Additionally, it is pos-
sible to retrieve coordinate files, alignment files and ligand
binding information in text files.

The output of a search is displayed on pages with varying
amounts of information about the modeled sequences,
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template structures, alignments and functional annotations. An
example for the output of a search resulting in one model is
shown in Figure 1. A ribbon diagram of the model with the
highest target-template sequence identity is displayed by
default, together with details of the modeling calculation.
Ribbon thumbprints of additional models for this sequence
link to corresponding pages with more information. The rib-
bon diagrams are generated on the fly using Molscript (36) and
Raster-3D (37). Additionally, cross-references to various data-
bases, including PDB, UniProt, SwissProt/TrEMBL, PubMed
and the UCSC Genome Browser, are provided. A pull-down
menu provides links to additional functionality: the ligand
binding module, the SNP module, retrieval of coordinate
and alignment files, and the Molecular Modeling System
Chimera (38) that allows the user to display template and
model coordinates together with their alignment. Other MOD-
BASE pages provide overviews of more than one sequence or
structure. All MODBASE pages are interconnected to facilit-
ate easy navigation between the different modules. Models are
also directly accessible from other databases, including the
SwissProt/TrEMBL sequence pages, PIR’s iProClass, EBI’s
InterPro, the UCSC Genome Browser and PubMed (LinkOut).

FUTURE DIRECTIONS

MODBASE will be updated monthly to reflect the growth of
the sequence and structure databases, as well as improvements
in the methods and software used for calculating the models.

CITATION

Users of MODBASE are requested to cite this article in their
publications.
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