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Abstract: This study describes the variation in residue behavior of fluopyram in soil, carrot root, and
carrot leaf samples after the application of fluopyram (41.7% suspension, Bayer) by foliar spray or
root irrigation at the standard of 250.00 g active ingredient per hectare (a.i./ha) and double-dose
treatment (500.00 g a.i./ha). Fluopyram and its metabolite fluopyram-benzamide were extracted and
cleaned up using the QuEChERS method and subsequently quantified with LC-QQQ-MS/MS. The
LOD and LOQ of the developed method were in the range of 0.05–2.65 ug/kg and 0.16–8.82 ug/kg,
respectively. After root irrigation, the final residues detected in edible parts were 0.60 and 1.80 mg/kg,
respectively, when 250.00 and 500.00 g a.i./ha were applied, which is much higher than the maximum
residue limit in China (0.40 mg/kg). In contrast, after spray application, most of the fluopyram
dissipated from the surface of carrot leaves, and the final residues in carrot roots were both only
0.05 mg/kg. Dietary risk assessments revealed a 23–40% risk quotient for the root irrigation method,
which was higher than that for the foliar spray method (8–14%). This is the first report comparing the
residue behavior of fluopyram applied by root irrigation and foliar spray. This study demonstrates
the difference in risk associated with the two application methods and can serve as a reference for the
safe application of fluopyram.

Keywords: fluopyram; carrot; LC-QQQ-MS/MS; pesticide residue analysis; pesticide risk assessment

1. Introduction

Carrot (Daucus carota L.) is one of the most important root vegetables in the Apiaceae
family; it is cultivated and consumed worldwide [1]. The health benefits of carrot roots
are attributed to its abundance of provitamin A, carotenoids, and dietary fiber, as well
as the numerous minerals and antioxidants it contains [2,3]. According to the global
production records of primary vegetables, carrots are among the top five vegetables [4],
and the import and export quantity of carrots has risen steadily over the past 40 years, with
a commensurate 11-fold increase in its value. Thus, the carrot is of great economic and
agricultural importance.

The quality of carrot crops can be affected by pests and fungal pathogens, such as
the carrot fly (Psila rosae), the soilborne fungus Sclerotinia sclerotiorum, which causes black
root rot and crown rot, and Pythium violae, which causes cavity spots [5]. Pesticides are
often applied to carrot crops to control these diseases and reduce loss [5,6]. Recently, a
41.7% suspension concentrate (SC) of fluopyram, which has an effective control against
many diseases, such as powdery mildew and root-knot nematode, has been registered in
China. Its active ingredient, fluopyram (Figure 1a) (N-[2-[3-chloro-5-(trifluoromethyl)-2-
pyridinyl] ethyl]-2-(trifluoromethyl) benzamide), is a systemic broad-spectrum fungicide
with preventive and curative properties [7]. The major metabolite, fluopyram-benzamide
(Figure 1b), is used for risk assessment [8], and the sum of fluopyram and fluopyram-
benzamide is expressed as fluopyram. Since 2013, fluopyram has been sold in more
than 60 countries and regions, and it is registered for use in over 70 crops [9]. In China,
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the registration of fluopyram covers 26 crops, including carrot, cucumber, tomato, and
apple [10].
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Figure 1. (a) The chemical structure of fluopyram; (b) The chemical structure of fluopyram-
benzamide.

Two application methods, foliar spray and root irrigation, are allowed for the appli-
cation of fluopyram on crops in China [10]. Several studies have evaluated the residue
behavior of fluopyram on fruits and vegetables after treatment by foliar spray or root
irrigation [7,11–16]. For example, Matadha et al. studied the distribution of fluopyram on
pomegranate tissue by spray application [7], and Chawla et al. investigated the residual
behavior of fluopyram applied by root irrigation to cucumbers [12]. However, to the best
of our knowledge, there is no report comparing the effects of the two application methods
on the residual behavior and distribution of fluopyram in crops, and a single application
method cannot fully reflect the mode of action and residual behavior of fluopyram on crops.
Therefore, considering the mode of action of fungicides and that carrot is a root vegetable,
it is meaningful and necessary to understand the residual behavior of fluopyram in carrots
using the two application methods. This information could be used as a reference for the
safe application of fluopyram to carrots and other vegetables.

Consequently, in this study, we conducted spray and root irrigation field trials of
fluopyram on carrots according to the “Guideline on Pesticide Residue Testing” of China,
and the residues of fluopyram in different carrot tissues and soil over time were measured
using QuEChERS in conjunction with liquid chromatography-triple quadrupole tandem
mass spectrometry (LC-QQQ-MS/MS) analysis. The data were useful for elucidating
residue behavior and distribution of fluopyram in carrot roots, carrot leaves, and soil
under the two application methods, as well as for conducting a risk assessment of the two
application methods.

2. Results and Discussion
2.1. Results of Method Validation

The methods used in this study for the analysis of fluopyram and fluopyram benza-
mide in carrot roots, carrot leaves, and soils were evaluated with the following validation
parameters: recovery, LOD, LOQ, linearity and precision, and satisfactory results were ob-
tained for all the parameters studied (Table 1). When spiked at 0.01–1 mg/kg, the recoveries
were 83–106% for fluopyram and 80–116% for fluopyram benzamide, and the LOD and
LOQ of the developed method were in the range of 0.05–2.65 ug/kg and 0.16–8.82 ug/kg,
respectively. The accuracy of the method was investigated by spiking the two analytes
in carrot and soil, and satisfactory results were obtained. The method had good linearity
when analyzing matrix-matched standards for the two analytes (R2 = 0.999).
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Table 1. Recovery and precision of fluopyram and fluopyram benzamide from carrots and soils
measured by LC-QQQ-MS/MS.

Sample Spiking Concentration
(mg/kg) Percent Recovery ± SD (%) RSD (%)

Fluopyram

carrot root 0.01 106 ± 5 5
0.5 83 ± 9 10
1 102 ± 3 3

carrot leaf 0.01 105 ± 16 15
0.5 84 ± 2 3
1 83 ± 4 5

soil 0.01 96 ± 2 3
0.5 98 ± 10 10
1 102 ± 4 4

Fluopyram-benzamide

carrot root 0.01 116 ± 3 3
0.5 95.9 ± 0.4 0.4
1 100 ± 4 4

carrot leaf 0.01 115 ± 4 4
0.5 89 ± 4 4
1 89 ± 4 5

soil 0.01 80 ± 1 1
0.5 93 ± 8 9
1 98 ± 4 4

2.2. Residues in the Soil

The residual levels of fluopyram in field soils after root irrigation and foliar spray at
doses of 250.00 g a.i./ha and 500.00 g a.i./ha were initially 5.34 mg/kg and 14.46 mg/kg and
0.18 mg/kg and 0.33 mg/kg, respectively (Supplementary Materials Table S1). The large
difference in initial residues may be caused by the differences in the application methods.
Chawla et al. [12] have shown that root irrigation, in which pesticides are directly applied
to the soil, results in high pesticide residues in the soil. During foliar spraying, most of the
fluopyram remained on the surface of carrot leaves, and only a small amount of fluopyram
was deposited in the soil [17]. It was observed that under the two application methods, the
fungicides did not readily dissipate from the field soils—the final residue amounts were
6.02 mg/kg and 13.83 mg/kg for root irrigation and 0.30 mg/kg and 0.60 mg/kg for foliar
spraying, respectively. These field studies were conducted in Beijing from July to August,
which is the rainy season. The water solubility of fluopyram is only 16 mg/L and the vapor
pressure is only 3.1 × 10−6 Pa at 25 ◦C [18]; therefore, fluopyram is less likely to volatilize
from moist soils [19], resulting in consistently high residual levels in soils.

2.3. Residues in the Edible Part (Carrot Root)

Residual levels of fluopyram in carrot roots were determined after applications
with the two methods at the standard (250.00 g a.i./ha) and double-dose treatments
(500.00 g a.i./ha), starting at 10 min after application. The residual amount of fluopy-
ram over time in carrot roots is shown in Figure 2. Initially, at 250.00 g a.i./ha, the av-
erage residues of fluopyram in carrot roots after irrigation and spray applications were
0.26 mg/kg and 0.13 mg/kg, respectively; at 500.00 g a.i./ha, the initial average residues
were 0.56 mg/kg and 0.213 mg/kg, respectively (Table 2). The residues of fluopyram in
carrot roots gradually increased over time after root irrigation, and the final residues were
0.60 mg/kg and 1.80 mg/kg, respectively (Table 2). In contrast, the residues of fluopyram
in carrot roots after spray treatment began to decrease on day 3, and the final residues were
both 0.05 mg/kg, respectively.
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Figure 2. Fluopyram residue concentration in carrot roots expressed as the average of three biological
replicates ± standard deviation.

Table 2. Residues of fluopyram in the edible part (carrot root).

Days after
Treatment

Residues ± SD (mg/kg)

Untreated
Control

Root Irrigation Foliar Spray

Treatment at
250.00 g a.i./ha

Treatment at
500.00 g a.i./ha

Treatment at
250.00 g a.i./ha

Treatment at
500.00 g a.i./ha

0
(10 min) ND 0.26 ± 0.01 0.56 ± 0.03 0.13 ± 0.01 0.213 ± 0.003

(2 h) ND 0.33 ± 0.05 0.75 ± 0.08 0.14 ± 0.01 0.24 ± 0.01
(6 h) ND 0.170 ± 0.004 0.30 ± 0.05 0.07 ± 0.03 0.38 ± 0.01
1 ND 0.41 ± 0.02 0.39 ± 0.01 0.23 ± 0.01 0.47 ± 0.04
2 ND 0.40 ± 0.02 0.67 ± 0.05 0.16 ± 0.02 0.36 ± 0.03
3 ND 0.37 ± 0.04 0.88 ± 0.03 0.19 ± 0.01 0.54 ± 0.03
5 ND 0.43 ± 0.01 0.62 ± 0.09 0.16 ± 0.02 0.27 ± 0.03
7 ND 0.16 ± 0.02 1.01 ± 0.10 0.17 ± 0.03 0.12 ± 0.02
9 ND 0.64 ± 0.06 0.84 ± 0.05 0.12 ± 0.01 0.11 ± 0.02

11 ND 0.32 ± 0.03 0.99 ± 0.01 0.10 ± 0.03 0.06 ± 0.01
15 ND 0.47 ± 0.04 0.67 ± 0.06 0.118 ± 0.002 0.09 ± 0.01
21 ND 0.30 ± 0.02 1.20 ± 0.04 0.06 ± 0.02 0.22 ± 0.02
28 ND 0.60 ± 0.05 1.80 ± 0.04 0.05 ± 0.01 0.05 ± 0.01

ND = not detected.

After root irrigation, the continuous increase in fluopyram concentration in the carrot
roots may be related to a high amount of fluopyram residues in the soil. Crops typically
absorb and accumulate pesticides from soil [16,20], and Lichtenstein et al. [21] reported
that pesticide residues in carrots increase with increasing pesticide concentrations in soil.
Thus, root crops such as carrots are more likely to absorb pesticides from the soil than
above-ground vegetables [21,22]. In terms of pesticide properties, fluopyram is a lipophilic
pesticide with an octanol–water partition coefficient (log Pow) of 3.3 (pH = 6.5), making
it more likely to accumulate in the rhizomes of crops [18,23]. Vargas-Perez et al. [13] also
reported that fluopyram is a persistent compound. Therefore, the authors concluded that
the lipophilic pesticide fluopyram is more likely to accumulate in root crops, such as carrots,
after root irrigation.

2.4. Residues in the Carrot Leaf

The initial residual concentration of fluopyram in carrot leaves was higher than that in
the edible part of carrot (carrot root) under both application methods. Under the standard
dose and double-dose treatments, the initial residues of fluopyram after root irrigation
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in the carrot leaves were 1.64 mg/kg and 3.37 mg/kg; the initial residues after spray
application were 12.62 mg/kg and 23.55 mg/kg (Table 3). The residues dissipated much
faster from carrot leaves than carrot roots under both application methods. Within only
7 days of application, 77–93% of the fluopyram had dissipated from leaves. On day 28,
fluopyram residues in leaves were 0.13 and 0.53 mg/kg after root irrigation and 1.10 mg/kg
and 1.44 mg/kg after spray application with the standard and double-dose treatments,
respectively. This may be due to the fact that exposed carrot leaves receive light, unlike the
deeply buried roots, and the photodegradation of pesticides on plant surfaces, especially
leaves, is a major route for pesticide dissipation [24].

Table 3. Residues of fluopyram in the carrot leaf.

Days after
Treatment

Residues ± SD (mg/kg)

Untreated
Control

Root Irrigation Foliar Spray

Treatment at
250.00 g a.i./ha

Treatment at
500.00 g a.i./ha

Treatment at
250.00 g a.i./ha

Treatment at
500.00 g a.i./ha

0
(10 min) ND 1.64 ± 0.05 3.37 ± 0.42 12.62 ± 0.78 23.55 ± 0.08

(2 h) ND 1.31 ± 0.11 2.80 ± 0.06 13.52 ± 0.22 25.29 ± 0.18
(6 h) ND 0.58 ± 0.03 1.25 ± 0.06 14.15 ± 0.18 27.48 ± 0.28
1 ND 0.51 ± 0.01 1.26 ± 0.14 11.45 ± 0.35 17.77 ± 0.14
2 ND 0.64 ± 0.22 1.28 ± 0.07 8.63 ± 0.27 17.53 ± 0.51
3 ND 1.45 ± 0.12 2.37 ± 0.18 9.32 ± 0.55 15.91 ± 0.55
5 ND 0.41 ± 0.01 1.03 ± 0.03 5.82 ± 0.26 11.72 ± 0.27
7 ND 0.31 ± 0.02 0.77 ± 0.08 1.37 ± 0.04 1.70 ± 0.03
9 ND 0.37 ± 0.02 0.91 ± 0.06 1.42 ± 0.08 1.76 ± 0.02

11 ND 0.49 ± 0.01 0.68 ± 0.03 1.55 ± 0.04 1.44 ± 0.11
15 ND 0.27 ± 0.01 0.73 ± 0.01 0.97 ± 0.21 1.26 ± 0.01
21 ND 0.16 ± 0.01 0.50 ± 0.01 0.12 ± 0.04 1.47 ± 0.06
28 ND 0.13 ± 0.01 0.53 ± 0.01 1.10 ± 0.03 1.44 ± 0.03

ND = not detected.

2.5. Half-Life (DT50)

Dynamic models of fluopyram in carrot samples following the two application meth-
ods are shown in Table 4. The dissipation of fluopyram from carrot roots after root ir-
rigation did not follow first-order kinetics. After root irrigation at 250.00 g a.i./ha and
500.00 g a.i./ha, the half-lives of fluopyram in leaves were 9.1 days and 14.4 days, respec-
tively, while the corresponding half-lives after spray application were 6.4 days and 5.5 days.
The half-lives of fluopyram in spray-treated carrot roots were 14.1 days and 11 days, respec-
tively, while the half-lives in irrigation-treated roots in this study were similar to cucumbers
from the same treatment in another study [12]. According to another report on a foliar spray
of fluopyram, the half-lives of fluopyram after the standard and double-dose treatments
in onions were 8.9 days and 9.1 days [19]. Matadha et al. [7] reported that single and
double-dose fluopyram half-lives in pomegranate fruit were 7.6 days and 8.6 days, while
the half-life of fluopyram in watermelon was 6.48 days [25]. The half-life of fluopyram is
affected by factors such as application dose, crop variety, and environmental factors (light,
temperature, pH value, and humidity), and the half-life of fluopyram in carrot roots under
the same treatment conditions was higher than that of the above crops [26].

2.6. Dietary Intake Risk Assessment of Fluopyram in Carrot

According to the food consumption habits of Chinese residents of different ages and
sex and the fluopyram residues detected in this study, dietary intake risk assessments of
parent fluopyram in carrots from the two application methods were carried out. Table 5
shows the results of the dietary intake risk assessment. Although the consumption of
vegetables increased with age and body weight, the dietary intake risk gradually decreased.
The dietary intake risk for children (2–12 years old) was significantly higher than any other
age group, and the dietary risk was higher for carrots treated by root irrigation than foliar
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spray. Luckily, all calculated risk quotients ranged from 8% to 40%, which is below 100%.
Therefore, these results indicate that fluopyram applied to carrots at the recommended
application rate by root irrigation poses a higher threat to consumers through dietary intake
than spray application, but both are within the acceptable range.

Table 4. Dynamic models of fluopyram in carrot samples from the two application methods.

Application Method Treatment Concentration Matrix Dynamic Equation Half-Life (d)

Root irrigation
250.00 g a.i./ha carrot root - -

carrot leaf Ct = 0.8736 e−0.076t 9.1

500.00 g a.i./ha carrot root - -
carrot leaf Ct = 1.6557 e−0.048t 14.4

Foliar spray
250.00 g a.i./ha carrot root Ct = 0.1963 e−0.049t 14.1

carrot leaf Ct = 9.108 e−0.108t 6.4

500.00 g a.i./ha carrot root Ct = 0.3059 e−0.063t 11
carrot leaf Ct = 15.868 e−0.125t 5.5

Table 5. The dietary risk assessment of fluopyram in carrot samples.

Age (Years) Sex
Body Weight

(kg) Fi(g/d)
NEDI (mg/kg bw) RQ (%)

Root Irrigation Foliar Spray Root Irrigation Foliar Spray

2–7 17.9 194.8 0.07 0.025 40 14
8–12 33.1 272.4 0.10 0.034 30 10

13–19
M 56.4 396.7 0.15 0.050 26 9
F 50 317.9 0.12 0.040 23 8

20–50
M 63 436.4 0.16 0.055 25 9
F 56 412.1 0.15 0.052 27 9

51–65
M 65 477.9 0.18 0.060 27 9
F 58 447 0.16 0.056 28 10

>65
M 59.5 413.3 0.15 0.052 25 9
F 52 364.1 0.13 0.046 26 9

M = male; F = female; Fi = the food consumption data of a certain agricultural product or food in China; NEDI =
national estimated daily intake; RQ = risk quotient.

3. Materials and Methods
3.1. Chemicals and Reagents

Fluopyram (purity > 99%) and fluopyram benzamide (purity > 98.7%) were both ob-
tained from Dr. Ehrenstorfer GmbH, Germany. A 41.7% fluopyram SC was procured from
Bayer Crop Science, Beijing, China. Ammonium formate and formic acid were acquired
from Thermo Fisher Scientific, Shanghai, China. Acetonitrile and methanol (chromato-
graphic grade) were obtained from Mreda Technology Co., Ltd., Beijing, China. Anhydrous
magnesium sulfate and sodium acetate were acquired from Sinopharm Chemical Reagent
Co., Ltd., Beijing, China. Nylon membrane filters measuring 0.22 µm were procured from
Agilent Technologies Inc., Santa Clara, CA, USA.

3.2. Preparation of Standard Solutions

Fluopyram and fluopyram benzamide were dissolved in acetonitrile to prepare
1000 mg/L standard stock solutions in 10 mL volumetric flasks and then diluted with
carrot and soil blank sample extracts (i.e., matrix) to make 0.00500 mg/L, 0.0100 mg/L,
0.0500 mg/L, 0.1000 mg/L, 0.5000 mg/L, and 1.00 mg/L matrix-matching working stan-
dard solutions. The stock standard solutions and working standard solutions were stored
in the dark at −20 ◦C.

3.3. Field Trial

Field trials were carried out in the Haidian District of Beijing from July to September
2021. In a 30 m2 plot area, a 41.7% fluopyram SC was applied to carrot fields by root
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irrigation and spray application. Pesticides were applied at the recommended dose of
250.00 g a.i./ha and at a double dose of 500.00 g a.i./ha when the carrot roots grew to
the fleshy swelling stage. Carrots without the application of pesticides served as controls.
The control carrots were separated from the treated carrots by a buffer zone. One kg of
normal-growing carrots and soils were collected at 10 min, 2 h, 6 h, 1 day, 2 days, 3 days,
5 days, 7 days, 9 days, 11 days, 15 days, 21 days, and 28 days after application, using
random sampling methods. After the sample was collected, the soil attached to carrot
roots was removed with a dry rag or soft-bristled brush, and then the leaves and roots
were separated and frozen in liquid nitrogen. Carrots and soil were stored at −20 ◦C until
testing.

3.4. Sample Preparation

The carrots samples were chopped into small pieces and roots were homogenized in a
homogenizer (Bear Electric Appliance Co., Ltd., Guangdong, China), while leaf samples
were homogenized with a TARGIN multi-tube vortexer (Beijing Targin Technology Co.,
Ltd., Beijing, China). Soil samples from the field were air-dried in the laboratory at room
temperature, powdered, and passed through a 2 mm sieve. The extraction of fluopyram
from carrot tissues and field soil was conducted as previously described [13,19]. To 10.00 g
carrot roots, carrot leaves and homogeneous soil samples 10 mL 1% acetic acid in acetonitrile
were added in triplicate. Next, the samples were vortexed for 2 min, and then 6.00 g
anhydrous magnesium sulfate and 1.50 g sodium acetate were added and dissolved by
vortex mixing for 2 min. Samples were then centrifuged at 5000 r/min for 5 min, and
the supernatant was filtered with a 0.22 µm nylon membrane and transferred to a vial for
analysis.

3.5. Analysis of Fluopyram and Fluopyram Benzamide

The analysis of fluopyram and fluopyram-benzamide from carrot tissues and field
soils after spray and root applications was carried out with an Agilent 6495 Liquid Chro-
matograph Triple Quadrupole Tandem Mass Spectrometer (LC-QQQ-MS/MS) (Agilent
Corporation, Santa Clara, CA, USA). Separation was carried out on a HALO 160A, ES-C18
chromatographic column (2.1 mm × 50 mm, 2 µm particle size, Advanced Materials Tech-
nology, Wilmington, DE, USA), with a flow rate of 0.3 mL/min, and column temperature
of 35 ◦C. The mobile phase consisted of 5 mmol/L ammonium formate containing 0.4%
formic acid as phase A and methanol as phase B, and the gradient program was as follows:
0–1.0 min, 25% B; 1.0–3.0 min, 25–95% B; 3.0–5.0 min, 95% B; 5–6 min, 100–25% B; and
6–7.5 min 25% B. The total running time was 9 min. The mass spectrometry parameters
were as follows: ion source: ion funnel, electrospray ionization source, and positive ion
mode; scanning mode and multiple reaction monitoring, the MRM conditions for the target
compounds are given in Table 6; gas temperature, 200 ◦C; gas flow, 15 L/min; nebulizer,
40 psi; sheath gas temperature, 350 ◦C; sheath gas flow, 12 L/min; and capillary voltage,
35 psi.

Table 6. Multiple reaction monitoring (MRM) conditions.

Name Molecular
Formula

Retention Time
(min)

Precursor Ion
(m/z)

Product Ion
(m/z)

Collision Energy
(V)

Fluopyram C16H11ClF6N2O 3.3 397
207 25
173 25

Fluopyram-
benzamide

C8H6ClF3NO 1.3 190
170 10
130 25
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3.6. Method Validation

The analytical method used for the analysis of fluopyram and fluopyram-benzamide
in carrot roots, leaves, and soils was evaluated by assessing the validation parameters, i.e.,
recovery, limit of detection (LOD), limit of quantification (LOQ), linearity, and precision.

The performance criteria developed for fluopyram and fluopyram benzamide were
validated against the literature [13]. Blank samples of each matrix served as controls. The
linearity of the standard calibration solutions prepared at concentrations of 0.005 mg/kg,
0.01 mg/kg, 0.05 mg/kg, 0.10 mg/kg, 0.50 mg/kg, and 1.00 mg/kg was investigated, and
the correlation coefficient (R2) was calculated. The LODs and LOQs were determined based
on the signal-to-noise (S/N) method. The LOD and LOQ were calculated through an S/N
of 3 and s S/N of 10 in the spiked recovery experiment, respectively [27,28].

3.7. Calculation of Half-Life

The degradation of fluopyram in soil, carrot root, and carrot leaves over time was
evaluated by a first-order kinetic equation [29]. It was calculated by the following formula:
Ct = C0e − kt and t1/2 = ln 2/k, in which Ct is fluopyram residue concentration at time t, C0
is the initial concentration of fluopyram (mg/kg), k denotes the rate constant of degradation,
and t1/2 represents the half-life of fluopyram [30].

3.8. Dietary Risk Assessment

The dietary risk assessment combined the national estimated daily intake (NEDI) with
the risk quotient (RQ). NEDI and RQ are calculated by the following equations [31]:

NEDI = ∑ (STMRi × Fi)/bw (1)

RQ% = NEDI/ADI × 100% (2)

where STMRi (mg/kg) represents the supervised trials’ median residue values of fluopyram
in carrots from China. If a suitable STMR was not available, the corresponding MRL could
be used instead; Fi refers to the food consumption data of a certain agricultural product
or food in China [32]; bw (kg) is the average body weight for a population age group [33],
and RQ is the chronic risk quotient determined by comparing the NEDI and ADI values.
The higher the RQ value, the higher the pesticide residue; RQ > 100% means that the food
being evaluated has an unacceptably high health risk to consumers, and the ADI is the
acceptable daily intake (0.01 mg/kg bw) [34].

4. Conclusions

The residue levels of fluopyram in carrot and soil following root irrigation and spray
application were analyzed by LC-QQQ-MS/MS, and fluopyram-benzamide, the main
metabolite of fluopyram, was not detected during the entire field trial. In the root irrigation
field trial, the initial deposition of fluopyram declined in the order of soil > carrot leaves >
carrot roots for treatments at 250.00 g a.i./ha and 500.00 g a.i./ha; in the spray field trail, the
initial deposition of fluopyram decreased in the order of carrot leaves > soil > carrot roots.
Among the two application methods, the final residues of fluopyram in the edible part
of carrot (carrot root) after root irrigation were greater than those after spray application.
The final residues of fluopyram in carrot roots were 0.60 mg/kg and 1.80 mg/kg after root
irrigation application, while spray application was only 0.05 mg/kg. Most importantly, the
provisional maximum residue limit (MRL) of fluopyram in carrots in China is 0.4 mg/kg,
and it was obvious that the final residues of fluopyram in carrot roots were much higher
than the MRL after root irrigation. However, the RQ values showed that the dietary risk
of fluopyram in carrots for consumers from the two applications were at acceptable levels
(RQ < 100%). This study revealed the degradation and residual distribution of fluopyram
in carrots. These data will guide the correct and safe use of fluopyram for carrot crops.
However, the metabolic mechanism of fluopyram in carrots is still unclear, and the transfer
of fluopyram in carrots needs to be further studied.
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