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Background: Lung cancer, especially lung adenocarcinoma (LUAD) with high incidence,
seriously endangers human life. The immune microenvironment is one of the malignant
foundations of LUAD, but its impact at the molecular level is incompletely understood.

Method: A total of 34 LUAD samples from Xiangya Hospital were collected for immune
oncology (IO) profiling. Univariate Cox analysis was performed to profile prognostic
immune genes based on our immune panel sequencing data. The least absolute
shrinkage and selection operator (LASSO) algorithm was applied to construct a risk
signature. The cut-off threshold of risk score was determined using X-tile software.
Kaplan–Meier survival curves and receiver operating characteristic (ROC) curves were
employed to examine the performance of this risk signature for predicting prognosis. The
immune infiltration was estimated using a single-sample gene set enrichment analysis
(ssGSEA) algorithm.

Result: Thirty-seven immune genes were profiled to be significantly correlated with the
progression-free survival (PFS) in our cohort. Among them, BST2, KRT7, LAMP3, MPO,
S100A8, and TRIM29 were selected to construct a risk signature. Patients with a higher
risk score had a significantly shorter PFS (p � 0.007). Time-dependent ROC curves
indicated that our risk signature had a robust performance in accurately predicting
survival. Specifically, the 6-, 12-, and 18-month area under curve (AUC) was 0.800,
0.932, and 0.912, respectively. Furthermore, the risk signature was positively related to N
stage, tumor stage, and tumor malignancy. These results were validated using two
external cohorts. Finally, the risk signature was significantly and uniquely correlated
with abundance of neutrophil.

Conclusion: Our study revealed an immune panel-based signature that could predict the
prognosis of LUAD patients and was associated with the infiltration of neutrophils.
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INTRODUCTION

Lung cancer is nowadays the leading cause of cancer-related
morbidity and mortality worldwide, accounting for nearly 20% of
cancer deaths (Bray et al., 2018). Approximately 85% of patients
have a group of histological subtypes collectively termed as non-
small cell lung cancer (NSCLC), of which lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) are the most
common subtypes (Herbst et al., 2018). Since they are usually
asymptomatic at an early stage, most lung cancers (61%) are
diagnosed at stage III or IV, with only 21% at stage I. More
importantly, advanced lung cancer confers an extremely poor
prognosis. In brief, the 5-year relative survival rate for stage I
patients is 57% and decreases to 29% for patients with stage III
lung cancers (Miller et al., 20192019).

Although improvements in surgical techniques and
chemoradiotherapy, as well as individualized treatment regimens
with tyrosine kinase inhibitors (TKIs) as the mainstay, have led to
inspiring clinical advances (Pao and Girard, 2011; Miller et al.,
20192019), there are still some populations that exhibit limited
responses or acquire resistance. In addition, previous studies have
explored more factors to predict the patient’s prognosis in a more
accurate manner, such as vascular spreading (Gabor et al., 2004) and
lymphatic spreading (Popper, 2016). But the prediction of metastasis
as well as the patient’s prognosis at the clinical level is far from
satisfactory. Thus, how to predict patient prognosis (herein
specifically refers to the metastasis of lung cancer) is an urgent
issue that remains unaddressed for clinicians. Therefore, we need to
focus on the biological process and intrinsicmalignant basis of LUAD
at the molecular level in the hope of establishing good prognostic
indicators or targeting regimens.

In 2018, the immune landscape of cancer has been depicted by
conducting a comprehensive immunogenomic analysis of more
than 10,000 samples across 33 cancer types (Thorsson et al.,
2018). Samples could be well clustered based on the immune
profiles and exhibit different molecular profiles and distinct
survivals. Since then, efforts have been devoted to analyzing
tumor–immune cell interaction in specific malignancies at the
transcriptional level. However, we noticed that although several
studies have applied bioinformatics in the context of lung cancers,
most of them focused on publicly available databases such as
classical The Cancer Genome Atlas (TCGA) database, making the
conclusions limited and ungeneralizable.

It is well known that cancer cells can functionally construct a
tumor microenvironment (TME) by regulating the
reprogramming of surrounding cells, which play a decisive
role in tumor survival and progression. Immune cells are
important components of TME and play a critical role in this
process. Both innate immune cells (macrophages, neutrophils,
dendritic cells, and natural killer cells) and adaptive immune cells
(T and B cells) contribute to tumor progression within the TME
context. Dialogs between cancer cells and surrounding immune
infiltrates ultimately result in a complexed network that promotes
tumor growth and metastasis (Hinshaw and Shevde, 2019).
Particularly, the TME has largely affected the efficacy of
immunotherapies based on immune checkpoint blockade (He
et al., 2015; Sharma et al., 2017; Herbst et al., 2018), which

highlights the importance and the urgent need of deeply
understanding how TME orchestrates the therapeutic and
prognostic outcomes. Therefore, we employed our sequencing
data to employ the prognostic immune genes and construct a risk
signature for prognosis prediction and potential therapy target.

MATERIALS AND METHODS

Data Extraction
We enrolled 34 LUAD samples in our institute fromDecember 2014
to December 2016. The patients who met the following inclusion
criteria were included: 1) postoperative pathology confirmed
advanced lung cancer, and the pathological stage was T1–4, N1–2,
M0; 2) no neoadjuvant therapywas administrated before surgery; and
3) disease progression events such as local recurrence or distant
metastasis occurred during postoperative follow-up. Finally, a total of
34 corresponding samples were collected, and these samples were
subsequently sequenced by Genecast Biotechnology, Beijing, China.
Specifically, RNA immune oncology (IO) profiling was performed to
quantify 395 IO associated genes related to tumor markers, basic
signaling pathways, tumor-specific antigens, immune responses,
infiltrating immune cells, and housekeeping (HK) genes in human
solid cancers (Supplementary Table S1).

All of the patients (or their family representatives) have signed
written inform consent, and this study was approved by the Ethics
Committee of Xiangya Hospital, Central South University. The
clinical information of included samples is summarized in
Supplementary Table S2.

RNA-seq data and clinical information were extracted for
validation from TCGA (https://portal.gdc.cancer.gov/) and the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo) databases. A total of 510 and 443 patients with LUAD were
extracted from TCGA-LUAD and GSE68465 datasets (Shedden
et al., 2008), respectively.

Identification of Prognostic Immune Genes
Univariate Cox analysis was performed on immune genes
obtained in our immune panel sequencing data to profile
those with significant correlations with progression-free
survival (PFS) of patients with LUAD.

Construction and Validation of Risk
Signature
The least absolute shrinkage and selection operator (LASSO)
algorithm was applied to refine the most representative of the
prognostic immune genes and assign them corresponding
coefficients (Boyd et al., 2011). The genes at the smallest lambda
value were included to build the signature. And the risk score for each
individual in the training and validation cohorts was calculated using
the following formula: Risk score � ∑

n

I
(βi × xi). nwas the number of

genes. xi represented themRNA expression level of eachmodel gene,
and βi meant the coefficient.

The cut-off threshold to divide patients into high-risk and low-
risk groups was determined using X-tile software (Camp et al.,
2004). Kaplan–Meier survival curves and time-dependent
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receiver operating characteristic (ROC) curves were employed to
examine the performance of this risk signature for predicting
prognosis. Furthermore, the relationship between risk score and
clinicopathological features, including American Joint
Committee on Cancer (AJCC) tumor stage and degree of
tumor differentiation, was also assessed.

Immune Infiltration
Gene set variation analysis (GSVA) analysis was conducted using
the “GSVA” R package (Hänzelmann et al., 2013). The immune

infiltration of multiple cell types was estimated using single-
sample gene set enrichment analysis (ssGSEA) algorithm.

Statistical Analysis
Data analysis and visualization were conducted using GraphPad
Prism version 8.0.1 and R language version 3.6.3. The cut-off
value for risk score was determined using X-tile software.
Student’s t-test and Wilcoxon test were used to compare the
difference between two groups. One-way analysis of variance
(ANOVA) test and Kruskal–Wallis test were used to compare the

FIGURE 1 | Construction of risk signature to predict the metastasis of lung adenocarcinoma. (A) LASSO analysis of prognostic genes with the minimum lambda
value. (B) The coefficient of six genes to construct the risk signature. (C) Risk score of each sample was calculated based on the coefficient and expression of six genes.
(D) Heatmap of the expression of six genes in samples with increasing risk score. (E) Kaplan–Meier analysis of high-risk and low-risk patients. (F) Time-dependent ROC
analysis of risk score to predict the 6-, 12-, and 18-month survival. (G–J) The risk score in tumors with different T stages (G), N stages (H), AJCC stages (I), and
differentiation degree (J).
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difference among more than two groups. Kaplan–Meier analysis
was used for survival analysis. A p-value <0.05 was considered
statistically significant.

RESULTS

Immune Gene-Based Risk Signature
Predicts Prognosis and Correlates With
Malignant Clinical Features
A total of 37 genes were profiled to be significantly correlated with
the PFS in our cohort involving 34 LUAD samples

(Supplementary Table S3). And six of them, including bone
marrow stromal cell antigen 2 (BST2), keratin 7 (KRT7),
lysosomal associated membrane protein 3 (LAMP3),
myeloperoxidase (MPO), S100 calcium binding protein A8
(S100A8), and tripartite motif containing 29 (TRIM29), were
selected by the LASSO model to construct a risk signature
(Figure 1A). Among them, S100A8, TRIM29, MPO, and KRT7
were significant protective factors for LUAD patients, while
LAMP3 and BST2 were risk factors in our cohort
(Supplementary Figure S1). More importantly, these model
genes exhibited consistent prognostic values in two external
validation cohorts (Supplementary Figure S2). Their
coefficients are displayed in Figure 1B and the distributions of

FIGURE 2 | Validation of risk signature in two independent datasets. (A,B) Risk score was calculated in the TCGA (A) and GSE68465 (B) datasets. (C,D) Time-
dependent ROC analysis of risk score to predict the 6-, 12-, and 18-month survival in TCGA (C) and GSE68465 (D) datasets. (E,F) Kaplan–Meier analysis of
progression-free survival of high-risk and low-risk patients in TCGA (E) and GSE68465 (F) datasets. (G–J) The risk score in tumors with different T stages, and N stages
in two datasets. (K) The risk score in tumors with different differentiation degrees in GSE68465.
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FIGURE 3 | Association between risk score and immune infiltration. (A–C) The abundance of different immune cells in the training cohort (A), TCGA (B), and
GSE68465 (C) datasets. (D–I) The abundance of neutrophil in high-risk and low-risk patients and its correlation with risk score in training cohort (D,E), TCGA (F,G), and
GSE68465 (H,I) datasets.
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risk scores and PFS status were illustrated in Figure 1C. The
expression pattern of BST2 as well as LAMP3 was opposite to that
of the risk score, and conversely, the same trend was observed for
the four remaining model genes and the risk score (Figure 1D).
Importantly, patient prognosis differed between the two risk
groups, as patient with a higher risk score significantly
demonstrated shorter PFS (Log-rank p � 0.007; Figure 1E).
Furthermore, time-dependent ROC curves indicated that our
risk signature had a robust performance in accurately
predicting survival. Specifically, the 6-, 12-, and 18-month area
under curve (AUC) was 0.800, 0.932, and 0.912, respectively
(Figure 1F). Regarding clinical characteristics, risk score did not
correlate with tumor T stage but was positively related to N stage,
AJCC stage, and tumor malignancy (as negatively related to the
degree of tumor differentiation). (Figures 1G–J).

Validation of the Risk Signature Using
Independent Cohorts With Large Sample
Size
The clinical and RNA sequencing data of TCGA-LUAD and
GSE68465 cohorts with 510 and 443 LUAD patients were
extracted for external validation. Similarly, patients with lower
risk scores presented with longer PFS time than those with higher
risk scores (Figures 2A, B). The performance of our risk
signature in predicting prognosis was still excellent under
validation, as the AUC was all above 0.6 in two cohorts
(Figures 2C, D). Besides, Kaplan–Meier analyses also revealed
significantly poorer outcomes in the high-risk groups (TCGA-
LUAD log-rank p � 0.037; GSE68465 log-rank p � 0.024; Figures
2E, F). There was no significant correlation between risk
signature and tumor T stage, which was consistent with the
result in our training cohort (Figures 2G, H). And LUAD
patients with higher AJCC N stage and lower degree of tumor
differentiation had higher risk scores in both validation cohorts
(Figures 2I–K).

Risk Signature Correlates With Infiltrating
Neutrophil in Tumor Microenvironment
Using ssGSEA algorithm, we obtained the abundances of 24
infiltrating cell types (Supplementary Table S4). Significant and
unique correlation was detected between our risk signature and
neutrophil (Figures 3A–C), as LUAD samples in the high-risk
group possessed higher abundance of neutrophil than those in the
low-risk group (Figures 3D, F, H). Moreover, the risk score was
correlated with the abundance of neutrophil in the training
cohort (p � 0.0027; Figure 3E), TCGA-LUAD cohort
(p < 0.0001; Figure 3G), and GSE68465 cohort (p < 0.0001;
Figure 3I). However, the risk score is not relevant to other
types of immune cells.

DISCUSSION

Prodigious effort has been devoted to explore the underlying
mechanisms of lung cancer at the molecular level, but the current

understanding of TME and prognostic factors is still far from
satisfactory. In this study, we first screened out the significant
prognostic gene sets for LUAD in immune panel profiles and
further investigated them. We constructed a novel risk signature
using representative immune genes with significant prognostic value
for LUAD. Gratifyingly, our six-gene risk signature allowed robust
risk stratification as high-risk patients had a significantly worse
prognosis (p � 0.007). And this model presented a predictive power
with high specificity (AUC > 0.85). To our surprise, the trained
model showed higher accuracy of 12- and 18-month survival
prediction compared with the result from the 6-month survival
prediction, and the superiority was kept when the prediction was
done using the test sets. This is likely because the immune-related
genetic characteristics have increasingly amplified with certain and
consistent proportions during cancer progression.

Events for PFS refer to tumor progression (recurrence,
enlargement, or metastasis) or death from any cause. And for
LUAD, the length of PFS strongly depends on patients’metastatic
events. Our risk signature was found to be significantly correlated
with tumor N stage, AJCC stage, and tumor malignant property,
which are independent predictors of lung cancer metastasis (Lim
et al., 2018). This also, to some extent, explains the sound ability
of our model in predicting metastasis.

A key finding in our study is that the established risk signature
is significantly correlated with the abundance of neutrophil in all
the cohorts. Tumor-associated neutrophils predict poor overall
survival in many cancer types, with their location in the tumor
and specific markers being important deferential determinants
(Shaul and Fridlender, 2019). For example, massive expression of
inflammation-related genes is transcriptionally activated by
epigenetic remodeling in advanced clear cell renal cell
carcinoma, which is related to metastasis in a neutrophil-
dependent manner (Nishida et al., 2020). Meanwhile,
neutrophils in lung mesenchyme are essential for breast cancer
lung metastasis (Wculek and Malanchi, 2015; Li et al., 2020).
More importantly, using single-cell RNA sequencing (scRNA-
seq) to map tumor-infiltrating myeloid cells in non-small-cell
lung cancer patients, neutrophils were found to be a key regulator
of cancer growth across individuals and species (Zilionis et al.,
2019). Combining these findings, we propose that our risk
signature correlates with neutrophil population intrinsically
and reflects the risk of metastasis in LUAD patients.

As for the functions of proteins encoded by signature genes,
KRT7 is found to be tightly linked to cancer metastasis in
colorectal cancer (Yu et al., 2017) and breast cancer (Chen
et al., 2021). LAMP3 is implied to be involved in metastasis in
esophageal squamous cell carcinoma (Huang et al., 2020) and
uterine cervical cancer (Kanao et al., 2005) but in different
pathways. Neutrophils play a vital role in both chemically
mediating inflammatory response through MPO and
biologically promoting metastasis during inflammation
triggered by the environmental stimuli (Tang et al., 2020).
Moreover, S100A8 can induce the activation of MPO, and
novel monoclonal antibody against it efficiently prevents lung
cancer metastasis (Kinoshita et al., 2019). TRIM29 is a selective
regulator of the activation of alveolar macrophages and the
production of proinflammatory cytokines in the lungs and is
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found to mediate lung squamous cell carcinoma cell metastasis by
regulating autophagic degradation of E-cadherin.

There are some limitations in this study. First, although we
validated the results using external cohorts, the sample size in our
cohort is small, reducing the credibility and generalizability of the
conclusion. Second, there is no experiment verification of our
proposal, for instance, the relationship between model genes and
neutrophil. Third, we cannot demonstrate that the affected survival is
due to neutrophil population, which requires further in vivo analysis.

CONCLUSION

Using the immune panel sequencing of our samples, we profiled
prognostic immune genes and constructed a risk signature, which
confers an excellent and robust predictive power. And this
signature is associated with tumor stage, malignant property,
and, more importantly, the abundance of neutrophil.
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