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ABSTRACT Pseudomonas aeruginosa and Staphylococcus aureus often cause chronic,
recalcitrant infections in large part due to their ability to form biofilms. The biofilm
mode of growth enables these organisms to withstand antibacterial insults that
would effectively eliminate their planktonic counterparts. We found that P. aerugi-
nosa supernatant increased the sensitivity of S. aureus biofilms to multiple antimicro-
bial compounds, including fluoroquinolones and membrane-targeting antibacterial
agents, including the antiseptic chloroxylenol. Treatment of S. aureus with the anti-
septic chloroxylenol alone did not decrease biofilm cell viability; however, the com-
bination of chloroxylenol and P. aeruginosa supernatant led to a 4-log reduction in
S. aureus biofilm viability compared to exposure to chloroxylenol alone. We found
that the P. aeruginosa-produced small molecule 2-n-heptyl-4-hydroxyquinoline N-
oxide (HQNO) is responsible for the observed heightened sensitivity of S. aureus to
chloroxylenol. Similarly, HQNO increased the susceptibility of S. aureus biofilms to
other compounds, including both traditional and nontraditional antibiotics, which
permeabilize bacterial membranes. Genetic and phenotypic studies support a model
whereby HQNO causes an increase in S. aureus membrane fluidity, thereby improv-
ing the efficacy of membrane-targeting antiseptics and antibiotics. Importantly, our
data show that P. aeruginosa exoproducts can enhance the ability of various antimi-
crobial agents to kill biofilm populations of S. aureus that are typically difficult to
eradicate. Finally, our discovery that altering membrane fluidity shifts antimicrobial
sensitivity profiles of bacterial biofilms may guide new approaches to target persis-
tent infections, such as those commonly found in respiratory tract infections and in
chronic wounds.

IMPORTANCE The thick mucus in the airways of cystic fibrosis (CF) patients predis-
poses them to frequent, polymicrobial respiratory infections. Pseudomonas aerugi-
nosa and Staphylococcus aureus are frequently coisolated from the airways of indi-
viduals with CF, as well as from diabetic foot ulcers and other wounds. Both
organisms form biofilms, which are notoriously difficult to eradicate and promote
chronic infection. In this study, we have shown that P. aeruginosa-secreted factors
can increase the efficacy of compounds that alone have little or no bactericidal ac-
tivity against S. aureus biofilms. In particular, we discovered that P. aeruginosa exo-
products can potentiate the antistaphylococcal activity of phenol-based antiseptics
and other membrane-active drugs. Our findings illustrate that polymicrobial interac-
tions can dramatically increase antibacterial efficacy in vitro and suggest that alter-
ing membrane physiology promotes the ability of certain drugs to kill bacterial
biofilms— knowledge that may provide a path for the discovery of new biofilm-
targeting antimicrobial strategies.
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Bacterial biofilms are the underlying cause of many chronic, difficult-to-treat infec-
tions. The biofilm lifestyle confers high-level tolerance to antibiotics and antisep-

tics, which is reflected by the requirement of 100- to 1,000-times-higher concentrations
of these compounds to treat biofilms compared to their planktonic counterparts (1). As
a result, it has proven difficult to find treatments that effectively eradicate biofilms
(2–4).

Studies assessing biofilm antibiotic and antiseptic tolerance have typically been
performed with single-species biofilms. While such single-species communities are
commonly associated with implant infections (5), many infections are caused by
polymicrobial biofilms, including respiratory infections, otitis media, urinary tract infec-
tions, and infections of both surgical and chronic wounds (6–19). Emerging evidence
suggests that growth in these mixed microbial communities can alter antimicrobial
tolerance profiles, often in unexpected ways (20–40), but the mechanism(s) underlying
such altered tolerance is often poorly understood, with some exceptions. For example,
a previous study from our group showed that secreted products of Pseudomonas
aeruginosa could enhance biofilm tolerance of Staphylococcus aureus to vancomycin by
100-fold, likely via interfering with the function of the electron transport chain and
slowing growth of S. aureus (37).

P. aeruginosa and S. aureus coexist in multiple infection settings, and both form
biofilms that can be difficult to eradicate. P. aeruginosa and S. aureus are two of the
most prevalent respiratory pathogens in patients with cystic fibrosis (CF) and are both
associated with poor lung function and clinical outcomes in these patients (41–45). CF
patients who are coinfected with P. aeruginosa and S. aureus have worse outcomes than
those who are infected with either organism alone (46–50). In addition, P. aeruginosa
and S. aureus are often coisolated from chronic wounds, including difficult-to-treat
diabetic foot ulcers (51, 52). Furthermore, in vitro evidence suggests that P. aeruginosa
and S. aureus coinfection delays wound healing (53).

In this study, we have identified several compounds that alone have little activity
against S. aureus biofilms, but when combined with secreted products from P. aerugi-
nosa, these agents can effectively decrease S. aureus biofilm viability. We propose a
model whereby the P. aeruginosa exoproduct 2-n-heptyl-4-hydroxyquinoline N-oxide
(HQNO) interacts with the S. aureus cell membrane, which leads to increased membrane
fluidity and potentiates the ability of membrane-active compounds to more effectively
target S. aureus biofilms.

RESULTS
P. aeruginosa supernatant increases S. aureus sensitivity to multiple antibiotic

compounds. In a previous study, we found that P. aeruginosa exoproducts decrease
the efficacy of vancomycin against S. aureus biofilms (37). To test whether P. aeruginosa
might impact S. aureus sensitivity to other antibiotics, we screened Biolog Phenotype
MicroArray panels for changes in S. aureus antibiotic sensitivity in the presence versus
absence of P. aeruginosa cell-free culture supernatant. Specifically, we tested Micro-
Array panels 11 to 20, which contain 240 antibacterial compounds. We identified many
compounds that became either less effective, as reported previously (37), or, as we
show here, more effective at killing S. aureus when in the presence of P. aeruginosa
exoproducts (see Table S1 in the supplemental material). Increased efficacy of a drug
was defined as at least a 10-fold decrease in CFU between S. aureus exposed to the
antibiotic alone and S. aureus exposed to P. aeruginosa supernatant plus the antibiotic.
Of the 240 compounds tested, 107 became more effective against S. aureus biofilm
populations in the initial screen (Table S1).

Among the several classes of antimicrobial agents that became more effective at
killing S. aureus in the presence of P. aeruginosa supernatant are nucleic acid synthesis
inhibitors, membrane-active antibiotics, and antiseptics. Additionally, we identified
other compounds not typically used to treat bacterial infections that became more
effective at decreasing S. aureus viability, including anticholinergic agents, antipsy-
chotic drugs, and ion channel blockers (Table S1).
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P. aeruginosa supernatant increases S. aureus biofilm sensitivity to chloroxy-
lenol. In the experiments described above using the Biolog Phenotype MicroArray
panels, the compounds tested were added at the same time as the microbes were
inoculated into the medium; thus, there was limited time for the bacteria to form a
biofilm before exposure to the candidate agents. Therefore, we next tested whether P.
aeruginosa supernatant could increase the efficacy of the compounds we identified in
the Biolog screen against preformed early (6-h) S. aureus biofilms. In these experiments,
the biofilm of S. aureus Newman was allowed to form for 6 h, and fresh medium
supplemented with the indicated compound and/or P. aeruginosa supernatant was
added to this preformed biofilm. This method is what we refer to as the biofilm
disruption assay, described in more detail in the supplemental materials and methods
(Text S1). Previously, we showed that by 6 h postinoculation (p.i.), the adherent
population of S. aureus Newman cells is tolerant to vancomycin; at this time point, there
is a difference of 3 logs between the cell viability of the biofilm population and that of
the planktonic population for a given dose of antibiotic (37). Thus, these communities
have one of the key phenotypic traits of a biofilm.

Of the 106 compounds that became more effective at killing S. aureus biofilms in the
original screen, 42 compounds were tested against preformed early (6-h) S. aureus
biofilms, which were representatives of a variety of drug classes (Table S1). Out of the
42 compounds tested, 6 became more effective at killing preformed S. aureus biofilms
when in the presence of P. aeruginosa supernatant (Table S1).

We found that P. aeruginosa supernatant increased the sensitivity of early (6-h) S.
aureus biofilms to the topical antibiotic chloroxylenol (Fig. 1). Similarly to other phenol-
based antiseptics, this compound impacts bacterial cell membranes, leading to in-
creased fluidity and membrane permeability (54–56). Alone, chloroxylenol displayed
modest activity against S. aureus biofilms. Strikingly, the ability of the antiseptic
chloroxylenol to kill early S. aureus Newman biofilms was enhanced by 4 logs compared
to the activity of chloroxylenol alone when combined with P. aeruginosa-secreted
products (Fig. 1). We evaluated whether this phenotype is specific to the Newman strain
or a more general phenomenon by testing multiple S. aureus laboratory strains and
clinical isolates— both methicillin sensitive and methicillin resistant (Table S2). In all
cases, we observed that P. aeruginosa supernatant dramatically increased the efficacy
of chloroxylenol against S. aureus biofilms (Fig. 1). Chloroxylenol is dissolved in ethanol;
we confirmed that the volume of ethanol used does not decrease S. aureus viability in
either the presence or absence of P. aeruginosa supernatant (Fig. S1A). Moreover, the
impact of supernatant on S. aureus sensitivity to chloroxylenol could be observed as
early as 3 h after addition of the compounds to a 6-h-old biofilm, and the reduction in

FIG 1 P. aeruginosa supernatant increases S. aureus biofilm sensitivity to chloroxylenol. Biofilm disrup-
tion assays on plastic were performed with the specified S. aureus clinical isolate, P. aeruginosa PA14
supernatant (Pa sup), and chloroxylenol at 100 �g/ml. Biofilms were grown for 6 h and exposed to the
above treatments for 18 h, and S. aureus biofilm CFU were determined. Each column displays the average
from two biological replicates, each with three technical replicates. Error bars indicate standard deviation
(SD). Sa, S. aureus; bd, below detection; ns, not significant; **, P � 0.01; ***, P � 0.001, by ordinary
one-way ANOVA and Bonferroni’s multiple-comparison posttest.
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viability continued for 24 h posttreatment, wherein the assay was reaching its limit of
detection (Fig. S1B).

P. aeruginosa supernatant increases the ability of chloroxylenol to eradicate
difficult-to-treat S. aureus biofilms. We then determined whether P. aeruginosa could
enable chloroxylenol to kill especially difficult-to-treat S. aureus biofilms. S. aureus
grown in anoxia and respiration-deficient S. aureus small colony variants (SCVs) both
exhibit high tolerance to many classes of antibiotics (57–59), likely because the bacteria
need to be actively growing in order for many antibacterial compounds to be effective.
Depending on the antibiotic class, either the antibiotic target needs to be produced or
electron transport is required for drug uptake (57, 60), but membrane-targeting agents
are an exception; the target is present whether or not the organism is actively growing
(61). Indeed, P. aeruginosa supernatant increased the efficacy of chloroxylenol against
S. aureus Newman biofilms to similar degrees in anoxia and normoxia (Fig. 2A).

To test whether the combination of P. aeruginosa supernatant and chloroxylenol is
effective against biofilm-grown S. aureus SCVs, we used an S. aureus Col strain that has
a mutation in hemB, a gene involved in hemin biosynthesis. The S. aureus hemB mutant
is defective in electron transport and has the typical characteristics of clinical SCVs (62).
We observed that P. aeruginosa supernatant enhanced chloroxylenol’s activity against
the Col hemB mutant as well as the parental strain (Fig. 2B).

Furthermore, we tested whether more mature S. aureus biofilms could be effectively
targeted by the P. aeruginosa supernatant-chloroxylenol combination. When we grew
S. aureus Newman biofilms for 24 h before exposure to the combination treatment, we
observed a striking 4-log-fold enhancement of chloroxylenol’s antimicrobial activity
(Fig. 2C), similar to what was seen for 6-h-grown biofilms (Fig. 1).

The P. aeruginosa exoproducts HQNO and siderophores increase S. aureus
biofilm and planktonic sensitivity to chloroxylenol. To explore the mechanism
underlying P. aeruginosa supernatant-mediated enhancement of chloroxylenol’s anti-
staphylococcal activity, we sought to identify P. aeruginosa mutants that were unable
to increase the sensitivity of S. aureus Newman biofilms to this drug. Previously, we
showed that 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) and siderophores contrib-
ute to the ability of P. aeruginosa to protect S. aureus from vancomycin (37). Thus, we
tested P. aeruginosa PA14 strains with mutations in genes encoding components of the
Pseudomonas quinolone signal (PQS) quorum sensing system (pqsA, pqsH, and pqsL)

FIG 2 P. aeruginosa supernatant enhances the ability of chloroxylenol to kill difficult-to-treat S. aureus biofilms. (A) Biofilm disruption
assays on plastic were performed with S. aureus (Sa) Newman, P. aeruginosa PA14 supernatant (Pa sup), and chloroxylenol (Chlor) at
100 �g/ml under normoxic or anoxic conditions. Biofilms were grown for 6 h and exposed to the above treatments for 18 h, and S. aureus
biofilm CFU were determined. (B) Biofilm disruption assays on plastic were performed with S. aureus (Sa) Col parental strain or hemB
mutant, supernatants from wild-type P. aeruginosa PA14 and the ΔpqsL ΔpvdA ΔpchE mutant (Pa ΔΔΔ sup), and chloroxylenol (Chlor) at
100 �g/ml. Biofilms were grown for 6 h and exposed to the above treatments for 18 h, and S. aureus biofilm CFU were determined. (C)
Biofilm disruption assays on plastic were performed with S. aureus (Sa) Newman, supernatants from wild-type P. aeruginosa PA14 and the
ΔpqsL ΔpvdA ΔpchE mutant (Pa ΔΔΔ sup), and chloroxylenol (Chlor) at 100 �g/ml. Biofilms were grown for 24 h and exposed to the above
treatments for 24 additional hours, and S. aureus biofilm CFU were determined. Each column displays the average from three biological
replicates, each with three technical replicates. Error bars indicate standard deviations. bd, below detection; ns, not significant; *, P � 0.05;
**, P � 0.01; ***, P � 0.001, by ordinary one-way ANOVA and Tukey’s multiple-comparison posttest.
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and biosynthesis of the siderophores pyoverdine (pvdA) and pyochelin (pchE). Super-
natants from P. aeruginosa PA14 ΔpqsA, ΔpqsH, ΔpqsL, and ΔpvdA ΔpchE mutants each
had a defect in the ability to increase S. aureus Newman biofilm sensitivity to chlo-
roxylenol relative to the wild-type P. aeruginosa PA14 (Fig. S2A and B).

Additionally, we tested P. aeruginosa PA14 strains with mutations in genes encoding
the following secreted products: hydrogen cyanide (hcnA and hcnB), LasA protease
(lasA), elastase (lasB), and rhamnolipids (rhlA). Supernatants from these mutants re-
tained the ability to increase the sensitivity of S. aureus biofilms to chloroxylenol
(Fig. S2A and B).

To investigate whether HQNO, pyoverdine, and pyochelin all contributed to the
phenotype, we tested whether the supernatant from P. aeruginosa strains with muta-
tions in the genes encoding all three factors was deficient in enhancing chloroxylenol’s
activity against S. aureus. Indeed, supernatant from the P. aeruginosa PA14 ΔpqsL ΔpvdA
ΔpchE mutant (designated the ΔΔΔ mutant) was unable to increase the sensitivity of S.
aureus Newman biofilms to chloroxylenol (Fig. 3A and Fig. S2B). Supernatant from the
P. aeruginosa PA14 ΔpqsL ΔpvdA ΔpchE mutant was unable to potentiate the ability of
chloroxylenol to kill difficult-to-treat SCVs and 24-h-grown biofilms (Fig. 2B and C; Pa
ΔΔΔ sup). Similarly to the biofilm population, we observed that P. aeruginosa PA14
wild-type supernatant, but not the ΔpqsL ΔpvdA ΔpchE mutant, enhances the ability of
chloroxylenol to kill planktonic S. aureus Newman by approximately 3 logs (Fig. 3B).
Thus, our data indicate that HQNO and both siderophores are required for P.
aeruginosa-mediated enhancement of chloroxylenol’s activity against both planktonic
and biofilm populations of S. aureus.

HQNO alone enhances the activity of chloroxylenol against S. aureus biofilms.
To test whether HQNO alone could enhance to the ability of chloroxylenol to kill S.
aureus in biofilm, we performed a biofilm disruption assay using commercially available
HQNO. We used concentrations of HQNO that are in the range of those produced by
P. aeruginosa PA14 under our experimental conditions (37), as well as those produced
by stationary-phase P. aeruginosa cultures grown in rich medium (63, 64). Previously,
we quantified the level of HQNO produced by P. aeruginosa PA14 after 24 h of growth
in minimal medium on plastic plates, which is the source of P. aeruginosa supernatants

FIG 3 The P. aeruginosa exoproducts HQNO and siderophores increase S. aureus biofilm and planktonic sensitivity to chloroxylenol.
(A and B) Biofilm disruption assays on plastic were performed with S. aureus (Sa) Newman, supernatants from wild-type P. aeruginosa
PA14 and the ΔpqsL ΔpvdA ΔpchE deletion mutant (Pa ΔΔΔ sup), and chloroxylenol (Chlor) at 100 �g/ml. Biofilms were grown for 6 h
and exposed to the above treatments for 18 h, and S. aureus biofilm (A) and planktonic (B) CFU were determined. Data in panels A
and B were from the same experiments. (C) Biofilm disruption assays on plastic were performed with S. aureus (Sa) Newman,
chloroxylenol (Chlor) at 100 �g/ml, and the specified concentrations of HQNO (dissolved in DMSO). Biofilms were grown for 6 h and
exposed to the above treatments for 18 h, and S. aureus biofilm CFU were determined. Each column displays the average from at least
three biological replicates, each with three technical replicates. Error bars indicate SD. ns, not significant; ***, P � 0.001, by ordinary
one-way ANOVA and Tukey’s multiple-comparison posttest.
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used throughout this study (37). We found that the level of HQNO in these P. aeruginosa
supernatants is �10 �g/ml. Additionally, P. aeruginosa PA14 produced �15 �g/ml
HQNO when grown on CF-derived epithelial cells for 6 h (37). We observed a dose-
response whereby increasing concentrations of exogenous HQNO corresponded with
enhanced ability of chloroxylenol to kill S. aureus Newman biofilms (Fig. 3C). These
results indicate that the presence of a single secreted factor, HQNO, is sufficient to alter
S. aureus biofilm sensitivity to chloroxylenol.

HQNO likely does not increase S. aureus sensitivity to chloroxylenol via inhi-
bition of the ETC. HQNO is well known to inhibit electron transport chain (ETC)

complexes II and III in both mammalian and bacterial cells (65–68). To investigate
whether HQNO shifts S. aureus sensitivity to chloroxylenol by inhibiting respiration, we
tested the following ETC inhibitors: 3-nitropropionic acid (3-NP; complex II inhibitor),
antimycin A (complex III inhibitor), sodium azide (azide; complex IV inhibitor), and
oligomycin (ATP synthase inhibitor) or mutations in components of ATP synthase. All
but one of the compounds tested, antimycin A, had little to no impact on S. aureus
sensitivity to chloroxylenol, nor did mutations in the ATPase (Fig. S3A to E).

It is possible that HQNO and antimycin A are changing antibiotic sensitivity not by
inhibiting the ETC but via a different mechanism entirely. Thus, we took a different
approach to investigate whether ETC inhibition changes S. aureus susceptibility to
chloroxylenol. Exposure to anoxic conditions is a way to inhibit respiration that does
not require the use of chemical compounds. Anoxia did not enhance chloroxylenol’s
efficacy against S. aureus Newman biofilms in the absence of P. aeruginosa supernatant
(Fig. 2A). Also, despite lacking a functional ETC, S. aureus SCVs are not hypersensitive to
chloroxylenol (Fig. 2B). Furthermore, as we observed above, P. aeruginosa supernatant
is able to potentiate the activity of chloroxylenol to kill SCVs even though these cells
are respiration deficient (Fig. 2B). Together, these data indicate that HQNO likely alters
S. aureus antibiotic sensitivity via a mechanism independent of its effects on the ETC.

We next considered several possible mechanisms underlying HQNO-mediated en-
hancement of chloroxylenol’s antistaphylococcal activity. Specifically, we tested the
following models: (i) HQNO-mediated changes in membrane potential increase antibi-
otic sensitivity, (ii) HQNO-induced generation of reactive oxygen species leads to
enhanced bacterial killing, (iii) HQNO alters the ability of S. aureus to efflux chloroxy-
lenol, and/or (iv) HQNO changes properties of the S. aureus cell membrane. Experiments
testing the first three of these models, which did not support these models, are
presented in the supplemental results (Text S1) and in Fig. S3 and S4.

Exogenous HQNO increases S. aureus membrane fluidity. Previous studies have

found that changes in the cell membrane fatty acid composition, which influences
membrane fluidity, alter the susceptibility of bacterial cells to phenolic compounds (69).
Thus, we tested whether HQNO might cause heightened susceptibility to chloroxylenol
by altering the fluidity of the S. aureus cell membrane. To measure membrane fluidity,
we performed Laurdan generalized polarization (GP) assays. Laurdan is a fluorescent
dye that is sensitive to changes in membrane fluidity; the emission spectrum changes
depending on the physical state of lipids within a bilayer. A decrease in Laurdan GP
values corresponds to an increase in membrane fluidity. This dye has been previously
used to measure the cell membrane fluidity of S. aureus (70–72).

We used benzyl alcohol, a well-established membrane fluidizing agent (73–75), as a
positive control. Exposure to 500 mM or 1 M benzyl alcohol for 1 h led to a significant
decrease in Laurdan GP relative to S. aureus exposed to minimum essential medium
(MEM), indicating an increase in membrane fluidity (Fig. 4A). We observed that treat-
ment of S. aureus Newman with HQNO at all concentrations tested led to a significant
reduction in Laurdan GP relative to exposure to MEM alone, indicating that HQNO has
a fluidizing effect on the S. aureus membrane (Fig. 4B). Additionally, we found that
exposure to antimycin A also led to a significant increase in fluidity (Fig. 4C), albeit to
a lesser extent than HQNO (Fig. 4B). Furthermore, we showed that the solvents for

Orazi et al. ®

July/August 2019 Volume 10 Issue 4 e01501-19 mbio.asm.org 6

https://mbio.asm.org


HQNO and antimycin A, dimethyl sulfoxide (DMSO) and ethanol, respectively, did not
cause the observed increase in S. aureus membrane fluidity (Fig. 4B and C).

Shifting membrane fluidity alters S. aureus biofilm sensitivity to chloroxylenol.
Next, we investigated whether the observed HQNO-mediated increase in membrane
fluidity can lead to increased sensitivity to chloroxylenol. To test this hypothesis, we
exposed S. aureus biofilms to various compounds that are known to influence mem-
brane fluidity. Benzyl alcohol and 1-heptanol both impart higher fluidity, whereas
dimethyl sulfoxide (DMSO) causes membranes to become less fluid (73–77). We ob-
served that benzyl alcohol and 1-heptanol both increased S. aureus Newman biofilm
sensitivity to chloroxylenol (Fig. 5A and B). In contrast, the membrane-rigidifying agent
DMSO did not increase S. aureus Newman biofilm sensitivity to chloroxylenol (Fig. 5C).
These results suggest that alterations in S. aureus membrane fluidity impact sensitivity
to chloroxylenol, whereby increased fluidity leads to higher sensitivity.

Next, we showed that manipulating S. aureus fatty acid composition either by
adding exogenous unsaturated fatty acids (Fig. S5A and Text S1) or by increasing the
proportion of branched-chain fatty acids (BCFAs) relative to short-chain fatty acids
(SCFAs) by mutation (Fig. S5B and Text S1) leads to increased S. aureus sensitivity to
chloroxylenol. Additionally, we showed that decreasing levels of BCFAs relative to
SCFAs by introducing the lpd mutation does not increase sensitivity to chloroxylenol
(Fig. S5C) and that cardiolipin is not required for altered S. aureus sensitivity to this drug
(Fig. S5D and Text S1).

Together, our data suggest that changes in membrane fatty acid composition
influence the efficacy of chloroxylenol and are consistent with our model that an
increase in membrane fluidity promotes chloroxylenol’s ability to kill S. aureus biofilms.

Prolonged exposure to P. aeruginosa exoproducts alters S. aureus membrane
fatty acid profiles. Our data above suggest that HQNO increases S. aureus membrane
fluidity, which leads to heightened sensitivity of S. aureus to chloroxylenol. Thus, we
explored whether HQNO induces changes in S. aureus membrane fatty acid composi-
tion. We performed a time course to track S. aureus fatty acid composition over time in
the presence of P. aeruginosa exoproducts. Briefly, S. aureus Newman cells were

FIG 4 Exogenous HQNO increases S. aureus membrane fluidity. (A to C) Laurdan generalized polarization (GP) was
performed with S. aureus (Sa) Newman, benzyl alcohol (BnOH) (A and B), HQNO (B), and the DMSO control (solvent
for HQNO) (B) at the indicated concentrations and antimycin A at 100 �g/ml along with the ethanol (EtOH) control
(solvent for antimycin A) (C). S. aureus was exposed to the above treatments for 1 h, and GP values were
determined. Each column displays the average from at least three biological replicates, each with three technical
replicates. Error bars indicate SD. ns, not significant; ***, P � 0.001, by ordinary one-way ANOVA and Tukey’s
multiple-comparison posttest.
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exposed to medium alone (MEM � L-Gln) or P. aeruginosa PA14 wild-type supernatant
for differing lengths of time (30 min, 1 h, 3 h, 6 h, or 10 h). Subsequently, fatty acid
methyl ester (FAME) analysis was performed to measure the membrane fatty acid
composition.

By 30 min or 1 h, the membrane fatty acid profile of S. aureus cells grown in medium
alone appeared similar to the profile of P. aeruginosa supernatant-exposed S. aureus
cells (Fig. S6A to C and Table S3). However, prolonged treatment with P. aeruginosa
supernatant led to a shift in S. aureus membrane fatty acid profiles. In particular, S.
aureus cells incubated with P. aeruginosa exoproducts for 24 h had significantly reduced
relative BCFA levels compared to S. aureus grown in medium alone (Fig. S6D and E and
Text S1). Above, we found that HQNO significantly increases S. aureus membrane
fluidity after 1 h (Fig. 4B). Because the fluidizing effect of HQNO occurs more rapidly
than the effect of P. aeruginosa supernatant on S. aureus membrane fatty acid com-
position, it is likely that the HQNO-mediated increase in S. aureus membrane fluidity
that we observe does not occur via changes in membrane fatty acid profiles.

P. aeruginosa supernatant increases S. aureus biofilm sensitivity to multiple
membrane-targeting compounds. Given the effects of P. aeruginosa exoproducts on
S. aureus sensitivity to chloroxylenol, we explored whether P. aeruginosa alters the
antistaphylococcal efficacy of other membrane-active antibiotics. Here, we tested the
efficacy of the phenol-based antiseptic biphenyl, as well as the topical peptide antibi-
otic gramicidin in combination with P. aeruginosa supernatant. Both of these com-
pounds are thought to kill bacteria by ultimately causing an increase in cell membrane
permeability. We discovered that P. aeruginosa-secreted products enhance the ability of
the membrane-active drugs biphenyl and gramicidin to kill S. aureus Newman biofilms
(Fig. 6A and B). We also made the interesting observation that P. aeruginosa superna-
tant increases S. aureus biofilm sensitivity to two nontraditional antibiotics, trifluoper-
azine, an antipsychotic, and amitriptyline, an antidepressant (Fig. 6C and D). Strikingly,
the combination of either of these drugs and P. aeruginosa supernatant led to a 2.5- to
3-log reduction in S. aureus biofilm viability compared to exposure to the drug alone
(Fig. 6C and D). Supernatants from P. aeruginosa PA14 ΔpqsL and ΔpvdA ΔpchE mutants
each had defects in the ability to increase S. aureus Newman biofilm sensitivity to
trifluoperazine and amitriptyline relative to the wild-type P. aeruginosa PA14 (Fig. 6C
and D), suggesting that HQNO and siderophores both contribute to this phenotype. In

FIG 5 Shifting membrane fluidity alters S. aureus biofilm sensitivity to chloroxylenol. (A to C) Biofilm
disruption assays on plastic were performed with S. aureus (Sa) Newman, chloroxylenol (Chlor) at
100 �g/ml, benzyl alcohol (BnOH) at 50 mM (A), 1-heptanol at 50 mM (B), and dimethyl sulfoxide (DMSO)
at 1% and 6% (C). Biofilms were grown for 6 h and exposed to the above treatments for 18 h, and S.
aureus biofilm CFU were determined. Each column displays the average from at least three biological
replicates, each with three technical replicates. Error bars indicate SD. ns, not significant; **, P � 0.01; ***,
P � 0.001, by ordinary one-way ANOVA and Tukey’s multiple-comparison posttest.
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contrast, it appears than another P. aeruginosa-produced factor is involved in enhanc-
ing the activity of gramicidin against S. aureus biofilms (Fig. 6B).

Additionally, we examined whether altering membrane fluidity influenced S. aureus
biofilm sensitivity to the above compounds. We observed that benzyl alcohol did not
appreciably alter S. aureus sensitivity to gramicidin, trifluoperazine, or amitriptyline
(Fig. 6B to D). In contrast, the fluidizing agent led to a striking increase in the
antibacterial efficacy of biphenyl; the combination of these compounds led to a
decrease in S. aureus Newman biofilm viability to below the level of detection of this
assay (�200 CFU/ml [Fig. 6A]). These results suggest that a more fluid membrane
increases the susceptibility of S. aureus biofilms to biphenyl, which is a compound
similar to chloroxylenol in structure and function.

Finally, we tested whether P. aeruginosa secreted products could increase the
antistaphylococcal efficacy of octenidine dihydrochloride, a surfactant-based antiseptic
that is approved for treatment of wound infections and has low cytotoxicity (78, 79). We
observed that P. aeruginosa supernatant potentiates the activity of octenidine against
S. aureus biofilms by 2.5 logs (Fig. 6E).

DISCUSSION

In this study, we found that the interactions between two bacterial pathogens that
are frequently coisolated from infections can cause striking and unexpected changes in
antimicrobial susceptibility profiles. We showed that P. aeruginosa potentiates the
ability of various antibacterial agents to kill S. aureus biofilms, which are often difficult

FIG 6 P. aeruginosa supernatant increases S. aureus biofilm sensitivity to other membrane-targeting compounds. (A to E)
Biofilm disruption assays on plastic were performed with S. aureus (Sa) Newman; supernatants from wild-type P. aeruginosa
PA14 and the specified mutants (Pa sup); and either biphenyl at 200 �g/ml (A), gramicidin at 100 �g/ml (B), trifluoperazine at
100 �g/ml (C), amitriptyline at 100 �g/ml (D), or octenidine dihydrochloride (Oct) at 5 �g/ml (E). Biofilms were grown for 6 h
and exposed to the above treatments for 18 h, and S. aureus biofilm CFU were determined. Each column displays the average
from at least three biological replicates, each with three technical replicates. Error bars indicate standard deviation (SD). ns, not
significant; *, P � 0.05; ***, P � 0.001, by ordinary one-way ANOVA and Tukey’s multiple-comparison posttest.
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to eradicate. In particular, we found that P. aeruginosa-secreted products increase the
sensitivity of S. aureus biofilms to the topical antiseptic chloroxylenol. Alone, chloroxy-
lenol at a concentration of 100 �g/ml is not effective at eradicating S. aureus biofilms;
however, in combination with P. aeruginosa cell-free culture supernatant, which alone
does not impact S. aureus viability, the efficacy of chloroxylenol increased 4-log-fold.
Moreover, we have shown that P. aeruginosa supernatant can increase the ability of
chloroxylenol to kill multiple strains and clinical isolates of S. aureus. Furthermore, we
found that the small molecule HQNO and the siderophores pyoverdine and pyochelin
contribute to the P. aeruginosa-mediated increase in the efficacy of chloroxylenol
against S. aureus biofilms. In addition, we showed that HQNO alone recapitulated the
effect of P. aeruginosa supernatant. Thus, the addition of a small molecule alone can
greatly influence the efficacy of this antiseptic.

Previous studies have detected HQNO in expectorated sputum from CF patients
infected with P. aeruginosa, and these levels are highly variable (29, 80). P. aeruginosa
isolates from chronic CF pulmonary infections frequently have loss-of-function muta-
tions in the quorum sensing regulator lasR and often overproduce alginate (81, 82).
LasR inactivity and mucoidy each can lead to decreased HQNO production in vitro (64,
83). Therefore, quorum sensing activity and mucoidy may modulate the levels of HQNO
produced by P. aeruginosa during infection and, in turn, influence the ability of HQNO
to modify S. aureus drug sensitivity profiles in vivo.

HQNO has been shown to inhibit the S. aureus electron transport chain (ETC) (65).
To investigate whether HQNO influences S. aureus susceptibility to chloroxylenol via
inhibition of respiration, we treated S. aureus with chemical inhibitors of the ETC alone
or in combination with the antibiotic. We found that only a subset of the ETC inhibitors
tested increased the efficacy of chloroxylenol. However, anoxia did not increase S.
aureus chloroxylenol sensitivity in the absence of HQNO. Additionally, despite having a
defective ETC, S. aureus SCVs became more susceptible to chloroxylenol in the presence
of HQNO, suggesting that inhibition of respiration is not required for this phenotype.

Since it is known that changes in membrane lipid profiles impact sensitivity to
membrane-targeting compounds (69), we hypothesized that HQNO might cause
heightened susceptibility to chloroxylenol by altering one or more properties of the S.
aureus cell membrane. Like other phenol-based antiseptics, chloroxylenol is thought to
insert into the cell membrane and cause an increase in membrane fluidity and
permeability (54–56). Thus, an increase in membrane fluidity mediated by HQNO may
allow for greater accumulation of chloroxylenol within the membrane and subse-
quently cause an increase in efficacy of the antibiotic. Manipulating the fluidity of E. coli
membranes has been previously demonstrated to alter sensitivity to phenols, whereby
decreasing membrane fluidity conferred increased tolerance to these compounds (69).
Therefore, we tested whether HQNO changes the fluidity of the S. aureus cell mem-
brane, potentially explaining the increased antimicrobial sensitivity we observe. We
found that exogenous HQNO causes a striking increase in S. aureus membrane fluidity.
Due to its hydrophobic character, it is plausible that HQNO directly interacts with the
membrane to increase fluidity. In light of this result, we hypothesized that antimycin A
and oligomycin, both hydrophobic compounds, also increase S. aureus sensitivity to
chloroxylenol by altering membrane fluidity; the other ETC inhibitors tested, 3-NP and
sodium azide, which did not enhance sensitivity to chloroxylenol, are both hydrophilic
compounds. We showed that treatment of S. aureus with antimycin A also leads to an
increase in membrane fluidity. These findings suggest that the observed HQNO-
mediated increase in antibiotic efficacy is independent of the effect of HQNO on the S.
aureus ETC. Furthermore, we showed that modulating membrane fluidity via either
genetic or chemical approaches shifts S. aureus chloroxylenol sensitivity profiles. To-
gether, these results are consistent with a model whereby HQNO increases S. aureus
membrane fluidity, which greatly enhances the ability of chloroxylenol to kill S. aureus
biofilms.

We also found that treatment with P. aeruginosa supernatant or pure HQNO
influenced the membrane fatty acid composition of S. aureus. Specifically, S. aureus
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grown in medium alone had a significantly higher proportion of BCFA than did S. aureus
cells exposed to P. aeruginosa supernatant or HQNO for 24 h. Given these results, we
hypothesize that HQNO-mediated inhibition of the S. aureus ETC leads to decreased
rates of fatty acid synthesis. Previous work from our laboratory has shown that when
these organisms are in coculture, P. aeruginosa forces S. aureus to grow by fermentation
(84), which leads to a reduction in growth of S. aureus (37). Furthermore, during
coculture with P. aeruginosa, S. aureus downregulates multiple genes involved in fatty
acid synthesis, including the cardiolipin synthase (cls1) and branched-chain amino acid
transporters (brnQ1, brnQ2, brnQ3, and bcaP) (84). Additionally, it has been shown that
anaerobically grown S. aureus has lower protein synthesis rates for multiple enzymes
involved in metabolism, including FabG1, which is required for fatty acid synthesis (85).

Together, our results are consistent with the following two models, which are not
mutually exclusive: (i) HQNO increases S. aureus membrane fluidity, potentially via
direct interaction with the membrane, and (ii) exposure to HQNO slows or halts S.
aureus fatty acid synthesis, leading to altered membrane lipid composition, perhaps via
ETC inhibition. Our data suggest that the first model may explain how HQNO poten-
tiates the activity of chloroxylenol against S. aureus biofilms. In contrast, our data do not
support a role for the second model in explaining the altered chloroxylenol suscepti-
bility profiles we observe. Specifically, the HQNO-mediated increase in S. aureus mem-
brane fluidity occurs more rapidly than the P. aeruginosa supernatant-induced changes
in fatty acid profiles. Therefore, we hypothesize that HQNO increases fluidity via direct
interaction with the membrane, rather than via inducing a shift in membrane fatty acid
composition. The second model could explain other potential consequences of this
interspecies interaction, such as an impaired ability to adapt to changing environmen-
tal conditions.

We observed that P. aeruginosa exoproducts can potentiate the activity of multiple
membrane-active compounds, including the phenol biphenyl and gramicidin, which
forms channels within the membrane (86–88). Interestingly, we also showed that P.
aeruginosa-secreted factors enhanced the activity of two nontraditional antibiotics,
trifluoperazine and amitriptyline. Both of these drugs have a fused tricyclic structure
and have been found to possess antibacterial activity (89–93). Additionally, trifluoper-
azine was found to synergize with fluconazole against multiple fungal species (94). Due
to its high degree of hydrophobicity, trifluoperazine has been shown to interact with
cell membranes and cause increased fluidity and permeability (95, 96); it has been
hypothesized that amitriptyline acts in a similar manner (93).

Importantly, we found that the combination of P. aeruginosa supernatant and
chloroxylenol was effective against multiple slow-growing S. aureus populations,
namely, anaerobically grown biofilms and SCVs. Infection sites can have steep oxygen
gradients (97, 98), which may lead to slow microbial growth in vivo (99). Slow-growing
pathogens are difficult to eradicate because many antibiotic classes are effective
against only actively growing cells; in contrast, antibacterial agents that target mem-
branes are effective whether or not bacteria are growing. Thus, our discovery that an
interspecies interaction can potentiate the activity of membrane-active drugs could be
used to inform the treatment of recalcitrant mixed-species infections involving bacterial
biofilms in oxygen-depleted sites.

Overall, our work demonstrates that polymicrobial interactions can profoundly shift
the antibiotic sensitivity profiles of bacteria growing as biofilms. Furthermore, we
discovered that interspecies interactions can lead to changes in the fluidity and
composition of the bacterial cell membrane, which may influence other aspects of
bacterial physiology as well as responses to environmental stressors. Additionally, our
results suggest that manipulating membrane fluidity can influence the efficacy of
various membrane-targeting drugs against bacterial biofilms. We propose that these
findings could inspire new strategies for eradicating recalcitrant infections.

Because of its ability to inhibit mitochondrial respiration, HQNO is not a good
candidate for a therapeutic; however, it is possible that other membrane-altering
compounds could be used as adjuvants to antibacterial therapy. Together, our findings
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may have important consequences for the treatment of polymicrobial infections in
multiple disease contexts, including nonhealing wounds and pulmonary infections in
patients with cystic fibrosis.

MATERIALS AND METHODS
See the supplemental materials and methods in Text S1 in the supplemental material for additional

details regarding the methods.
Bacterial strains and culture conditions. A list of all strains used in this study is included in Table S2.

S. aureus was grown in tryptic soy broth (TSB), and P. aeruginosa was grown in lysogeny broth (LB). All
overnight cultures were grown with shaking at 37°C for 12 to 14 h, except for the S. aureus Col hemB
mutant, which was grown statically at 37°C for 20 h.

Biolog MicroArray antibiotic susceptibility assay. Biolog Phenotype MicroArray bacterial chemical
sensitivity assay panels were used to test S. aureus antimicrobial sensitivities as previously described (37).
See the supplemental materials and methods in Text S1 for additional details.

Biofilm disruption assay on plastic. S. aureus biofilms were treated with antimicrobial agents,
followed by enumeration of viable cell counts, as previously described (37). See the supplemental
materials and methods in Text S1 for additional details.

Membrane potential measurements. S. aureus membrane potential was determined using the
fluorescent dye DiOC2 as previously described (100, 101) with some modifications. See the supplemental
materials and methods in Text S1 for additional details.

Laurdan membrane fluidity analysis. S. aureus membrane fluidity was determined by Laurdan
generalized polarization (GP) as previously described (101, 102) with some modifications. See the
supplemental materials and methods in Text S1 for additional details.

Fatty acid methyl ester analysis. Whole-cell direct fatty acid methyl ester (FAME) analysis of S.
aureus pellets was performed by Microbial ID, Inc. (Newark, DE), as previously described (103). See the
supplemental materials and methods in Text S1 for additional details.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01501-19.
TEXT S1, PDF file, 0.2 MB.
FIG S1, PDF file, 0.2 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.4 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 0.3 MB.
FIG S6, PDF file, 0.3 MB.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.1 MB.
TABLE S3, XLSX file, 0.02 MB.
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