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GLUT3 and PKM2 regulate 
OCT4 expression and support 
the hypoxic culture of human 
embryonic stem cells
David R. Christensen1,2, Philip C. Calder2,3 & Franchesca D. Houghton1,2

Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus 
have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more 
pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study 
therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this 
might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated 
by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in 
glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were 
correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, 
PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing 
PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 
expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing 
PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, 
these data demonstrate two separate mechanisms by which genes regulating glucose uptake and 
metabolism are involved in the hypoxic support of pluripotency in hESCs.

Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst and are 
pluripotent; they have the capacity to differentiate into all cell-types in the human body1–4. Thus hESCs 
have great potential to provide cellular therapy for a range of diseases. For this hope to be realised with 
safety and efficiency, hESCs need to be maintained as highly pluripotent populations in the absence of 
spontaneous differentiation. Much data suggests that environmental culture conditions and specifically 
the oxygen tension have an impact on the maintenance of pluripotency.

Use of low environmental oxygen tensions has been shown to reduce the amount of spontaneous 
differentiation, as well as being beneficial for hESC maintenance in terms of increased expression of 
key pluripotency markers and decreased incidence of chromosomal abnormalities5–10. Maintenance of 
hESCs at atmospheric oxygen has also been found to decrease hESC proliferation and glycolytic and 
amino acid metabolism of hESCs9–11. Higher rates of glucose uptake and lactate production were meas-
ured in hESCs cultured at 5% oxygen than in those maintained at 20% oxygen, which was mirrored by 
the increased expression of the pluripotency markers OCT4, SOX2, and NANOG9. Interestingly, this 
association between glycolytic metabolism and pluripotency was also demonstrated in hESCs cultured 
at 5% oxygen in the absence of FGF2, where a reduction of SOX2 expression, glucose uptake and lactate 
production was observed when compared with hESCs cultured in the presence of FGF29. These findings 
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suggest that a high rate of glucose uptake and lactate production is characteristic of highly pluripotent 
stem cells and that hypoxia might be beneficial for the maintenance of hESCs at least partially by sup-
porting glycolytic metabolism. Importantly, expression of many glycolytic genes has been shown to be 
promoted under hypoxia in other cell-types, providing a mechanism by which hypoxic conditions might 
regulate metabolism in hESCs12–16.

How glucose metabolism is regulated in hESCs is not known, but entry into the cell via glucose trans-
porters is likely to be key. However, which glucose transporter is responsible for glucose uptake in hESCs 
is not known. The glucose transporter GLUT1 has been found in many cell types, and its expression 
has been found to be regulated by hypoxia in mouse ESCs (mESCs)17–20. Expression of GLUT1 mRNA 
was also found to be increased in hESCs cultured at 5% oxygen compared with those at atmospheric 
oxygen, suggesting that its regulation may drive changes in rates of glucose consumption with changing 
environmental oxygen tension9. This hypoxic promotion of GLUT1 expression was demonstrated to be 
regulated by HIF-2α 9. GLUT3 had been considered to be a neuron-specific glucose transporter, but a 
much wider tissue distribution has since been demonstrated in humans21–23. GLUT3 has a higher affinity 
for glucose than GLUT1 and has a high turnover, which makes it an efficient transporter24,25. Silencing 
GLUT3 expression in murine blastocysts led to a greater decrease in glucose uptake than silencing 
GLUT1 expression, suggesting that GLUT3 might be more important for glucose uptake, at least in 
preimplantation development26. Expression of both transporters, GLUT1 and GLUT3, is regulated by 
hypoxia in mouse blastocysts27.

Glucose utilisation may also be regulated through the activity of glycolytic enzymes. Pyruvate kinase 
catalyses the breakdown of phosphoenolpyruvate to produce pyruvate and ATP. As this reaction is the 
final rate-limiting step of glycolysis, it is possible that the rate of glucose uptake and lactate production 
is controlled through regulation of this step. PKM1 and PKM2 are two splice variants of the PKM2 
gene that differ by only 23 amino acids due to alternatively spliced exons 9 or 10, respectively28. PKM2 
has been found to promote the Warburg effect in cancer cells, which describes an increased reliance 
on glycolysis even when enough oxygen is available for oxidative phosphorylation29–31. Knockdown of 
PKM2 in cancer cell lines resulted in decreased rates of glycolytic metabolism and reduced cell viability, 
but, interestingly, cell viability was not reduced after PKM2 knockdown in human adult skin fibroblasts 
or human umbilical vein endothelial cells29,32. It may be that non-catalytic roles for PKM2 explain this 
difference between cancerous and non-cancerous cells as PKM2 has been found to have roles in tran-
scriptional regulation that include cooperative interactions with OCT4 and HIF-1α 33–35. Although PKM2 
has been shown to be highly expressed in pluripotent stem cells36, whether it is involved in the regulation 
of transcription in hESCs is unknown. Interestingly, one recent paper demonstrated that expression of 
Pkm2 and Hk2 in mESCs is transcriptionally regulated by Oct4, highlighting an additional mechanism 
by which glycolytic metabolism might be supported in hESCs37. That same study also showed that over-
expression of Pkm2 and Hk2 in mESCs was able to support pluripotency in the absence of LIF, which 
suggested the importance of glycolytic metabolism for maintenance of pluripotency.

This study aims to investigate how glucose metabolism is regulated and how this might impact hESC 
pluripotency. GLUT3 was demonstrated to be responsible for glucose uptake in hESCs and its expression 
was found to be up-regulated under hypoxic conditions. Importantly, silencing expression of GLUT3 
was shown to decrease glucose consumption and lactate production and lead to a loss of pluripotency. 
In addition, PKM2 expression was also shown to be up-regulated under hypoxia and was found to be 
localised to the nucleus of hESCs suggesting a role other than as a glycolytic enzyme. Instead, PKM2 
was found to regulate OCT4 expression. These data demonstrate two mechanisms by which a hypoxic 
environment can be beneficial to hESC pluripotency; promotion of glucose uptake and glycolysis, and 
the regulation of PKM2 expression, which has a transcriptional role in hESCs.

Results
GLUT3 is localised to the membrane of hESCs and is regulated by environmental oxy-
gen.  hESCs cultured at 5% and 20% oxygen have previously been demonstrated to rely on glucose 
uptake and on glycolytic metabolism for energy generation9. The current study aimed to investigate 
the control of glycolysis in hESCs and to determine which glucose transporter was responsible for glu-
cose uptake. Immunocytochemistry was used to investigate the localisation of GLUT1 and GLUT3 in 
two hESC lines maintained at either 5% or 20% oxygen (Fig.  1). GLUT1 was expressed in the cyto-
plasm in Hues-7 (Fig. 1A,B,M,N) and Shef3 (Fig. 1G,H,S,T) hESCs cultured at either 5% or 20% oxygen. 
In contrast, GLUT3 expression was detected in the membranes of Hues-7 (Fig.  1C,D,O,P) and Shef3 
(Fig. 1I,J,U,V) hESCs cultured at either oxygen tension.

Qualitatively, it appeared that there was a reduced level of expression of GLUT3 in hESCs cultured at 
20% oxygen in comparison with those maintained at 5% oxygen (Fig. 1). To provide a quantitative meas-
ure, Western blotting was used to compare GLUT3 expression in hESCs cultured at either 5% or 20% 
oxygen (Fig. 2). GLUT3 expression was significantly reduced in Hues-7 hESCs cultured at 20% oxygen 
compared with those cultured under hypoxic conditions (p =  0.0443; Fig. 2B).

GLUT3 is responsible for glucose uptake, and regulates glucose metabolism and hESC pluri-
potency.  siRNA was used to investigate the effect of silencing GLUT3 on hESC metabolism and 
pluripotency. Hues-7 hESCs, maintained at 5% oxygen, were transfected with 50 nM GLUT3 siRNA. 
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Immunocytochemistry was performed to assess the effect of silencing GLUT3 on the GLUT1 and GLUT3 
protein expression in Hues-7 hESCs cultured at 5% oxygen (Fig. 3). The hESCs were dual-labelled with 
an antibody against OCT4 to qualitatively determine whether silencing GLUT3 expression affects pluri-
potency. A membranous localisation of GLUT3 was observed for Hues-7 hESCs transfected with a neg-
ative control siRNA (Fig. 3G). However, when GLUT3 was silenced, a reduced expression of GLUT3 was 
observed at the membrane (Fig.  3J). OCT4 was expressed in Hues-7 hESCs maintained at 5% oxygen 

Figure 1.  GLUT3 is localised to the membrane of hESCs cultured at either 5% or 20% oxygen. Hues-7 
and Shef3 hESCs cultured on a MEF feeder layer at either 5% or 20% oxygen were labelled for GLUT1 
(A,B,G,H,M,N,S,T) or GLUT3 (C,D,I,J,O,P,U,V). FITC-tagged secondary antibodies were used for each 
protein of interest and for negative, secondary antibody only controls (E,F,K,L,Q,R,W,X). DAPI was used 
to visualise the nuclei (B,D,F,H,J,L,N,P,R,T,V,X). GLUT1 expression was not detected at the membrane in 
either cell-line at either oxygen concentration (A,G,M,S). In contrast, GLUT3 expression was detected in the 
membrane of Hues-7 and Shef3 hESCs at 5% and 20% oxygen (C,I,O,U). Scale bar =  25 μ m.
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with or without transfection of siRNA against GLUT3 (Fig. 3B,E,H,K). As immunocytochemistry is not 
a quantitative technique, care should be taken when interpreting apparent differences in the expression 
level of OCT4 in Fig. 3. A more quantitative method, such as Western blotting should be performed to 
determine whether silencing GLUT3 expression affects expression of OCT4. The level and localisation of 
GLUT1 expression was not affected following transfection with siRNA against GLUT3 (Fig. 3A,D). This 
suggests that GLUT1 was not able to compensate for the lack of GLUT3, as it cannot regulate glucose 
uptake if it is not localised to the cell membrane.

The effect of transfection with siRNA against GLUT3 on GLUT3 expression was quantitatively meas-
ured using Western blotting (Fig. 4A). An approximate 70% reduction in protein expression was meas-
ured in comparison with that measured in hESCs transfected with a negative control siRNA (Fig.  4A; 
p <  0.001). In contrast, silencing GLUT3 did not affect GLUT1 expression (Fig. 4B).

To determine whether silencing GLUT3 altered glucose metabolism, enzyme-linked assays were used 
to investigate the rate of glucose consumption and lactate production by Hues-7 hESCs cultured at 5% 
oxygen. The rates of glucose depletion from, and production of lactate into, the medium by Hues-7 
hESCs cultured at 5% were determined, following a 2 hour incubation. The rate of glucose depletion 
was significantly reduced from 0.96 ±  0.12 pmol/cell/hour to 0.70 ±  0.06 pmol/cell/hour after silencing 
GLUT3 (Fig. 4C; p =  0.0347). Similarly, there was a significant, approximate 25%, reduction in the rate 
of lactate production (Fig. 4C; p =  0.0435).

Western blotting was also used to quantitatively investigate the effect of silencing GLUT3 on OCT4 
expression and demonstrated a significant reduction in expression (Fig. 5A; p =  0.0038). To determine 
whether the expression of GLUT3 was correlated with that of OCT4, both proteins were quantified in 
Hues-7 hESCs cultured at 5% or 20% oxygen using Western blotting. Band intensity data were normal-
ised to β -actin and to 1 for 5% oxygen, to determine the expression of OCT4 and GLUT3 in hESCs 
maintained at 20% oxygen relative to the expression level of these proteins in hESCs cultured at 5% 
oxygen. For the purpose of correlation, the relative expression of OCT4 in Hues-7 hESCs maintained at 
20% was plotted against the relative expression of GLUT3 in the same sample. In addition, OCT4 and 
GLUT3 protein expression was measured in Hues-7 hESCs maintained at 5% oxygen and transfected 
with either a negative control siRNA or GLUT3 siRNA. This provided more data points to examine any 
potential correlation between OCT4 and GLUT3 (Fig. 5B). A statistically significant positive correlation 
was found between GLUT3 and OCT4 expression, using a Spearman rank correlation statistic (Fig. 5B; 
p =  0.0438; r =  0.6606). As there appeared to be a non-linear, possibly logarithmic, relationship between 
GLUT3 and OCT4, the relative measures of GLUT3 expression were log transformed. A graph of relative 
OCT4 expression against the log transformed relative GLUT3 expression was plotted and a significant, 
positive linear correlation was found (Fig. 5C; p =  0.0185; r =  0.7217).

Figure 2.  GLUT3 expression is greater in hESCs cultured under hypoxia than in those maintained at 
atmospheric oxygen. Representative Western blot (A) used to quantify GLUT3 protein expression in Hues-7 
hESCs cultured at either 5% or 20% oxygen using the housekeeping protein β -actin as a loading control. 
GLUT3 expression was calculated relative to β -actin expression and expression at 20% oxygen was measured 
relative to the expression level in hESCs cultured at 5% oxygen. (B) A significantly lower expression 
of GLUT3 was measured in Hues-7 hESCs cultured at 20% compared with those at 5% oxygen (n =  8; 
p =  0.0443). Bars represent mean ±  s.e.m.
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PKM2 is localised to the nucleus of hESCs and is regulated by environmental oxygen.  PKM2 
is an important glycolytic enzyme that catalyses the conversion of phosphoenolpyruvate to pyruvate. Its 
expression in hESCs was investigated to determine whether it may also have a role in the hypoxic regu-
lation of metabolism. Immunocytochemistry was used to investigate the localisation of PKM2 protein in 
Hues-7 and Shef3 hESCs maintained at either 5% or 20% oxygen. PKM2 was primarily detected in the 
nuclei of Hues-7 and Shef3 hESCs maintained at both oxygen concentrations (Fig. 6A,E,I,M).

Western blotting was used to quantify expression of PKM2 in Hues-7 hESCs maintained at either 5% 
or 20% oxygen. PKM2 expression was significantly lower in hESCs maintained at 20% oxygen compared 
to those cultured at 5% oxygen (Fig. 6Q; p =  0.022).

Figure 3.  GLUT3 expression is reduced in hESCs after transfection with GLUT3 siRNA. Hues-7 hESCs 
cultured feeder-free at 5% oxygen were labelled for GLUT1 (A,D) or GLUT3 (G,J), and dual-labelled for 
OCT4 (B,E,H,K,N), after transfection with either a negative control siRNA or GLUT3 siRNA. A FITC-
tagged secondary antibody was used for GLUT1 and GLUT3 antibodies and a Cy3-tagged secondary 
antibody was used for OCT4. Both were used for negative, secondary only controls (M,N). DAPI was used 
to visualise the nuclei (C,F,I,L,O). A reduction in expression of GLUT3 was seen after transfection with 
GLUT3 siRNA (J), whereas there was no effect on GLUT1 expression (D). OCT4 expression was detected 
after transfection with negative control siRNA and after transfection with GLUT3 siRNA (B,E,H,K,N). Scale 
bar =  25 μ m.
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Figure 4.  Silencing GLUT3 expression in hESCs reduces the rates of glucose uptake and lactate 
production without any effect on GLUT1 expression. Hues-7 hESCs were cultured at 5% oxygen and 
transfected with either a negative control siRNA or GLUT3 siRNA. Western blotting was used to quantify 
protein expression for GLUT3 (A) and GLUT1 (B) after transfection. Representative blots for GLUT3, 
GLUT1, and β -actin expression are shown. Data were normalised to β -actin and to 1 for control siRNA-
treated cells. (A) A significantly lower level of expression of GLUT3 was measured in Hues-7 hESCs after 
transfection with GLUT3 siRNA, compared with those transfected with a negative control siRNA (p <  0.001; 
n =  8). (B) No significant difference was found for GLUT1 expression in Hues-7 hESCs transfected with 
GLUT3 siRNA or negative control siRNA (n =  3). (C) The rates of glucose uptake and lactate production 
were significantly lower in Hues-7 hESCs cultured at 5% oxygen and transfected with GLUT3 siRNA 
(n =  42 and n =  36, respectively) than in those transfected with a negative control siRNA (n =  43 and n =  40, 
respectively; p =  0.0347 and p =  0.0435, respectively). Bars represent mean ±  s.e.m.
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PKM2 regulates OCT4 expression, but does not affect glucose metabolism.  PKM2 was 
silenced to investigate the potential role of PKM2 in the control of glycolytic metabolism and pluripo-
tency. Hues-7 hESCs maintained at 5% oxygen were transfected with 100 nM PKM2 siRNA and expres-
sion of the protein was assessed using Western blotting. Transfection with siRNA against PKM2 resulted 
in a significant, approximate 60%, reduction in protein expression compared with Hues-7 hESCs trans-
fected with a negative control siRNA (Fig. 7A; p =  0.0316).

Figure 5.  OCT4 and GLUT3 expression are positively correlated. Hues-7 hESCs were cultured at 5% 
oxygen and transfected with either a negative control siRNA or GLUT3 siRNA. (A) Western blotting was 
used to quantify OCT4 protein expression after transfection. Representative blots for OCT4 and β -actin are 
shown. Data were normalised to β -actin and to 1 for control siRNA-treated cells. A significantly lower level 
of expression of OCT4 was measured in Hues-7 hESCs after transfection with GLUT3 siRNA, compared 
with those transfected with a negative control siRNA (p =  0.0038; n =  8). Bars represent mean ±  s. e. m. 
(B) GLUT3 and OCT4 protein expression were quantified in Hues-7 hESCs that were maintained at 20% 
oxygen, 5% oxygen, 5% oxygen and transfected with GLUT3 siRNA, or 5% oxygen and transfected with a 
negative control siRNA. The expression level of OCT4 and GLUT3 was calculated for hESCs maintained at 
20% oxygen relative to that measured in 5% oxygen, or for hESCs maintained at 5% oxygen and transfected 
with GLUT3 relative to that measured after transfection with a negative control siRNA. Relative OCT4 
expression was plotted against relative GLUT3 expression in the same samples to investigate the relationship 
between GLUT3 and OCT4. There was a statistically significant positive correlation between OCT4 and 
GLUT3 expression (p =  0.0438; r =  0.6606). (C) The relative measures of expression of GLUT3 were log 
transformed and plotted against measures of relative OCT4 expression. A statistically significant positive 
correlation was found between OCT4 and log transformed GLUT3 (p =  0.0185; r =  0.7217).
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Figure 6.  PKM2 expression is localised to the nucleus and is regulated by environmental oxygen in 
hESCs. Hues-7 and Shef3 hESCs cultured on a MEF feeder layer at either 5% or 20% oxygen were labelled 
for PKM2, which was localised to the nucleus in both cell-lines at both oxygen concentrations (A,E,I,M). 
FITC-tagged secondary antibodies were used for detection of the primary antibody and for negative, 
secondary antibody only controls (C,G,K,O). DAPI was used to visualise the nuclei (B,D,F,H,J,L,N,P). Scale 
bar =  25 μ m. (Q) Western blotting was used to quantify PKM2 protein expression in Hues-7 hESCs cultured 
at either 5% or 20% oxygen using the housekeeping protein β -actin as a loading control. Representative blots 
are shown for PKM2 and β -actin. Data were normalised to β -actin and to 1 for 5% oxygen. A significantly 
lower level of expression of PKM2 was found in Hues-7 hESCs maintained at 20%, in comparison with 
those cultured at 5% oxygen (p =  0.022; n =  4). Bars represent mean ±  s.e.m.
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Figure 7.  Silencing PKM2 expression in hESCs reduces OCT4 expression, but does not affect glucose 
uptake or lactate production. Hues-7 hESCs cultured at 5% oxygen were transfected with either a negative 
control siRNA or siRNA against PKM2. (A) Western blotting was used to quantify PKM2 protein expression 
after transfection. Representative blots are shown for PKM2 and β -actin. Data were normalised to β -actin 
and to 1 for control siRNA-transfected cells. A significantly lower level of expression of PKM2 was measured 
after transfection with PKM2 siRNA, in comparison with hESCs transfected with a negative control 
siRNA (p =  0.0316; n =  4). (B) Enzyme-linked assays were used to measure rates of glucose uptake and 
lactate production after transfection with either a negative control siRNA or PKM2 siRNA. No significant 
differences between control siRNA and PKM2 siRNA were found for glucose uptake (n =  16 and n =  14, 
respectively) or lactate production (n =  16 and n =  11, respectively). (C) Western blotting was used to 
quantify OCT4 expression after transfection with negative control siRNA or PKM2 siRNA. Representative 
blots are shown for OCT4 and β -actin. Data were normalised to β -actin and to 1 for control siRNA-
transfected cells. A significantly lower expression of OCT4 was measured after transfection with PKM2 
siRNA than after transfection with a negative control siRNA (p =  0.0189; n =  4).
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The effect of silencing PKM2 expression on the rates of glucose uptake and lactate production was 
investigated. No significant difference in glucose consumption or lactate production was found between 
Hues-7 hESCs transfected with PKM2 siRNA and those transfected with a negative control siRNA 
(Fig. 7B).

Western blotting was also used to determine whether silencing PKM2 expression has an effect on 
OCT4 expression. There was a significant reduction in OCT4 expression after transfection with PKM2 
siRNA in comparison with Hues-7 hESCs transfected with negative control siRNA (Fig. 7C; p =  0.0189).

Discussion
Understanding of the mechanisms that regulate hESC maintenance and differentiation has increased 
significantly over recent years, but energy metabolism has been largely overlooked. This is surprising 
following the renewed interest in metabolism in other fields, including cancer biology. The biosynthetic 
and energetic requirements of a cell are supplied by metabolism and vary as the function of a cell is 
altered during processes such as differentiation or reprogramming38–41. Manipulating metabolism can 
impede or facilitate these changes in cell identity36,42–44. Previously, we have identified an association 
between a reduction in the rate of glycolysis and the expression of pluripotency markers during hESC 
culture in the absence of FGF2 or with culture at atmospheric oxygen, compared to 5% oxygen9. In the 
current study, we have demonstrated that environmental oxygen regulates glycolytic metabolism and 
pluripotency through regulation of GLUT3 and PKM2.

Glucose is an important energy source, but how it is transported into hESCs is not known. Glucose 
uptake in hESCs was previously found to be regulated by environmental oxygen, with a greater rate 
of consumption in hESCs cultured at 5% oxygen than in those maintained at 20% oxygen9. In addi-
tion, expression of GLUT1 mRNA was greater in hESCs cultured under hypoxia and its expression was 
directly regulated by HIF-2α 9. However, for transport proteins, control of function can take the form of 
transcriptional regulation, post-translational modification, or involve the regulation of protein trafficking 
to the membrane. The presence of the transporter in the cell membrane must be the most important 
characteristic of the glucose transporter responsible for glucose uptake in hESCs, as regulation of gene 
expression has no purpose unless the protein product is trafficked to the membrane to perform its 
function.

Localisation of GLUT transporter expression by immunocytochemistry showed that, in contrast to 
GLUT1, GLUT3 was consistently present at the membrane of hESCs cultured at both 5% and 20% oxy-
gen (Fig. 1). Using Western blotting a significantly greater expression of GLUT3 was measured in Hues-7 
hESCs cultured at 5% oxygen compared with those maintained at 20% oxygen (Fig. 2). This suggests that 
GLUT3 may be responsible for the previously measured increased rate of glucose consumption in hESCs 
cultured under hypoxic conditions9. These data are consistent with previous observations that GLUT3 
plays an important role in glucose uptake in developing mouse embryos26. Although the mechanism 
regulating the increased expression of GLUT3 in hESCs is not known, in choriocarcinoma cells it is 
mediated by HIF-1α 15. In hESCs, HIF-1α  is only responsible for the initial response to hypoxia, whereas 
the long-term response is regulated by HIF-2α 10. Therefore, similar to GLUT1, GLUT3 expression may 
also be transcriptionally regulated by HIF-2α 9.

To investigate whether GLUT3 regulates glucose metabolism and pluripotency, siRNA was used to 
silence GLUT3 expression. A significant, approximate 70%, reduction of protein expression was achieved 
(Fig. 4A) and importantly, no effect was seen on the level or localisation of expression of GLUT1 (Figs 3 
and 4), indicating the specificity of the gene knockdown and lack of compensation by GLUT1. The pri-
mary function of glucose transporters is to allow entry of glucose into the cell and silencing expression 
of GLUT3 led to a significant reduction in the rate of glucose consumption (Fig. 4C). Transfection with 
siRNA abrogated the hypoxia-induced increase in GLUT3 expression in Hues-7 hESCs and this led to 
a glucose uptake rate intermediate to the previous measurements of glucose uptake in hESCs at 5% and 
20% oxygen9. These findings demonstrate that GLUT3 is responsible for glucose uptake in hESCs and 
suggest that the increased GLUT3 expression observed at 5% oxygen drives the increased rate of glucose 
consumption in hESCs maintained in hypoxia9. A similar decrease in the rate of lactate production was 
observed after transfection with siRNA against GLUT3 (Fig. 4C). It is likely that the reduced rate of lac-
tate production is caused by the reduced rate of glucose uptake, as one molecule of glucose is converted 
into two molecules of lactate through the process of glycolysis. Together, these data suggest that there is 
a decreased glycolytic flux when GLUT3 expression is silenced.

Silencing GLUT3 expression has also been observed to lead to a significant reduction in OCT4 
expression (Fig.  5A). It is most likely that this reduction in pluripotency is a result of the decreased 
flux through glycolysis caused by silencing GLUT3 expression, as glycolysis is known to be important 
for maintenance of pluripotency37,43. This supports the idea that hypoxia promotes pluripotency, in 
part, through up-regulation of glycolysis, as reduction of the glycolytic rate in hESCs maintained under 
hypoxic conditions is sufficient to reduce the expression of OCT4. Importantly, a positive correlation 
between OCT4 and GLUT3 expression was found in Hues-7 hESCs (Fig. 5B). This correlation appeared 
to be non-linear, so the measurement of GLUT3 expression was log transformed and found to positively 
correlate with OCT4 expression (Fig. 5C), suggesting that there is a correlation between pluripotency, or 
at least OCT4 expression, and glycolytic flux such that reducing the rate of glycolysis will impact hESC 
pluripotency. This effect on pluripotency is more severe as the expression of GLUT3, and presumably 
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the rate of glucose consumption, is reduced further. This is consistent with the previously measured 
dose-dependent effect on early development, including aberrant brain organogenesis, measured when a 
morpholino was used to silence the GLUT3 orthologue in zebrafish45.

In addition to regulating glucose entry, glycolytic flux may also be regulated through control of glyco-
lytic enzymes. PKM2 is a glycolytic enzyme that is regulated by multiple mechanisms, including allostery, 
post-translational modifications and control of cellular localisation46–49. However, little is known about 
the regulation of PKM2 in hESCs. This study investigated the effect of environmental oxygen on PKM2 
expression and the role of PKM2 in the regulation of metabolism and pluripotency.

PKM2 was found to localise primarily to the nucleus of Hues-7 and Shef3 hESCs at both 5% and 
20% oxygen (Fig. 6). Previously, PKM2 expression has been detected in the nucleus of cancer cells and 
it has various roles in the regulation of transcription50–54. However, transcriptional roles of PKM2 have 
not previously been demonstrated in hESCs. Thus, the localisation of PKM2 in the nucleus of hESCs 
suggests that it has a function other than as a glycolytic enzyme. If PKM2 expression is nuclear, then 
it is not clear how the high glycolytic rate is maintained in hESCs. It is possible that there is a lower 
level of PKM2 expression in the cytoplasm that was undetected by immunocytochemistry or that PKM1 
facilitates glycolysis. Another possibility is that a previously described alternative pathway in cancer cells 
is also present in hESCs and that phosphoenolpyruvate can be converted to pyruvate by acting as a phos-
phate donor, with the phosphate group transferred onto the glycolytic enzyme phosphoglycerate mutase 
(PGAM1)55. To further investigate the role of PKM2 in the regulation of hESC metabolism and pluripo-
tency under hypoxic conditions, siRNA was used to silence PKM2 expression. This led to an approximate 
60% reduction in PKM2 protein expression (Fig. 7A). There was no significant effect of silencing PKM2 
expression on glucose uptake or lactate production, suggesting that PKM2 is not required to support a 
high glycolytic flux in hESCs maintained under hypoxic conditions (Fig. 7B). This suggests that glycolysis 
is facilitated by PKM1 or the transfer of a phosphate group from phosphoenolpyruvate to PGAM1 rather 
than by a low level of expression of PKM2 in the cytoplasm of hESCs.

A significantly lower level of expression of PKM2 was observed in Hues-7 hESCs maintained at 20% 
oxygen in comparison with those cultured at 5% oxygen (Fig.  6Q). As HIF-1α  is only involved in the 
initial response to hypoxia63, it is likely that expression of PKM2 is regulated under hypoxia by HIF-2α , 
in hESCs. Alternatively, it is possible that PKM2 expression is transcriptionally regulated by OCT4, as 
has been found in mESCs37, and the hypoxia-driven increase in OCT4 expression leads to an increased 
expression of PKM2. If PKM2 primarily functions as a transcriptional regulator in hESCs, then it is likely 
that hypoxia-driven increases in expression will promote this function.

Interestingly, PKM2 has been demonstrated to interact with HIF-1α  to promote transcription of 
target genes35,54. It is not known whether PKM2 is able to form a similar interaction with HIF-2α , 
but it is possible that this interaction could be a major function of PKM2 in hESCs. Another interac-
tion that PKM2 has been found to make, in cancer cells, that could be particularly interesting in the 
regulation of hESC pluripotency, is with OCT4. However, the function of this interaction is not clear 
as contradictory results have been presented, with one study demonstrating cooperation34 and another 
suggesting that PKM2 inhibits the function of OCT456. Importantly, silencing expression of PKM2 in 
Hues-7 hESCs cultured at 5% oxygen resulted in a significant reduction in OCT4 expression (Fig. 7C). 
This demonstrates that PKM2 regulates OCT4 expression. Hence, rather than having a glycolytic role in 
hESCs, PKM2 is likely to transcriptionally regulate OCT4. Similarly, it was recently demonstrated that 
overexpression of Pkm2 in mESCs supported Oct4 expression in the absence of LIF37. If PKM2 is able to 
interact with HIF-2α  to promote transactivation of target genes, then it is likely to enhance transcription 
of OCT4, as OCT4 is a target of HIF-2α  in hESCs63. In addition, if PKM2 is able to bind to OCT4, and 
enhance its transcriptional activity, in hESCs, as has been demonstrated in a transformed cell line, this 
could lead to an increased expression of OCT4 due to the way in which the pluripotency factors act in 
a self-promoting network57–59. Therefore, loss of PKM2 could lead to a reduction in expression of OCT4 
by two distinct mechanisms. Further work is required to determine the mechanism by which PKM2 
promotes OCT4 expression.

In the current study, we have determined a positive correlation between expression of the proteins 
GLUT3 and OCT4, suggesting that glucose metabolism regulates pluripotency. In addition, we have 
demonstrated that PKM2 promotes OCT4 expression. Hypoxia was found to have an effect on the 
expression of both PKM2 and GLUT3, which highlights two further ways in which culture at a low oxy-
gen tension is beneficial to the maintenance of highly pluripotent hESCs; support of the required high 
rate of glycolytic flux through the regulation of GLUT3, and the promotion of PKM2 expression, which 
functions as a transcriptional regulator.

Methods
hESC culture.  Hues-7 (D. Melton, Howard Hughes Medical Institute/Harvard University)60 and Shef3 
(supplied by the UK Stem Cell Bank)61 hESCs were cultured at 20% oxygen on γ -irradiated mouse 
embryonic fibroblasts (MEFs; a primary source derived, in institutional facilities following University 
of Southampton ethical review committee approval and in accordance with UK Home Office regula-
tions) in Knockout DMEM (Invitrogen) that was supplemented with 15% knockout serum replacement 
(Life Technologies), 1% non-essential amino acids (Life Technologies), 1% penicillin/streptomycin (Life 
Technologies), 1% L-glutamax (Life Technologies), 50 μ M β -mercaptoethanol (Sigma) and 10 ng/ml 
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bFGF (Peprotech). hESCs were then transferred to Matrigel (BD Biosciences) coated plates and cultured 
in MEF-conditioned supplemented Knockout DMEM at both 20% and 5% oxygen. hESCs were main-
tained for a minimum of 3 passages on Matrigel at both oxygen tensions before use.

Immunocytochemistry.  hESCs were fixed in 4% paraformaldehyde for 15 minutes before being 
blocked for 1 hour in 3% donkey serum in PBS. Cells were permeabilised using 1% Triton X-100. Cells 
were incubated with primary antibodies, diluted in 3% donkey serum and, if intracellular antigens, in 1% 
Triton X-100 overnight at 4 °C. Primary antibodies used were GLUT1 (Abcam) 1:250, GLUT3 (Abcam) 
1:100, OCT4 (Santa Cruz) 1:100, and PKM2 (Novus) 1:100. Cells were then incubated with the second-
ary antibody for 2 hours at room temperature. The secondary antibody used for GLUT1, GLUT3, and 
PKM2 was goat anti-rabbit Alexa 488 (Life Technologies) 1:800 and for OCT4 the secondary antibody 
was goat anti-mouse IgG FITC (Sigma) 1:100. Cells were mounted in Vectashield with DAPI (Vector 
Laboratories).

Western blotting.  Hues-7 hESCs were lysed in ice cold radioimmunoprecipitation assay (RIPA) 
buffer (Sigma). Samples were incubated for 20 minutes on ice before sonicating for 30 seconds. 50 μ g pro-
tein was resolved on a 12% SDS bisacrylamide gel before being transferred to a nitrocellulose membrane 
and blocked with 5% milk in PBS containing 0.1% Tween for 1 hour at room temperature. The membrane 
was incubated with primary antibody diluted in the blocking buffer overnight at 4 °C. Primary antibod-
ies against OCT4 (Santa Cruz) 1:1000, GLUT1 (Abcam) 1:1000, GLUT3 (Abcam) 1:3000, and PKM2 
(Novus) 1:1000 were used. Membranes were then washed and then a horseradish peroxidase-conjugated 
anti-mouse antibody (GE Lifesciences), 1:100,000, was used for detection of OCT4 and a horseradish 
peroxidase-conjugated anti-rabbit antibody was used for detection of GLUT1, GLUT3, and PKM2 (GE 
Lifesciences), 1:50,000. Amersham enhanced chemiluminescence Western blotting detection reagents 
(GE Lifesciences) were used along with film development for band detection. Protein expression was 
quantified relative to β -actin (mouse anti-β -actin horseradish peroxidase-conjugated antibody (Sigma) 
1:50,000).

Transfection with siRNA.  siRNA was used to silence expression of GLUT3 and PKM2 in Hues-7 
hESCs cultured at 5% oxygen on Matrigel-coated plates. hESCs were transfected on the first day 
after passaging, before a standard medium change 24 hours later. Experiments were performed, or 
protein was collected, 48 hours after transfection. To silence GLUT3 expression, 50 nM of a previ-
ously validated siRNA (Ambion) was used with the transfection reagent INTERFERin (Polyplus). To 
silence PKM2 expression, 100 nM of a previously described PKM2 specific siRNA (Sense strand: 5′  
CCAUAAUCGUCCUCACCAAUU 3′ ; Thermo Scientific)32 was required, with the transfection reagent 
HiPerFect (Qiagen). Allstars control siRNA (Qiagen) was transfected into hESCs alongside GLUT3 
siRNA and PKM2 siRNA experiments as a negative control.

Measurement of hESC carbohydrate utilisation.  Metabolic analysis was performed with hESCs 
cultured in 12-well Matrigel-coated plates. 6 wells, containing cells cultured on Matrigel, were used for 
analysis and 4 cell-free wells were used as controls. On the third day after passaging, the culture medium 
was removed and replaced with 500 μ l of a defined metabolic medium62, containing amino acids, 470 μ M 
pyruvate, 1 mM glucose, and 5 mM lactate, for 30 minutes to allow acclimatisation of hESCs to the 
medium. The medium was then replaced with 300–500 μ l of the defined medium for 1.5–3.5 hours. 
After this incubation, 200 μ l was removed and stored at − 80 °C and a haemocytometer was used to 
count the number of cells in each well. Enzyme-linked assays were used to measure the concentration of 
glucose and lactate in the spent medium to allow calculation of rates of glucose consumption or lactate 
production in pmol/cell/hour9. A Fluostar Optima microplate reader (BMG Labtech) was used to meas-
ure fluorescence of NADPH after a glucose assay and NADH after a lactate assay.

Statistical analysis.  D’Agostino & Pearson omnibus normality tests were performed on datasets 
to determine whether parametric or non-parametric tests were appropriate. Depending on the results, 
either Mann-Whitney U or unpaired Student’s t-tests were performed to compare protein expression or 
rates of nutrient uptake or production between culture conditions. Protein expression was normalised 
to β -actin and to 1 for cells cultured at 5% oxygen or cells transfected with negative control siRNA. To 
analyse the correlation between GLUT3 and OCT4 expression, a Spearman rank correlation test was 
used. In all cases a value for p <  0.05 was taken to indicate statistical significance. All data represent a 
minimum of 3 independent experiments and are presented as mean ±  s.e.m.
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