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Abstract: Toxin detection is an important issue in numerous fields, such as agriculture/food safety,
environmental monitoring, and homeland security. During the past two decades, nanotechnology has
been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site
analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene
and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label
and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection
of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good
electrical conductivity and a large surface area with plenty of active groups for conjugating 2D
nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize
recent developments in the application of 2D nanomaterial-based electrochemical biosensors for
detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal
toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer
technologies into electrochemical biosensors has led to an unprecedented impact on improving
the assaying performance of microbial toxins, and has shown great promise in public health and
environmental protection.

Keywords: two dimensional layered nanomaterials; electrochemical biosensors; microbial toxin
detection; antibodies; aptamers

Key Contribution: This review updates the construction strategies of electrochemical biosensors
such as immunosensors and aptasensors for cost-effective determination of microbial toxins with
high sensitivity given by rapidly developing two dimensional layered (2D) nanomaterial-based
labels and substrates. We summarize the roles of 2D nanomaterials and their nanocomposites
in the configuration of electrochemical biosensors, as well as the advantages they provide to the
analyses, and address the major challenges and perspectives of these electrochemical biosensors for
future commercialization.

1. Introduction

Two-dimensional layered (2D) nanomaterial (e.g., graphene and its derivatives, transition metal
dichalcogenides (TMDs) and other layered nanosheets)-based electrochemical signal amplifications
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have great potential for improving both the sensitivity and selectivity of electrochemical biosensors
because of their unique physical, chemical, and electrical properties [1–21]. Graphene is a single
layer of densely packed carbon atoms with a benzene-ring structure, and is the first known 2D
layered nanomaterial [22]. The unique properties of graphene, including its exceptional mechanical
strength [23], extremely large surface area (2630 m2/g) [24], very high thermal conductivity in
the range of ∼3080–5150 W mK−1 [25], high conductivity [26], good charge carrier mobility [27],
and wide potential window [28], endow it with great applicability in the development of biosensors,
and, in particular, electrochemical biosensors [1–5,12,22–24,29]. In addition, based on the molar
ratio of carbon to oxygen (C/O), graphene can be roughly divided into two categories, graphene
oxide (GO) or reduced graphene oxide (rGO). It is demonstrated that rGO has better electrical
conductivity than GO. Because pure graphene lacks an intrinsic band gap and is limited by chemical
modification, there is an increasing interest in synthesizing graphene derivatives/nanocomposites
and graphene-like 2D nanomaterials. Among the graphene-like 2D nanomaterials, TMDs (e.g.,
molybdenum disulfide (MoS2) and molybdenum selenide (MoSe2)) show excellent physicochemical
properties and remarkable biocompatibility, and also have significant attraction for the fabrication
of electrochemical (bio)sensors [6,7,9,14,21,29]. Driven by their unprecedented properties, massive
synthetic methods/protocols have been developed for preparing 2D nanomaterials and 2D nanomaterial
composites, which involves both physical strategies and chemical approaches, such as dry
mechanical exfoliation (e.g., Scotch tape), chemical (e.g., solution-based exfoliation, graphite oxide
exfoliation/reduction) and/or electrochemical (oxidation/reduction and exfoliation) processes, chemical
vapor deposition (CVD), chemical synthesis, thermal decomposition of SiC wafers and unzipping carbon
nanotubes [26,30–43]. In this review, we will not describe the detailed synthetic methods/protocols
mentioned above for synthesis of 2D nanomaterials, however, we suggest reading several recently
published comprehensive review articles [40–45]. These methods of 2D nanomaterial preparation
produce different forms of nanomaterials with a diversity of properties including mechanical, optical,
electrical, chemical and biological properties. These diverse properties make 2D nanomaterials suitable
for an extensive range of applications, such as drug delivery, in vitro and in vivo imaging, tissue
engineering, biosensor construction, and energy conversion and storage [39,43,46]. For biosensor
applications, 2D nanomaterials should be extensively characterized because their properties strongly
dependent on their characteristics such as thickness or number of layers, morphology, chemical
structure and surface functional groups.

Microbial toxins are the general term for a class of substances covering a broad range from
small molecules to biomacromolecules (e.g., peptides and proteins), which are produced by living
organisms including bacteria, fungus and algae [47–53]. They are widespread throughout the
whole world, threatening the health and/or life of humans and livestock, and affecting domestic
and international trade. For instance, aflatoxin B1 (AFB1, a kind of mycotoxin produced by fungi)
has been defined as a group I carcinogen by the World Health Organization (WHO) [53]. Some
microbial toxins can generate acute poisonous effects even at very low doses, and the co-occurrence
of microbial toxins in nature may cause significantly additive and/or synergistic toxicity. In order
to efficiently avoid potential hazards on public health and safety, it is important to precisely and
reliably determine the toxins in practical samples from different sources. Liquid chromatography-based
methods including high-performance liquid chromatography (HPLC) and high-performance liquid
chromatography-tandem mass spectrometry (HPLC/MS/MS) are the gold standards for accurate analysis
of toxins [54–59]. Although the HPLC-based methods have high reliability and accuracy, they typically
require expensive laboratory facilities and instruments, complex pre-treatment processing of the sample
and well-trained operators. These drawbacks strongly limit the application of HPLC-based methods in
on-site detections of toxin. Various sensing systems such as surface plasmon resonance (SPR) biosensors,
electrochemical biosensors, fluorescence biosensors, colorimetric assays, competitive enzyme-linked
immunosorbent assay (ELISAs) and microfluidic immunoassay have been developed for analysis of
toxins from different sources including clinical samples, foods, water and feeds [60–66]. Among these
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biosensing systems, electrochemical biosensors and biotransducers are more attractive because they
offer several advantages such as high sensitivity, operational simplicity, relatively low cost, easily
miniaturization and suitable on-site analysis [8,11–19,67–69]. These advantages make electrochemical
biosensors/transducers of microbial toxins powerful tools in many areas including food, environmental
and medical monitoring, disease diagnosis and anti-terrorism security. Owing to the large surface
areas and excellent conductivities, the integration of 2D nanomaterials (e.g., graphene and TMDs) and
their nanocomposites with electrochemical transducers has great potential to enhance the analytical
performance of electrochemical biosensors for detection of toxins [8,11–19]. For example, since its birth,
multiple research initiatives on graphene applied to electroanalytical chemistry have been launched
worldwide, and analysts have been developing a plethora of different graphene-based electrochemical
sensing platforms for detection of various targets including microbial toxins. Typically, these
electrochemical biosensors comprise a graphene and/or a graphene derivative/nanocomposite-modified
electrode as an electrochemical signal transduction element, and a biological recognition element (e.g.,
antibodies, aptamer and microbial cells). The signal from the biological recognition event is converted
to a quantifiable electrical signal because the biological target is normally in close contact with the
electrochemical signal transduction element through physical or chemical interactions (e.g., electrostatic
interactions, π-π interactions and covalent bonds). Because of their unique properties (e.g., large
surface area and good conductivity), the detection performance of an electrochemical biosensor can be
significantly improved by using the graphene and/or a graphene derivative/nanocomposite. Therefore,
the scope of application of 2D nanomaterial-based electrochemical biosensors has been constantly
expanding in the field of toxin detection. Some of these studies have been reviewed elsewhere
with a focus on the fabrication and toxin detection of graphene-based electrochemical biosensors
or as subclassifications in more generalized overviews of the nanomaterial-based electrochemical
biosensors [8,11–19]. In this review, we will focus on the recent development of GO/rGO and/or
MoS2/MoSe2-based electrochemical biosensors for the determination of various microbial toxins, such as
bacterial toxins, fungal toxins and algal toxins, highlighting some of their current achievements, technical
challenges/limitations and the future directions by means of a set of selected recent publications.

2. Detection of Bacterial Toxins

2.1. Botulinum Neurotoxins

The Botulinum neurotoxins (BoNTs), which are produced by Clostridium botulinum, an anaerobic
bacterium, are among the most toxic of all naturally occurring substances [70–72]. Based on their
molecular structures, BoNTs are categorized into seven serotypes (from A to G). They inhibit
acetylcholine release from presynaptic nerve terminals at the neuro-muscular junction in both the
central and peripheral nervous systems through cleavage of soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs), resulting in flaccid muscle paralysis. BoNTs can cause the
deadly disease, botulism, with a median lethal dose (LD50) of 1 ng per kg bodyweight. Foods are
easily contaminated by Clostridium botulinum during processing. Various (impedimetric, voltammetric
and amperometric) electrochemical biosensors have been fabricated for BoNT detection [73–76].
In particular, electrochemical biosensors can achieve detection of this toxin in a fast and meticulous way,
and they also provide a robust and cost-effective approach for real-time monitoring of BoNTs. Recently,
2D nanomaterial-based electrochemical biosensors have been applied to sensitively detect BoNTs
in various samples including foods. For instance, Narayanan et al. constructed an electrochemical
immunosensor of the BoNT serotype E (BoNT/E) by using graphene nanosheets–aryldiazonium
salts as transducers [74]. The as-proposed immunosensor shows a low limit of detection (LOD,
5 pg mL−1) and can be employed for rapid detection of BoNT/E with a total analysis time of 65 min.
Chan et al. fabricated an electrochemical biosensor for ultrasensitive detection of BoNT serotype
A light chain (BoNT-LcA) through immobilization of the SNAP-25-GFP (synaptosomal associated
protein 25-green fluorescent protein) peptide substrate on the rGO modified gold electrode via
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a pyrenebutyric acid (PA) linker (as shown in Figure 1) [75]. In this case, PA was immobilized
on the rGO surface through π-π stacking. Subsequently, SNAP-25-GFP peptide reacted with PA
via N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride/N-hydroxysulfosuccinimide
(EDC/Sulfo-NHS) activation. After specific cleavage of SNAP-25-GFP by BoNT-LcA, the steric
hindrance and electrostatic repulsion of SNAP-25-GFP decreased, resulting in an increase in the
electrochemical signal. The amount of BoNT-LcA can be detected through the change of peak
current of the electrochemical redox probe (ferricyanide, [Fe(CN)6]3−/4−(1:1)) by the differential pulse
voltammetry (DPV) measurement. The as-fabricated electrochemical biosensor provides a relatively
wide linear range (1 pg mL−1 to 1 ng mL−1) and a relatively low LOD (8.6 pg mL−1) for detection of
BoNT-LcA because the rGO modified Au (rGO/Au) electrode provides a robust and biocompatible
platform with improved electron transfer capability and a large surface area for peptide immobilization.
The feasibility of the as-fabricated biosensor is demonstrated by detection of BoNT-LcA in spiked
milk samples. Afkhami et al. developed a gold nanoparticle-graphene-chitosan (Au NPs-Gr-Cs)
nanocomposite-based impedimetric immunosensor for the detection of BoNT serotype A (BoNT/A) [76].
The Au NPs-Gr-Cs nanocomposite was used for the amplification of the electrochemical signal, and
monoclonal anti-BoNT/A antibodies were conjugated on the Au NPs-Gr-Cs nanocomposite modified
glassy carbon electrode (GCE). In the presence of BoNT/A, the immunocomplex formed on the
as-prepared electrode surface, which acts as the inert electron and mass transfer blocking layer.
Therefore, the diffusion of [Fe(CN)6]3−/4− is hindered, resulting in a decrease of the peak current.
The Au NPs-Gr-Cs nanocomposite-based impedimetric immunosensor has an excellent linear range
(from 0.27 to 268 pg mL−1) with a LOD of 0.11 pg mL−1, and is very suitable for routine analysis of
BoNT/A in different matrices, such as serum and milk.
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Figure 1. Schematic representation of the detection principle of the rGO based electrochemical
biosensors (adapted from Chan et al. 2015 [75], Copyright 2015 Elsevier B.V. and reproduced with
permission).

2.2. Clostridium difficile Toxin B

Clostridium difficile toxin A (Tcd A, 308 kDa) and toxin B (Tcd B, 270 kDa) are co-produced by
Clostridium difficile (C. difficile). Tcd A is an enterotoxin responsible for tissue damage, while Tcd B
is referred to as a potent cytotoxin [77–81]. In particular, the rapid and sensitive detection of Tcd B
is very helpful for early diagnosis and efficient therapy because Tcd B is critical for virulence and
is found in all clinically isolated pathogenic strains [79–85]. Using the advantages of GO, including
the large surface area and good conductivity, Fang et al. developed a simple sandwich-assay type
electrochemical immunosensor for improving the Tcd B detection sensitivity by using GO as a scaffold
for the enhanced loading of horseradish peroxidase (HRP) and HRP-labeled secondary Tcd B antibody
(as shown in Figure 2) [84]. The LOD (0.7 pg mL−1) of the sandwich-assay type electrochemical
immunosensor is much lower than those of other current techniques including ELISA. In addition,
the as-prepared electrochemical immunosensor was successfully employed to detect Tcd B in practical
samples (e.g., real human stool), demonstrating that the immunosensor has promising potential in
clinical applications.
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Figure 2. Schematic representation of the immunosensor array preparation and detection strategy by
sandwich-type immunoassay of Tcd B. Here, Tcd B means C. difficile toxin B, BSA means bovine serum
albumin, anti-Tcd B means anti-Tcd B antibody, HRP means horseradish peroxidase, HRP-Ab2 means
HRP-labeled second anti-Tcd B antibody, GA means glutaraldehyde, CS means chitosan, PB means
Prussian blue, MWCNTs means multi-walled carbon nanotube, GO means graphene oxide, and GCE
means glassy carbon electrode (adapted from Fang et al. 2014 [84], Copyright 2013 Elsevier B.V. and
reproduced with permission).

2.3. Staphylococcal Enterotoxin B

Among the toxins secreted by Staphylococcus aureus, the staphylococcal enterotoxin B (SEB)
shows superantigenic properties in nature. SEB exposure can result in immunosuppression and
serious food poisoning [86,87]. Therefore, it is important to develop a cost-effective, easy-to-use,
rapid and sensitive method for real-time monitoring of a low concentration (less than 20 ng kg−1

(i.e., LD50 value)) of SEB in foods. Several graphene-based electrochemical biosensors have been
developed for real-time detection of SEB in foods with a high sensitivity [88–91]. For instance,
Sharma et al. reported on an electrochemical biosensor based on a rGO-chitosan-AuNPs-capturing
antibody (rGR-Ch-AuNPs-CAb)-modified GCE for detecting SEB [88]. The rGR-Ch-AuNPs-CAb
modified GCE shows remarkable detecting performance because it has a flat two-dimensional
configuration and large surface area with plenty of active sites (i.e., functional groups). Using the
as-proposed rGR-Ch-AuNPs-CAb-based electrochemical biosensor, 5 ng mL−1 SEB can be easily
detected within 35 min, which is much lower than the LD50 value of SEB. Very recently, Nodoushan et
al. fabricated an electrochemical aptasensor for SEB detection by using a rGO and gold nano-urchins
(AuNUs)-modified screen printed carbon electrode (SPCE) (as shown in Figure 3) [91]. The aptamer of
SEB was attached on the electrode surface through hybridization with the immobilized single-stranded
DNA probe on the surface of the AuNUs. Hematoxylin was used as the electrochemical signal
generator. In the presence of SEB, the aptamer released from the electrode surface, resulting in an
increase in the peak current of hematoxylin. Benefiting from the high conductivity of rGO and high
surface area of AuNUs, a wide linear range from 5.0 to 500.0 fmol L−1 was achieved and the LOD
was calculated as 0.21 fmol L−1. There is no significant difference between the results given by the
commercial ELISA kit and the electrochemical aptasensor. In particular, the aptasensor shows better
recovery rates and lower standard deviation than those of the commercial ELISA kit, which could be
employed as a point-of-care (POC) device for assessing food samples.
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3. Detection of Fungal Toxins

3.1. Aflatoxins

Aflatoxins are a widespread group of food toxins that are produced by Aspergillus flavus and
Aspergillus parasiticus [92–95]. There are four main types of aflatoxins: B1, B2, G1, and G2, which
are based on their fluorescence characteristics under UV light (blue or green) excitation and relative
chromatographic mobility in thin-layer chromatography. Among the aflatoxins, AFB1 is considered
the most toxic aflatoxin, and can cause cancers, such as hepatocellular carcinoma. Various 2D
nanomaterial-based electrochemical biosensors have been constructed for detecting AFB1 in various
matrixes [96–113]. Srivastava et al. have developed a series of functionalized GO nanocomposite-based
electrochemical biosensors for profiling AFB1 in foods since they developed the first rGO-based
AFB1 immunosensor through the covalent conjugation of the monoclonal anti-AFB1 antibodies onto
an rGO modified indium tin oxide (ITO) electrode in 2013 [96–99]. Among these electrochemical
biosensors, the functionalized GO/rGO-based nanocomposites are employed in different roles, such as
catalysts, electroactive probes and immobilization platforms for improving the biosensing performance.
For instance, benefiting from the highly crystalline properties of the rGO-Ni NPs sheets (Ni nanoparticle
decorated rGO sheets) along with the excellent electro-catalytic properties, the rGO-Ni NPs-ITO-based
AFB1 immunosensor exhibits high sensitivity (129.6 mA ng−1 mL cm−2), long term stability (up to
6 weeks) and low LOD (0.16 ng mL−1) [99]. Photoelectrochemical (PEC) biosensors have attracted
great attention in the biological analytical field as the PEC method can obtain high sensitivity without
expensive equipment. Recently, Hao et al. developed a dual channel self-reference PEC biosensor
for detecting AFB1 through immobilization of the AFB1 aptamer onto cadmium telluride (CdTe) and
the CdTe-GO modified ITO electrode (as shown in Figure 4) [104]. In this case, CdTe and CdTe-GO
were used to generate an anodic photocurrent and cathodic photocurrent, respectively. The AFB1
aptamer was immobilized on the PEC active materials, CdTe and CdTe-GO, through a covalent
reaction or physical absorption, respectively. In the presence of AFB1, the aptamer is released from the
CdTe-GO surface, resulting in the recovery of the cathodic photocurrent, while the aptamer forms an
aptamer-AFB1 complex on the CdTe surface, and the anodic photocurrent decreases further. Compared
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to traditional PEC biosensors, the CdTe/CdTe-GO-based dual channel self-reference PEC biosensor
can provide better precision and reliability, which is promising for detection of AFB1 in complex
matrixes. Very recently, Peng et al. developed an AFB1 electrochemical aptasensor based on tetrahedral
DNA nanostructures (TDNs) immobilized on three dimensionally ordered macroporous MoS2-AuNPs
hybrids (3DOM MoS2-AuNPs) [107]. 3DOM MoS2-AuNPs can enhance the immobilization amount of
TDNs and facilitate the movement of the electrons between the electrode surface and the redox probe.
In combination with a HRP functionalized magnetic signal amplifier, the aptasensor achieves a good
linear range (from 0.1 fg mL−1 to 0.1 µg mL−1) and a LOD of 0.01 fg mL−1, which can be employed to
detect AFB1 in grain products such as rice and wheat powder samples.
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Figure 4. Schematic representation of the construction of the self-reference photoelectrochemical (PEC)
biosensor for the detection of AFB1 (adapted from Hao et al. 2017 [104], Copyright 2017 American
Chemical Society and reproduced with permission).

3.2. Ochratoxin

Ochratoxin A (OTA) is the major mycotoxin of the ochratoxin group, which are produced
primarily by fungi (e.g., Aspergillus ochraceus, Penicillium verrucosum and Aspergillus niger) [114–117].
OTA has strong nephrotoxicity, and is the main etiological agent responsible for human Balkan
endemic nephropathy (BEN) and associated urinary tract tumors. In addition, high concentrations
of OTA has certain hepatotoxicity. During the last 5 years, several 2D nanomaterial-based
electrochemical biosensors including immunosensors and aptasensors have also been developed for
sensing OTA [118–131]. For instance, a series of aptasensors based on rGO-AuNP nanocomposites have
been constructed by Wang’s group [118–120]. The rGO-AuNP nanocomposites have well-dispersity
and controllable surface coverage of AuNPs on the rGO sheet, which can be employed as an excellent
signal amplified platform for an impedimetric aptasensor and/or an efficient nanocarrier for the CdTe
QD (cadmium telluride quantum dot)-based amperometric aptasensor. As a typical example, a label
free electrochemical aptasensor was successfully fabricated for ultrasensitive detection of OTA through
using the CdTe QDs modified graphene/AuNPs nanocomposite (GAu/CdTe) as a signal amplifier.
The as-proposed label-free amperometric aptasensor exhibits a wide linear range from 0.2 pg mL−1

to 4 ng mL−1 and a low LOD (0.07 pg mL−1), which has great potential in various applications, such
as food safety monitoring and clinical diagnosis [120]. Bulbul et al. developed a non-enzymatic
nanocatalyst-based amperometric aptasensor for OTA detection through immobilization of the OTA
aptamer on the GO-modified electrode and the electro-oxidation of a nanoceria (nCe) tag [121]. In this
case, GO was used as an electrode material for facilitating the electron transport and enhancing the
electrochemical response because it has high conductivity and peroxidase-like activity. In particular, the
synergistic effect between the catalase activity of nCe and the peroxidase like activity of GO increases
the OTA detection sensitivity significantly. The LOD of as-proposed amperometric aptasensor is
calculated to be 0.1 nmol L−1, which is below the European Union regulatory limits of OTA (such as
5 µg kg−1 in raw cereal grains, 3 µg kg−1 in products derived from cereals, and 2 µg kg−1 in grape juice).
The analytical reliability of the amperometric aptasensor has been demonstrated by the detection of
OTA in spiked corn samples. Recently, Wang et al. constructed a ratiometric electrochemical aptasensor
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for OTA detection through assembly of a methylene blue (MB)-modified OTA aptamer (MB-aptamer)
on the MoS2 nanosheet/AuNP (MoS2-AuNP) nanocomposite-decorated gold electrode through the
host-guest recognition of β-cyclodextrin (β-CD) (as shown in Figure 5) [128]. After interaction with
OTA, the MB-aptamer was disassembled because of G-quadruplex formation, leading to a decrease
in the peak current of MB. Whereas the free ferrocenecarboxylic acid was recognized by β-CD
and produced signals in the current, resulting in the “ratiometric” effect. With the combination of
high electrocatalytic activity of MoS2-AuNP nanocomposites and the recognition capability of β-CD,
the as-proposed ratiometric electrochemical aptasensor possesses satisfactory superiority in terms of
detection range (from 0.1 nmol L−1 to 50 nmol L−1), sensitivity (a LOD of 0.06 nmol L−1), and accuracy
(6.5% of the relative standard deviation (RSD)). The practicability of the aptasensor was successfully
demonstrated by detecting OTA in red wine samples.
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OTA detection based on nanocomposites of gold nanoparticle and MoS2 nanosheets with β-CD-SH
(thiolated β-CD) (adapted from Wang et al. 2018 [128], Copyright 2018 Elsevier Ltd. and reproduced
with permission).

3.3. Mycotoxins Produced by Fusarium

The 2D nanomaterial-based electrochemical biosensors have also been developed for detecting
other mycotoxins produced by Fusarium including deoxynivalenol (DON), fumonisin 1 (FB1),
and zearalenone (ZEN) [132–137]. Shi et al. developed an aptasensor for sensitive FB1 detection by
using the dual amplification of AuNPs and graphene/thionine nanocomposites (GSTH) [132]. GSTH
served as electrochemical probes, which exhibit a strong electrochemical signal because the graphene
has excellent conductivity and a large surface area for immobilizing a large amount of thionine
molecules. The as-prepared aptasensor has a six orders of magnitude linear range with a LOD of
1 pg mL−1. Lu et al. fabricated an electrochemical immunosensor based on a graphene nanocomposite
for rapid and sensitive detection of two mycotoxins, DON and FB1 by using correspondent anti-toxin
antibodies (as shown in Figure 6) [134]. In this case, the disposable SPCE was used as a sensing
platform, which was modified by AuNPs and polypyrrole (PPy)-electrochemical rGO (PPy/ErGO)
nanocomposite film. The film exhibits effective anti-toxin antibody immobilization capacity, enhanced
electrical conductivity, and biocompatibility. The current signal of PPy/ErGO-SPCE is much better than
that of PPy/rGO-SPCE. Benefiting from the excellent electrochemical response and effective antibody
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immobilization, the immunosensor exhibits good sensitivity, with a LOD of 4.2 ng mL−1 for FB1
and 8.6 ng mL−1 for DON. The immunosensor can be used for simultaneous detection of multiple
co-contaminant mycotoxins individually in the practical samples (e.g., corn extracts) because it shows
low matrix interference even in co-existing toxin environments. Very recently, Jiang et al. constructed a
facile electrochemical immunosensor based on thin-layer MoS2 and thionin (MoS2-Thi) composites for
the sensitive and rapid detection of zearalenone (ZEA) in human biofluids (as shown in Figure 7) [136].
The as-prepared MoS2-Thi nanocomposites were employed as excellent electrochemical probes, as well
as an efficient anti-ZEA antibody loading platform because MoS2 retains the electrochemical activity of
Thi, and has a large surface area. The MoS2-Thi-based electrochemical immunosensor has good ZEA
detection performance including a wide linear range (0.01 to 50 ng mL−1), low LOD (0.005 ng mL−1

ZEA in both the plasma and urine), excellent selectivity, rapid responding time (20 min), acceptable
stability (retained more than 85% detection capability at 4 ◦C for 10 days) and good practicability
(detection of ZEA in real human biofluids).
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4. Detection of Algal Toxins

4.1. Microcystins

Microcystins (MCs), a group of toxins produced by a number of cyanobacteria species,
are monocyclic heptapeptides with the general structure cyclo(D)-Ala-X-(D)-erythro-b-methyl-
iso-Asp-Y-Adda-(D)-iso-Glu-N-meth-yldehydro-Ala (X and Y represent L-amino acids). They are the
most common cyano-toxins [138–142]. The unusual Adda amino acid, unique to MCs, is responsible
for the toxicity of the molecule. There are more than 100 known variants of MCs, which are
found in a wide variety of aquatic environments, in particular, eutrophic waters. Exposure to
MCs via consumption of poisoned drinking-water or eating contaminated fish can cause permanent
multiple organ injuries, developmental effects, reproductive effects and cancer. Therefore, it is
important to develop highly sensitive methods for on-site monitoring of MCs. In addition, as the
most potent congener, the Microcystin-LR (MC-LR) is commonly used to evaluate the toxicological
data on the effects of MCs. The maximum tolerance limit of MC-LR concentration is 1 µg L−1 in
different water sources by the WHO provisional guideline. Electrochemical biosensors, including 2D
nanomaterial-based amperometric immunosensors, impedimetric aptasensors, and PEC aptasensors,
have been extensively employed to detect MCs/MC-LR [143–159]. Li et al. have fabricated an
electrochemical immunosensor based on GO-AuNP nanocomposites for MC-LR detection in water
samples though layer-by-layer alternate electrodeposition of GO and chloroauric acid (HAuCl4) on the
GCE surface for 20 cycles [147]. The GO-AuNP-decorated GCE was then modified by the conducting
polymer (poly(2,5-di-(2-thienyl)-1-pyrrole-1-(p-benzoicacid)) and 1-iso-butyl-3-methylimidazolium
bis(tri-fluoromethane-sulfonyl) imide ionic liquid (IL). A polyclonal antibody of MC-LR was
immobilized on the electrode by the conventional EDC/NHS reaction. The GO-AuNP nanocomposites
enhance electron transfer of Fe(CN)6

3−/4− to the electrode while the IL acts as the stabilizer of the
antibody. The as-developed electrochemical immunosensor has good repeatability (e.g., RSD = 1.2%)
and long-term stability (e.g., retain 95% activity over a 20 weeks storage period), and can detect MC-LR
in water samples with a very low LOD of 3.7 × 10−17 mol L−1. Recently, He et al. synthesized a
kind of magnetic rGO nanocomposite (Fe3O4@PDA/RGO) for constructing a MC-LR electrochemical
immunosensor by using the hydrothermal treatment of Fe3O4 nanocluster@Polydopamine core@shell
nanoparticles (Fe3O4@PDA) with GO (as shown in Figure 8) [153]. Due to its surface area and easy
separation, the Fe3O4@PDA/RGO clearly enhances the antigen immobilization ability of the electrode.
Then, a secondary-antibody and circularization DNA template were conjugated on gold nanorods
(AuNRs) for recognizing the captured MC-LR-antibody pair on the Fe3O4@PDA/RGO-modified
electrode surface and rolling circle amplification. Because the rolling circle amplification strategy can
generate massive repeated DNA sequences, the signal of the immunosensor is greatly enhanced by
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hybridization of electrochemical active probes with the repeated DNA sequences. Under the optimal
conditions, the as-developed immunosensor has good detection performance including a wide linear
range (from 0.01 mg L−1 to 50 mg L−1) and a low LOD (0.007 mg L−1), which can be employed to
detect MC-LR in real samples (e.g., river water). A series of PEC aptasensor-based various GO/rGO
nanocomposites have been developed for sensitively detecting MC-LR since the PEC method has been
considered to be a more sensitive technique, ascribed to the combination of electrochemical and optical
techniques [149,151,157]. For instance, Du et al. developed a PEC aptasensing platform based on
AgI-nitrogen-doped graphene (AgI-NG) nanocomposites as photo-cathodes and a MC-LR aptamer
as the recognition unit [157]. The PEC aptasensor has a LOD of 3.7 × 10−17 mol L−1, which can be
employed to determine MC-LR in inaquatic products (e.g., fish extracts). As a graphene analogue,
the MoS2 nanosheet is also expected to serve as an excellent functional material for development
of electrochemical biosensors. As shown in Figure 9, Pang et al. constructed an enzyme-free
electrochemical immunosensor for detecting MC-LR based on a unique competitive detection scheme
using MoS2 nanosheets/BSA-stabilized gold nanocluster (MoS2/AuNCs) nanocomposites and Au
core/Pt shell nanoparticles (Au@PtNPs) [155]. Due to its large surface area and excellent biocompatibility,
the MoS2/AuNCs nanocomposite was employed as a platform for improving the biological activity
and immobilizing amount of antibody on the electrode surface. The as-developed enzyme-free
electrochemical immunosensor has good stability (e.g., 92% of the initial level remained after being
stored at 4 ◦C for four weeks), and exhibits a wide linear range of 1.0 ng L−1–1.0 mg L−1 with a LOD of
0.3 ng L−1. The practicability of the as-developed immunosensor has been demonstrated by detection
of MC-LR in various water samples including tap water, lake water, and river water. The MC-LR
amounts in these water samples detected by the immunosensor are consistent with those determined
by the conventional ELISA method. Very recently, Liu et al. developed an electrochemical aptasensor
for sensitive and selective determination of microcystin-LR by using a dual signal amplification system
consisting of a ternary nanocomposite and HRP [159]. The ternary nanocomposites were prepared
by depositing AuNPs on the MoS2 nanosheets covered with TiO2 nanobeads (TiONBs). The MoS2

nanosheet-modified TiONBs provide a large surface area for efficiently immobilizing AuNPs and
thiolated MC-LR aptamers. Due to the combination of good electron transfer and high catalytic
capability of the ternary composite, the aptasensor has a wide dynamic range from 0.005 to 30 nmol L−1

and a LOD of 0.002 nmol L−1.
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Figure 8. Schematic representation of (A) the preparation of Ab2-AuNR-cirDNA, (B) the formation of
magnetic graphene composite, and (C) the construction process of the proposed MC-LR immunosensor
(adapted from He et al. 2017 [153], Copyright 2017 The Royal Society of Chemistry and reproduced
with permission).
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4.2. Cylindrospermopsin

Cylindrospermopsin (CYN), a tricyclic alkaloid with a molecular mass of 415 Da, is a common
cyanotoxin, and is produced by cyanobacteria including Cylindrospermopsis, Anabaena, Umezakia, and
Aphanizomenon [160–166]. Cylindrospermopsin can cause DNA/RNA strand breakage and promote
hepatotoxicity, cytoxicity, and genotoxicity through inhibiting protein translation and binding to
DNA. The Falconer recommends a tentative guideline value of 1 ug L−1 for cylindrospermopsin [166].
Recently, we fabricated a label-free impedimetric aptasensor based on a GO-thionine (TH-GO)
nanocomposite for detection of CYN by covalent binding of the amino-terminated aptamer of CYN
to TH-GO nanocomposite-modified GCE via glutaraldehyde (as shown in Figure 10) [167]. Using
[Fe(CN)6]4−/3− as an electrochemically active probe, CYN can be detected as low as 0.117 ng mL−1 in
water. The as-proposed aptasensor has been employed for detecting CYN in spiked lake water samples,
and satisfactory recoveries were obtained. With its superior performance characteristics combined
with long-term stability (it retained approximately 74.7% of its initial value after being stored at 4 ◦C for
30 days) and excellent reusability (RSD = 2.1% within 10 reacting cycles), the as-developed aptasensor
is a potential candidate for on-site CYN analysis.
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4.3. Saxitoxins

As a group of carbamate alkaloid neurotoxins, saxitoxins (STXs) contain sixteen variants, which are
commonly associated with “red tides,” and found as a paralytic shellfish toxin. Australia has a drinking
water guideline of 3 µg L−1 of STX equivalence. Recently, Bratakou et al. constructed a miniaturized
potentiometric STX immunosensor on graphene nanosheets with incorporated lipid films and anti-STX
(the natural STX receptor) [168]. The potentiometric STX immunosensor can be easily miniaturized
because graphene nanosheets have a high surface area and good conductivity, and incorporate well with
the lipid bilayer membrane for immobilizing anti-STX antibody. The potentiometric STX immunosensor
exhibits several advantages such as a rapid response time (ca. 5–20 min), low LOD (1 nmol L−1) with
high sensitivity (ca. 60 mV/decade of toxin concentration), good reproducibility (maximum deviation
only 6.8%), reusability, high selectivity and long shelf life (> 1 month). The practicability of the method
was demonstrated by detecting STX in lake water and shellfish samples. This graphene nanosheets
with incorporated lipid films could be used to develop biosensors for monitoring other toxins.

4.4. Brevetoxin B

Brevetoxins (BTXs) are potent cyclic polyether neurotoxins, which are naturally produced by
the marine “red tide” dinoflagellate, Karenia brevis. BTX exposure can cause neurological shellfish
poisoning (NSP), which has increased in geographical distribution over the past decade [139]. As early
as 2012, Tang et al. constructed a magneto-controlled electrochemical immunosensor for sensitive
detection of brevetoxin B (BTX-2) in seafood by using guanine-assembled graphene nanoribbons
(GGNRs) as molecular tags on a home-made magnetic carbon paste electrode [169]. In this case,
the GGNRs were modified by bioconjugates of BSA with BTX-2 (BTX-2-BSA), while monoclonal mouse
anti-BTX-2 antibodies were covalently immobilized on the surface of magnetic beads for the capture
of BTX-2 through a competitive-type immunoassay format. The formed magnetic immunocomplex
was integrated on the electrode with an external magnet, followed by determination in pH 6.5
phosphate-buffered solution containing 2 µmol L−1 Ru(bpy)3Cl2. Compared with pure guanine-labeled
molecular tags, the GNR-labeled electrochemical immunoassays show a much wider linear range and
lower detection limit. Under optimal conditions, the electrochemical signals decreased by increasing
concentration of BTX-2 in the sample. The magneto-controlled immunosensing platform has a wide
dynamic range from 1.0 pg mL−1 to 10 ng mL−1 with a LOD of 1.0 pg mL−1 BTX-2. The analytical
reliability of the magneto-controlled electrochemical immunosensing platform is demonstrated by
the detection of BTX-2 in 12 spiked samples including S. constricta, M. senhousia and T. granosa.
The as-obtained results are consistent with those of traditional ELISA.

4.5. Okadaic Acid

The family of okadaic acid (OA) biotoxins consists of OA and its analogues dinophysistoxins
1, 2 and 3 (named as DTX-1, DTX-2 and DTX-3) [170]. As a by-product of harmful algal blooms
(HABs), OA originates from the algal genera Prorocentrum and Dynophysis. Eissa and Zourob
developed a direct competitive voltammetric immunosensor for the sensitive detection of OA based
on carboxyphenyl-functionalized graphene-modified SPCEs (GSPCEs) [171]. The anti-OA antibodies
were immobilized on the GSPE via carbodiimide chemistry, where OA and OA-ovalbumin (OA-OVA)
in solution compete for their binding to the immobilized antibody. Benefitting from the unique
electrochemical properties of graphene and the stability of the carboxyphenyl layer, the immunosensor
exhibits a linear response up to 5000 ng L−1 with a LOD of 19 pg mL−1. The immunosensor
was successfully applied for detecting OA in the spiked shellfish extracts, showing good recovery.
Very recently, Ramalingam et al. fabricated an electrochemical microfluidic biochip for detecting OA
by using phosphorene-gold (BP-Au) nanocomposite-modified SPCE (as shown in Figure 11) [172].
The as-synthesized BP-Au nanocomposite not only serves as a backbone to the aptamer sequence,
but also significantly enhances the electrochemical response of the aptasensor. DPV measurements
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revealed a LOD of 8 pmol L−1, while a linear range was found between 10 nmol L−1 to 250 nmol L−1.
The electrochemical aptasensor has excellent selectivity and can be employed to detect OA in fresh
mussel extracts. The results suggest that the microfluidic electrochemical aptasensor can be served as
an easy-to-use POC device for an on-field assay.
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5. Conclusions and Perspective

This review has summarized the recent progress in electrochemical biosensing systems for the
determination of various microbial toxins by using 2D nanomaterials and their nanocomposites
(hereinafter referred to 2D nanomaterials). The literature results demonstrate that the integration
of 2D nanomaterials into electrochemical biosensors has led to the significant enhancement of their
analytical efficiency, including a high sensitivity (e.g., very low LODs) with a wide linearity range over
several orders of magnitude, rapid assaying time, and simplified analytical procedures, and they are
also suitable for on-site monitoring. During the determination processes, 2D nanomaterials mainly
have two roles: as substrates for efficient immobilization of capturing biomolecules (e.g., anti-toxin
antibodies and aptamers) and high active electrochemical probes for signal amplification. Some 2D
nanomaterials have multifunctionality, and are capable of playing both of the above roles. Furthermore,
the 2D nanomaterial-based electrochemical aptasensors have been proven as reusable platforms for
detecting toxins.

Although the 2D nanomaterial-based electrochemical biosensors show great promise within
laboratory investigations, such as the detection of toxins in buffer solutions and/or toxin-spiked samples,
the technique remains relatively immature in development compared with standard toxin assaying tools
(e.g., HPLC and ELISA), and several technical challenges are still awaiting further investigation. (1) The
multiple electrode modification steps are normally required for increasing the recognition performance
of the immobilized aptamer or antibody, and reducing background signals. This phenomenon requires
manual and tedious work, which not only increases the preparation cost of biosensors, but also
leads to poor reproducibility of the results among laboratories. In order to simplify the biosensor
construction procedure, future research should increase the reaction efficiency of 2D nanomaterials
with biomolecules (such as an antibody and apatmer) and decrease unreacted activity groups on the
surface of 2D nanomaterials after biomolecule immobilization. Furthermore, development of automatic
methods for modification of 2D nanomaterials on the electrode surface may help to increase the
inter-laboratory reproducibility of biosensors. (2) The properties of 2D nanomaterials, including their
electrical conductivity, PEC conversion capability and biomolecule immobilization capacity, are strongly
dependent on their morphology, such as shape, size, purity, and defects. Therefore, 2D-nanomaterials
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should be fully characterized before biosensor fabrication. In further research, researchers are
strongly encouraged to establish the synthesis standard of 2D-nanomaterials in order to improve the
reproducibility of 2D nanomaterial-based electrochemical biosensors. In addition, the as-proposed
synthesis strategy should be easily employed to produce 2D-nanomaterials on a large-scale by simply
adjusting the synthesis conditions, such as increasing the amount of reactants. This factor is very
important for industrialization of the 2D nanomaterial-based electrochemical sensors. (3) To date,
one kind of 2D nanomaterial-based electrochemical biosensor is merely confined to determine a single
microbial toxin. Because of coexistence of various microbial toxins in nature, future research should
focus on development of a universal biosensor production technology for enabling rapid analysis of
various toxins. (4) In order to achieve large-scale application, in particular for on-site monitoring,
further efforts should be directed toward the development of 2D nanomaterial-based electrochemical
biosensors, which can be used to detect toxins in practical samples such as various agricultural, food
stuff, body fluids, and environmental sectors (e.g., lake water and sea water). The practicability of 2D
nanomaterial-based electrochemical biosensors could be improved through integration of the biosensor
with other techniques such as microfluidic devices and microarrays because miniaturization will help
to increase the detection throughput, e.g., recognize multiple elements simultaneously. (5) Currently,
aptamers and antibodies are mainly used for recognition of the toxins. In order to obtain high selectivity,
the key epitope residues of the aptamer and antibody should be unrestrained after immobilization on
the 2D nanomaterials. In addition, the molecular structures of the aptamer and antibody are sensitive
to the environmental conditions (such as temperature, ionic strength and interferences from sample
matrices). The high apparent affinity of the aptamer and/or antibody could be achieved through
immobilization of the aptamer and/or antibody by stereoselective reactions (e.g., chick chemistry,
DNA hybridization, biotin-avidin recognition). In addition, future research should aim to increase the
biocompatibility of 2D nanomaterials. Finally, we expect commercialization of 2D nanomaterial-based
electrochemical biosensors into practical procedures for detecting multiple toxins in practical samples
through efforts of researchers in different disciplines, which would give significant benefit to the public.
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